-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcounting_bits.dart
89 lines (68 loc) · 1.74 KB
/
counting_bits.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
/*
-* 338. Counting Bits *-
Given an integer n, return an array ans of length n + 1 such that for each i (0 <= i <= n), ans[i] is the number of 1's in the binary representation of i.
Example 1:
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10
Example 2:
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
Constraints:
0 <= n <= 105
Follow up:
It is very easy to come up with a solution with a runtime of O(n log n). Can you do it in linear time O(n) and possibly in a single pass?
Can you do it without using any built-in function (i.e., like __builtin_popcount in C++)?
*/
class A {
List<int> countBits(int n) {
List<int> res = List.filled(n + 1, 0);
for (int i = 0; i <= n; i++) {
res[i] = solve(i, res);
}
return res;
}
int solve(int n, List<int> memo) {
if (n == 0) return 0;
if (n == 1) return 1;
if (memo[n] != 0)
// if memo of n answer is already available we will re-use it & not go further for calculation
return memo[n];
// but if you are coming for the first time then, store that value in memo
if (n % 2 == 0) {
memo[n] = solve(n ~/ 2, memo);
return solve(n ~/ 2, memo);
} else {
memo[n] = 1 + solve(n ~/ 2, memo);
return 1 + solve(n ~/ 2, memo);
}
}
}
class B {
List<int> countBits(int n) {
List<int> f = List.filled(n + 1, 0);
for (int i = 1; i <= n; i++) f[i] = f[i >> 1] + (i & 1);
return f;
}
}
class C {
List<int> countBits(int n) {
List<int> answer = List.filled(n + 1, 0);
int offset = 1;
for (int i = 1; i < answer.length; i++) {
if (offset * 2 == i) offset *= 2;
answer[i] = 1 + answer[i - offset];
}
return answer;
}
}