-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
706 lines (536 loc) · 26.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
from collections import deque
import csv
import random
import config
from pprint import pprint
from matplotlib.artist import get
import config
def update_prey_belief_state(prey_belief_state, agent_curr_pos, agent_prev_pos, arena, found_prey, surveyed_node, checkpoint):
"""
Updates prey belief state
Parameters:
prey_belief_state (dict): Stores prey's belief state
agent_curr_pos (int): Stores Agent's current position
agent_prev_pos (int): Stores Agent's previous position
arena (dict): Contains the graph
found_prey (bool): Contains prey is found status
surveyed_node (int): Contains the node that was surveyed by the agent
checkpoint (string): Describes which part of the function to run
Returns:
new_prey_belief_state (dict): The updated belief state
"""
# Initializing the new prey belief states
new_prey_belief_state = dict.fromkeys([i for i in range(50)], 999.0)
new_prey_belief_state[agent_curr_pos] = 0.0
# After surveying the node
if checkpoint == 'after_survey':
if found_prey:
for i in range(50):
new_prey_belief_state[i] = 0.0
new_prey_belief_state[surveyed_node] = 1.0
return new_prey_belief_state
else:
new_prey_belief_state[surveyed_node] = 0.0
for i in range(50):
if i not in (agent_curr_pos, surveyed_node):
new_prey_belief_state[i] = prey_belief_state[i] / ( sum(prey_belief_state.values()) - prey_belief_state[surveyed_node] - prey_belief_state[agent_curr_pos])
return new_prey_belief_state
elif checkpoint == 'after_agent_moves':
if found_prey:
return prey_belief_state
else:
# print(f'agent_curr_pos in func: {agent_curr_pos}')
new_prey_belief_state[agent_prev_pos] = 0.0
new_prey_belief_state[agent_curr_pos] = 0.0
new_prey_belief_state[surveyed_node] = 0.0
for i in range(50):
if i not in (agent_curr_pos, agent_prev_pos, surveyed_node):
new_prey_belief_state[i] = prey_belief_state[i] / ( sum(prey_belief_state.values()) - prey_belief_state[agent_curr_pos] - prey_belief_state[surveyed_node])
return new_prey_belief_state
elif checkpoint == 'after_prey_moves':
new_prey_belief_state[agent_curr_pos] = 0.0
temp_prey_belief_state = dict.fromkeys([i for i in range(50)], 999.0)
temp_prey_belief_state[agent_curr_pos] = 0.0
# prey has moved
for i in range(50):
temp_sum = 0.0
for j in arena[i]:
temp_sum += prey_belief_state[j] / ( get_degree(arena, j) + 1 )
temp_sum += prey_belief_state[i] / ( get_degree(arena, i) + 1 )
temp_prey_belief_state[i] = temp_sum
# pretend to survey node for agent curr pos
new_prey_belief_state[agent_curr_pos] = 0.0
for i in range(50):
if i != agent_curr_pos:
new_prey_belief_state[i] = temp_prey_belief_state[i] / ( sum(temp_prey_belief_state.values()) - temp_prey_belief_state[agent_curr_pos])
return new_prey_belief_state
def update_predator_belief_state(predator_belief_state, agent_curr_pos, agent_prev_pos, arena, found_predator, surveyed_node, checkpoint):
"""
Updates predator belief state
Parameters:
predator_belief_state (dict): Stores predator's belief state
agent_curr_pos (int): Stores Agent's current position
agent_prev_pos (int): Stores Agent's previous position
arena (dict): Contains the graph
found_predator (bool): Contains predator is found status
surveyed_node (int): Contains the node that was surveyed by the agent
checkpoint (string): Describes which part of the function to run
Returns:
new_prey_belief_state (dict): The updated belief state
"""
# Initializing the new predator belief states
new_predator_belief_state = dict.fromkeys([i for i in range(50)], 999.0)
new_predator_belief_state[agent_curr_pos] = 0.0
if checkpoint == 'after_survey':
if found_predator:
for i in range(50):
new_predator_belief_state[i] = 0.0
new_predator_belief_state[surveyed_node] = 1.0
else:
new_predator_belief_state[surveyed_node] = 0.0
for i in range(50):
if i not in (agent_curr_pos, surveyed_node):
try:
new_predator_belief_state[i] = predator_belief_state[i] / ( sum(predator_belief_state.values()) - predator_belief_state[surveyed_node])
except:
