-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathStanfordJan2020UniversalUpdatable.tex
779 lines (551 loc) · 21 KB
/
StanfordJan2020UniversalUpdatable.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
\documentclass[shadesubsections,trans,14pt,mathserif]{beamer}
\usepackage[danish]{babel}
%\usepackage[T1]{fontenc}
%\usepackage{fourier}
% Dokumentets sprog
%\usepackage{mathtools}
%\usepackage{pxfonts}
\usepackage{eulervm}
% Class options include: notes, notesonly, handout, trans,
% hidesubsections, shadesubsections,
% inrow, blue, red, grey, brown
% Theme for beamer presentation.
%\usepackage{beamertheme}
% Other themes include: beamerthemebars, beamerthemelined,
% beamerthemetree, beamerthemetreebars
\newcommand{\adv}{\ensuremath{\mathcal A}}
\newcommand{\F}{\ensuremath{\mathbb F}}
\newcommand{\set}[1]{\ensuremath{\left\{#1\right\}}}
\newcommand{\sett}[2]{\ensuremath{\left\{#1\right\}_{#2}}}
\newcommand{\enc}[1]{\ensuremath{\left[#1\right ]}}
\newcommand{\cm}{\ensuremath{\mathsf{cm}}}
\newcommand{\open}[1]{\ensuremath{\mathsf{open}(#1)}}
\newcommand{\verify}[1]{\ensuremath{\mathsf{verify}(#1)}}
\newcommand{\defeq}{\ensuremath{:=}}
\newcommand{\helper}{\ensuremath{\mathcal{H}}}
\newcommand{\ver}{\ensuremath{\mathcal{V}}}
\newcommand{\prv}{\ensuremath{\mathcal{P}}}
\newcommand{\polysofdeg}[1]{\F_{< #1}[X]}
\newcommand{\polys}{\F[X]}
\newcommand{\acc}{{\mathbf{acc}}}
\newcommand{\ideal}{\mathbf{I}}
\newcommand{\gen}{\alpha}
\newcommand{\spac}{\\ \vspace{0.2in} \noindent}
\newcommand{\polylog}{\ensuremath{\mathsf{polylog}}\xspace}
%\setbeamersize{text margin left=3mm,text margin right=3mm}
\title{\large{A introduction to Hasse's theorem with some cool facts on Ellipitic curves along the way}} % Enter your title between curly braces
\author{{Ariel Gabizon}\\ % Enter your name between curly braces
\tt{\small{Aztec} } } % Enter your institute name between curly braces
\date{} % Enter the date or \today between curly braces
%\usefonttheme{professionalfonts}
%\usefonttheme[onlymath]{serif}
\begin{document}
\boldmath
% Creates title page of slide show using above information
\begin{frame}
\titlepage
\end{frame}
% typeset with the notes or notesonly class options
%\section[Outline]{}
% Creates table of contents slide incorporating
% all \section and \subsection commands
%\begin{frame}
%\tableofcontents
%\end{frame}
\begin{frame}
Should this talk be at zksummit
If so because of works like this:
ecfft
\end{frame}
\begin{frame}
How to get ec with n bits?
Hasse's thm
Just pick prime p with n bits
any a,b with 4a^3+27b^2/neq 0
and take curve y^2=x^3+ax+b
will have p+1 -+ 2sqrt p points
\end{frame}
\begin{frame}
set a=p+1-N
L(X)
=X^2-aX+p
so L(X)= (x-a1)(x-a2)
Claim: enough to show L's roots are not real
==>
\Delta=
a^2-4c<0
(for prime p cannot hit the = case cause 2sqrt(p) is not an integer)
\end{frame}
Sidenote: exists curves over extension field where (x^p,y^p) = b(x,y) for some b
i.e. frob is integer
==================
===========
Frob:
phi:(x,y)->(x^p,y^p)
L is char polynomial of phi/phi is a zero of L:
For any curve point in E(\bar{F}_p)
(x^p^2,y^p^2)-a(x^p,y^p)+p(x,y)=0
maybe interesting in future for snark optimizers (trivial for points in F_p)
p*(x,y) = a(x^p,y^p) - (x^p^2,y^p^2)
Interesting proof element:
E_n={P\in E,n*P=0}. When gcd(n,p)=1 E_n= Z_n\times Z_n
so phi action on E_n can be described by 2\times 2 matrix phi_n
Can show L is char poly
det(phi_n) = p mod n, trace(phi_n) = a mod n
Can show matrix is zero of L for all n r.p. to p
===========
We want to show phi "corresponds" to imaginary number that is also root of L
detour: complex multiplication && endomorhpisms
Endomorphisms:
"Hommorhpisms that "know" the group is an EC"
phi(P+Q) = phi(P)+phi(Q)
phi(0) = 0
If P=(x,y)
phi(x,y) = (r(x,y),s(x,y))
for rational func r,s
Examples
P-> c*P for fixed c
P->phi(P)
in fact, except for super-singular curves, all endomorphisms over F_p are combinations
of these two.
