-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAgent_2.py
128 lines (96 loc) · 3.67 KB
/
Agent_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import random
import config
import utils
from prey import Prey
from predator import Predator
class Agent_2:
def __init__(self, prey_loc, predator_loc):
"""
Initializing the position of the Agent at locations where prey and predator are not present
Parameters:
self
prey_loc (int): Location of the prey
predator_loc (int): Location of the predator
"""
# Handling condition where prey and predator are spawned on the same location
list_to_choose_from = list(range(50))
if prey_loc == predator_loc:
list_to_choose_from.remove(prey_loc)
else:
list_to_choose_from.remove(prey_loc)
list_to_choose_from.remove(predator_loc)
self.curr_pos = random.choice(list_to_choose_from)
def move(self, arena, prey_loc, predator_loc):
"""
Moves according to the modified priority
Parameters:
self
arena (dictionary): Adjacency list representing the graph
prey_loc (int): Location of prey
predator_loc (int): Location of Predator
"""
pos = utils.best_node_v2(arena, self.curr_pos, prey_loc, predator_loc)
# Handling Sitting and praying case
if pos == 999:
pass
else:
self.curr_pos = pos
def begin(arena):
"""
Creates all the maze objects and plays number of games and collects data
Parameters:
arena (dict): Arena to use
Returns:
data_row (list): Results evaluated for the agent
"""
# Initiating game variables
game_count = 0
step_count = 0
# Initiating variables for analysis
win_count = 0
loss_count = 0
forced_termination = 0
# data = []
data_row = []
number_of_games = config.NUMBER_OF_GAMES
forced_termination_threshold = config.FORCED_TERMINATION_THRESHOLD
while game_count < number_of_games:
# Creating objects
prey = Prey()
predator = Predator()
agent2 = Agent_2(prey.curr_pos, predator.curr_pos)
step_count = 0
# chocolate pan
test_prey_pos= prey.curr_pos
test_predator_pos = predator.curr_pos
test_agent_pos = agent2.curr_pos
while 1:
print("In game Agent_2 at game_count: ", game_count, " step_count: ", step_count)
print(agent2.curr_pos, prey.curr_pos, predator.curr_pos)
agent2.move(arena, prey.curr_pos, predator.curr_pos)
# Checking termination states
if agent2.curr_pos == prey.curr_pos:
win_count += 1
break
elif agent2.curr_pos == predator.curr_pos:
loss_count += 1
break
prey.move(arena)
# Checking termination states
if agent2.curr_pos == prey.curr_pos:
win_count += 1
break
predator.move(agent2.curr_pos, arena)
# Checking termination states
if agent2.curr_pos == predator.curr_pos:
loss_count += 1
break
step_count += 1
# Forcing termination
if step_count >= forced_termination_threshold:
forced_termination += 1
break
game_count += 1
data_row = ["Agent_2", win_count * 100 / number_of_games, loss_count * 100 / number_of_games,
forced_termination * 100 / number_of_games, 100.0, 100.0]
return data_row