print('after_survey')
pprint(f'predator_belief_state: {predator_belief_state}')
print(f'predator_belief_state[surveyed_node]: {predator_belief_state[surveyed_node]}')
print(f'predator_belief_state[i]: {predator_belief_state[i]}')
exit(0)
return new_predator_belief_state
elif checkpoint == 'after_agent_moves':
if found_predator:
return predator_belief_state
else:
# print(f'agent_curr_pos in func: {agent_curr_pos}')
new_predator_belief_state[agent_prev_pos] = 0.0
new_predator_belief_state[agent_curr_pos] = 0.0
new_predator_belief_state[surveyed_node] = 0.0
for i in range(50):
if i not in (agent_curr_pos, agent_prev_pos, surveyed_node):
try:
new_predator_belief_state[i] = predator_belief_state[i] / ( sum(predator_belief_state.values()) - predator_belief_state[agent_curr_pos] - predator_belief_state[surveyed_node])
except:
print('after_agent_moves')
pprint(f'predator_belief_state: {predator_belief_state}')
print(f'predator_belief_state[surveyed_node]: {predator_belief_state[surveyed_node]}')
print(f'predator_belief_state[agent_curr_pos]: {predator_belief_state[agent_curr_pos]}')
print(f'predator_belief_state[i]: {predator_belief_state[i]}')
exit(0)
return new_predator_belief_state
elif checkpoint == 'after_predator_moves':
new_predator_belief_state[agent_curr_pos] = 0.0
temp_predator_belief_state = dict.fromkeys([i for i in range(50)], 999.0)
temp_predator_belief_state[agent_curr_pos] = 0.0
# predator has moved
for i in range(50):
temp_sum = 0.0
for j in arena[i]:
neighbour_path_length = {}
# Finds the length for the shortest path for each of neighbours
for k in arena[j]:
path, path_length = get_shortest_path(k, agent_curr_pos, arena)
neighbour_path_length[k] = path_length
# Finds all the neighbours that have minimum path length
min_length = min(neighbour_path_length.values())
neighbours_with_min_path_length = [key for key, value in neighbour_path_length.items() if
value == min_length]
shortest_length_nodes = len(neighbours_with_min_path_length)
if i in neighbours_with_min_path_length:
temp_sum += predator_belief_state[j] * (( 0.4 / get_degree(arena, j) ) + ( 0.6 / shortest_length_nodes))
else:
temp_sum += predator_belief_state[j] * ( 0.4/ get_degree(arena, j))
temp_predator_belief_state[i] = temp_sum
# pretend to survey node for agent curr pos
new_predator_belief_state[agent_curr_pos] = 0.0
for i in range(50):
if i != agent_curr_pos:
new_predator_belief_state[i] = temp_predator_belief_state[i] / ( sum(temp_predator_belief_state.values()) - temp_predator_belief_state[agent_curr_pos])
return new_predator_belief_state
def get_degree(arena, node):
"""
Gets the degree of the node
Parameters:
arena (dict): Arena for the game
node (int): Node to get the degree for
Returns:
len(arena[node]) (int): Gets the degree of the node
"""
return len(arena[node])
def survey_prey(agent, prey):
"""
Surveys the node with the highest probability of the prey being there and updates the belief state accordingly
Parameters:
agent (object): Agent object
prey (object): Prey object
Returns:
found_prey (Bool): Returns True if found prey else False
node_to_survey (int): Returns the node surveyed
"""
belief_state = agent.prey_belief_state
# Selects all positions where the probability is max
max_prob_of_prey = [pos for pos, prob in belief_state.items() if prob == max(belief_state.values())]
node_to_survey = random.choice(max_prob_of_prey)
if node_to_survey == prey.curr_pos:
return True, node_to_survey
else:
return False, node_to_survey
def survey_predator(agent, predator):
"""
Surveys the node with the highest probability of the predator being there and updates the belief state accordingly
Parameters:
agent (object): Agent object
prey (object): Predator object
Returns:
found_predator (Bool): Returns True if found predator else False
node_to_survey (int): Returns the node surveyed
"""
belief_state = agent.predator_belief_state
# Selects all positions where the probability is max
max_prob_of_predator = [pos for pos, prob in belief_state.items() if prob == max(belief_state.values())]
node_to_survey = random.choice(max_prob_of_predator)
if node_to_survey == predator.curr_pos:
return True, node_to_survey
else:
return False, node_to_survey
def store_data(data):
"""
Stores the collected data toa a CSV file
data: Data collected from all the agents
"""
file_path_to_write = config.FILE_PATH + config.FILE_NAME
# print(file_path_to_write)
f = open(file_path_to_write, 'w')
writer = csv.writer(f)
writer.writerows(data)
print("Data Collection Complete")
f.close()
def FindPath(parent, start_pos, end_pos):
"""
Backtracks and finds the path in the arena to the end position from the start position
Parameters:
parent (dict): Parent dictionary of each node
start_pos (int): Start position of the path
end_pos (int): End position of the path
Returns:
path (deque): Path from start to end position
"""
path = deque()
path.append(end_pos)
while path[-1] != start_pos:
path.append(parent[path[-1]])
path.reverse()
path.popleft()
return path
def get_shortest_path(start_pos, end_pos, arena):
"""
Uses Breath First Search to find the shortest path between the start and end position
'neighbours' is used as the fringe (queue) to add surrounding nodes in the arena
Parameters:
start_pos (int): Start position of the path
end_pos (int): End position of the path
arena (dict): The arena used currently
Returns:
path (deque): Shortest path evaluated
(len(path) - 1) (int): Length of the path
"""
parent = {}
visited = [False] * 50
visited[start_pos] = True
neighbours = deque()
curr_pos = start_pos
while curr_pos != end_pos:
for surrounding_node in arena[curr_pos]:
if not visited[surrounding_node] and surrounding_node not in neighbours:
neighbours.append(surrounding_node)
parent.update({surrounding_node: curr_pos})
visited[surrounding_node] = True
curr_pos = neighbours.popleft()
path = FindPath(parent, start_pos, end_pos)
return path, (len(path) - 1)
def return_max_prey_belief(belief_state, arena):
"""
Returns a randomly chosen node for max belief of the prey
Parameters:
belief_state (dict): The belief state of the prey
arena (dict): Arena for the game
Returns:
random.choice(max_belief_nodes) (int): Random value from max beliefs
"""
max_belief = max(belief_state.values())
max_belief_nodes = [key for key, value in belief_state.items() if value == max_belief ]
return random.choice(max_belief_nodes)
def return_max_predator_belief(belief_state, arena):
"""
Returns a randomly chosen node for max belief of the predator
Parameters:
belief_state (dict): The belief state of the predator
arena (dict): Arena for the game
Returns:
random.choice(max_belief_nodes) (int): Random value from max beliefs
"""
max_belief = max(belief_state.values())
max_belief_nodes = [key for key, value in belief_state.items() if value == max_belief ]
return random.choice(max_belief_nodes)
def best_node_v2(arena, curr_pos, prey_loc, predator_loc):
"""
Returns a node closer to the prey while the agent is 'not scared'
Always moves away from predator if the agent is 'scared'
Agent is scared if it is within a specific distance from the prey
Parameters:
arena (dictionary): Adjacency list representing the graph
prey_loc (int): Location of prey
predator_loc (int): Location of Predator
Returns:
curr_pos (int): Position to move to
"""
path_to_predator, distance_to_predator = get_shortest_path(curr_pos, predator_loc, arena)
path_to_prey, distance_to_prey = get_shortest_path(curr_pos, prey_loc, arena)
if distance_to_predator <= config.SCARED_THRESHOLD:
neighbour_predator_path_length ={}
for i in arena[curr_pos]:
neghbour_path, neighbour_predator_path_length[i] = get_shortest_path(i, predator_loc, arena)
curr_pos = max(neighbour_predator_path_length, key=neighbour_predator_path_length.get)
return curr_pos
else:
neighbour_prey_path_length = {}
for i in arena[curr_pos]:
neghbour_path, neighbour_prey_path_length[i] = get_shortest_path(i, prey_loc, arena)
curr_pos = min(neighbour_prey_path_length, key=neighbour_prey_path_length.get)
return curr_pos
def best_node(arena, curr_pos, prey_loc, predator_loc):
"""
Returns the node that the agent should move to according to the following rules:
1. Neighbors that are closer to the Prey and farther from the Predator.
2. Neighbors that are closer to the Prey and not closer to the Predator.
3. Neighbors that are not farther from the Prey and farther from the Predator.
4. Neighbors that are not farther from the Prey and not closer to the Predator.
5. Neighbors that are farther from the Predator.
6. Neighbors that are not closer to the Predator.
7. Sit still and pray.
Parameters:
arena (dictionary): Adjacency list representing the graph
prey_loc (int): Location of prey
predator_loc (int): Location of Predator
Returns:
curr_pos (int): Position to move to
"""
# Neighbours of the current node are extracted here
neighbours = arena[curr_pos].copy()
# Distances from prey and predator will be stored in the following dicts
predator_dist = {}
prey_dist = {}
# Storing the distances of the agent location to the prey and predator
path, curr_pos_prey_dist = get_shortest_path(curr_pos, prey_loc, arena)
path, curr_pos_predator_dist = get_shortest_path(curr_pos, predator_loc, arena)
# Find distance from all neighbours to the prey and the predator
for i in neighbours:
path, prey_dist[i] = get_shortest_path(i, prey_loc, arena)
path, predator_dist[i] = get_shortest_path(i, predator_loc, arena)
# Defining subsets of nodes
closer_to_prey = {}
not_farther_from_prey = {}
farther_from_predator = {}
not_closer_to_predator = {}
# Adding nodes to the subsets
for k in prey_dist.keys():
if prey_dist[k] < curr_pos_prey_dist:
closer_to_prey[k] = prey_dist[k]
for k in prey_dist.keys():
if prey_dist[k] == curr_pos_prey_dist:
not_farther_from_prey[k] = prey_dist[k]
for k in predator_dist.keys():
if predator_dist[k] >= curr_pos_predator_dist:
farther_from_predator[k] = predator_dist[k]
for k in predator_dist.keys():
if predator_dist[k] == curr_pos_predator_dist:
not_closer_to_predator[k] = predator_dist[k]
# Flag helps to avoid going through multiple ifs if one if condition is satisfied
flag = 0
min_length = min(closer_to_prey.values())
focused_neighbours = [key for key, value in closer_to_prey.items() if value == min_length ]
curr_pos = random.choice(focused_neighbours)
# Assigning the position accorinding to the given priorrity
if len(set(closer_to_prey).intersection(set(farther_from_predator))) != 0 and flag == 0:
# curr_pos = min(closer_to_prey, key=closer_to_prey.get)
min_length = min(closer_to_prey.values())
focused_neighbours = [key for key, value in closer_to_prey.items() if value == min_length ]
curr_pos = random.choice(focused_neighbours)
#print("priority 1")
flag = 1
elif len(set(closer_to_prey).intersection(set(not_closer_to_predator))) != 0 and flag == 0:
# curr_pos = min(closer_to_prey, key=closer_to_prey.get)
min_length = min(closer_to_prey.values())
focused_neighbours = [key for key, value in closer_to_prey.items() if value == min_length ]
curr_pos = random.choice(focused_neighbours)
#print("priority 2")
flag = 1
elif len(set(not_farther_from_prey).intersection(set(farther_from_predator))) != 0 and flag == 0:
# curr_pos = min(not_farther_from_prey, key=not_farther_from_prey.get)
min_length = min(not_farther_from_prey.values())
focused_neighbours = [key for key, value in not_farther_from_prey.items() if value == min_length ]
curr_pos = random.choice(focused_neighbours)
#print("priority 3")
flag = 1
elif len(set(closer_to_prey).intersection(set(not_closer_to_predator))) != 0 and flag == 0:
# curr_pos = min(closer_to_prey, key=closer_to_prey.get)
min_length = min(closer_to_prey.values())
focused_neighbours = [key for key, value in closer_to_prey.items() if value == min_length ]
curr_pos = random.choice(focused_neighbours)
#print("priority 4")
flag = 1
elif len(farther_from_predator) != 0 and flag == 0:
# curr_pos = max(farther_from_predator, key=farther_from_predator.get)
min_length = min(farther_from_predator.values())
focused_neighbours = [key for key, value in farther_from_predator.items() if value == min_length ]
curr_pos = random.choice(focused_neighbours)
#print("priority 5")
flag = 1
elif len(not_closer_to_predator) != 0 and flag == 0:
# curr_pos = min(not_closer_to_predator, key=not_closer_to_predator.get)
min_length = min(not_closer_to_predator.values())
focused_neighbours = [key for key, value in not_closer_to_predator.items() if value == min_length ]
curr_pos = random.choice(focused_neighbours)
#print("priority 6")
else:
#print("Sitting and Praying")
return 999
return curr_pos
def update_prey_belief_state_defective_drone(prey_belief_state, agent_curr_pos, agent_prev_pos, arena, found_prey, surveyed_node,
checkpoint):
"""
Updates prey belief state
Parameters:
prey_belief_state (dict): Stores prey's belief state
agent_curr_pos (int): Stores Agent's current position
agent_prev_pos (int): Stores Agent's previous position
arena (dict): Contains the graph
found_prey (bool): Contains prey is found status
surveyed_node (int): Contains the node that was surveyed by the agent
checkpoint (string): Describes which part of th function to run
Returns:
new_prey_belief_state (dict): The updated belief state
"""
# Initializing the new prey belief states
new_prey_belief_state = dict.fromkeys([i for i in range(50)], 999.0)
new_prey_belief_state[agent_curr_pos] = 0.0
# After surveying the node
if checkpoint == 'after_survey':
if found_prey:
for i in range(50):
new_prey_belief_state[i] = 0.0
new_prey_belief_state[surveyed_node] = 1.0
return new_prey_belief_state
else:
new_prey_belief_state[surveyed_node] = 0.0
for i in range(50):
if i not in (agent_curr_pos, surveyed_node):
new_prey_belief_state[i] = prey_belief_state[i] / (
sum(prey_belief_state.values()) - 0.9*prey_belief_state[surveyed_node] - prey_belief_state[agent_curr_pos])
elif i == surveyed_node:
new_prey_belief_state[i] = prey_belief_state[i]*0.1 / (
sum(prey_belief_state.values()) - (0.9 * prey_belief_state[surveyed_node]))
return new_prey_belief_state
elif checkpoint == 'after_agent_moves':
if found_prey:
return prey_belief_state
else:
new_prey_belief_state[agent_prev_pos] = 0.0
new_prey_belief_state[agent_curr_pos] = 0.0
for i in range(50):
if i not in (agent_curr_pos, agent_prev_pos):
new_prey_belief_state[i] = prey_belief_state[i] / (sum(prey_belief_state.values()) - prey_belief_state[agent_curr_pos])
return new_prey_belief_state
elif checkpoint == 'after_prey_moves':
new_prey_belief_state[agent_curr_pos] = 0.0
temp_prey_belief_state = dict.fromkeys([i for i in range(50)], 999.0)
temp_prey_belief_state[agent_curr_pos] = 0.0
# prey has moved
for i in range(50):
temp_sum = 0.0
for j in arena[i]:
temp_sum += prey_belief_state[j] / (get_degree(arena, j) + 1)
temp_sum += prey_belief_state[i] / (get_degree(arena, i) + 1)
temp_prey_belief_state[i] = temp_sum
# pretend to survey node for agent curr pos
new_prey_belief_state[agent_curr_pos] = 0.0
for i in range(50):
if i != agent_curr_pos:
new_prey_belief_state[i] = temp_prey_belief_state[i] / (
sum(temp_prey_belief_state.values()) - temp_prey_belief_state[agent_curr_pos])
return new_prey_belief_state
def update_predator_belief_state_defective_drone(predator_belief_state, agent_curr_pos, agent_prev_pos, arena, found_predator,
surveyed_node, checkpoint):
"""
Updates predator belief state
Parameters:
predator_belief_state (dict): Stores predator's belief state
agent_curr_pos (int): Stores Agent's current position
agent_prev_pos (int): Stores Agent's previous position
arena (dict): Contains the graph
found_predator (bool): Contains predator is found status
surveyed_node (int): Contains the node that was surveyed by the agent
checkpoint (string): Describes which part of the function to run
Returns:
new_prey_belief_state (dict): The updated belief state
"""
# Initializing the new predator belief states
new_predator_belief_state = dict.fromkeys([i for i in range(50)], 999.0)
new_predator_belief_state[agent_curr_pos] = 0.0
# new_predator_belief_state = predator_belief_state
if checkpoint == 'after_survey':
if found_predator:
for i in range(50):
new_predator_belief_state[i] = 0.0
new_predator_belief_state[surveyed_node] = 1.0
else:
new_predator_belief_state[surveyed_node] = 0.0
for i in range(50):
if i not in (agent_curr_pos, surveyed_node):
new_predator_belief_state[i] = predator_belief_state[i] / (
sum(predator_belief_state.values()) - (0.9*predator_belief_state[surveyed_node]))
elif i == surveyed_node:
new_predator_belief_state[i] = predator_belief_state[i]*0.1 / (
sum(predator_belief_state.values()) - (0.9 * predator_belief_state[surveyed_node]))
return new_predator_belief_state
elif checkpoint == 'after_agent_moves':
if found_predator:
return predator_belief_state
else:
new_predator_belief_state[agent_prev_pos] = 0.0
new_predator_belief_state[agent_curr_pos] = 0.0
for i in range(50):
if i not in (agent_curr_pos, agent_prev_pos):
new_predator_belief_state[i] = predator_belief_state[i] / (sum(predator_belief_state.values()) - predator_belief_state[agent_curr_pos])
return new_predator_belief_state
elif checkpoint == 'after_predator_moves':
new_predator_belief_state[agent_curr_pos] = 0.0
temp_predator_belief_state = dict.fromkeys([i for i in range(50)], 999.0)
temp_predator_belief_state[agent_curr_pos] = 0.0
# predator has moved
for i in range(50):
temp_sum = 0.0
for j in arena[i]:
neighbour_path_length = {}
# Finds the length for the shortest path for each of neighbours
for k in arena[j]:
path, path_length = get_shortest_path(k, agent_curr_pos, arena)
neighbour_path_length[k] = path_length
# Finds all the neighbours that have minimum path length
min_length = min(neighbour_path_length.values())
neighbours_with_min_path_length = [key for key, value in neighbour_path_length.items() if
value == min_length]
shortest_length_nodes = len(neighbours_with_min_path_length)
if j in neighbours_with_min_path_length:
temp_sum += predator_belief_state[j] * (0.4 / get_degree(arena, j)) + (0.6 / shortest_length_nodes)
else:
temp_sum += predator_belief_state[j] * (0.4 / get_degree(arena, j))
temp_predator_belief_state[i] = temp_sum
# pretend to survey node for agent curr pos
new_predator_belief_state[agent_curr_pos] = 0.0
for i in range(50):
if i != agent_curr_pos:
new_predator_belief_state[i] = temp_predator_belief_state[i] / (
sum(temp_predator_belief_state.values()) - temp_predator_belief_state[agent_curr_pos])
return new_predator_belief_state