===========
Thm:
Usually,
The ring of endomorphisms of E is isomorphic to a ring
Z+Z*a
for some complex number a (p. 314, a = c*sqrt(-d) for pos integer c)
So phi corresponds either to element t of Z, which would mean t|p - not possible when t is prime.
So t is complex.
==========
A little history, where did this thm come from?
Tori/curve equivalnce over complex numbers.
===========
\begin{frame}
\frametitle{(preproccessing) zk-SNARKs} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
Arithmetic circuit $C$. ``Public input'' $x$.
\begin{itemize}
\item $\prv$ can prove she knows $w$ s.t. $C(x,w)=0$.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{(preproccessing) zk-SNARKs} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
Arithmetic circuit $C$. ``Public input'' $x$.
\begin{itemize}
\item $\prv$ can prove she knows $w$ s.t. $C(x,w)=0$.
\item Proof size - $\mathsf{polylog}|w|$.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{(preproccessing) zk-SNARKs} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
Arithmetic circuit $C$. ``Public input'' $x$.
\begin{itemize}
\item $\prv$ can prove she knows $w$ s.t. $C(x,w)=0$.
\item Proof size - $\mathsf{polylog}|w|$.
\item Proof doesn't leak info on $w$.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{(preproccessing) zk-SNARKs} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
Arithmetic circuit $C$. ``Public input'' $x$.
\begin{itemize}
\item $\prv$ can prove she knows $w$ s.t. $C(x,w)=0$.
\item Proof size - $\mathsf{polylog}|w|$.
\item Proof doesn't leak info on $w$.
\item One time setup procedure to generate common reference string (depends on $C$, not on $x$).
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Talk outline} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\begin{enumerate}
\item The problem with prev constructions.
\item The solution with recent ones.
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{Talk outline} % Insert frame title between curly braces
\begin{enumerate}
\item The problem with prev constructions.
\item The solution with recent ones.
\end{enumerate}
\vspace{0.2in}
\emph{We probably won't get too far with 2, unless you want to skip 1.}
\end{frame}
%
% \begin{frame}
% % Insert frame title between curly braces
% %Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
%
%
% Left values:
% $l_1,l_2$\\
% Right values: $r_1,r_2$\\
% Output values:
% $o_1,o_2$
%
%
% \vspace{0.2in}
%
% Gate checks:
% $l_1 + r_1 = o_1 , l_2\cdot r_2 = o_2$\;\;\textbf{\small{(easy)}}
%
%
% Wire/copy checks:
% $o_1 = l_2$\;\;\textbf{\small{(hard)}}-ignore for now
%
% Public input checks: $o_2=7$ \textbf{\small{(easy)}}
% \end{frame}
\begin{frame}
\frametitle{The QAP approach \normalsize{[GGPR,..]}} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
Reduces to $\prv$
knowing deg $<n$ polynomials $L,R,O$ with
\begin{enumerate}
\item $Z\mid L\cdot R - O$,
\item $(L,R,O)\in V_C$.
\end{enumerate}
\vspace{0.2in}
$Z(X):= X^n-1$. $n=$ num. of mult gates \\
\vspace{0.2in}
\noindent
$V_C:=$ affine subspace depending on $C$
% \small{(slightly oversimplified)}
\end{frame}
\begin{frame}
\frametitle{\normalsize{Verifying first cond. with pairings+KEA \normalsize{[Groth10,...]}} } % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
Setup: uniform secret $s\in \F$, $g\in G$-group with pairing.\\
\noindent
CRS: $g,g^s,\ldots,g^{s^n}$.\\
\vspace{0.2in}
\noindent
\end{frame}
\begin{frame}
\frametitle{\normalsize{Verifying first cond. with pairings+KEA \normalsize{[Groth10,...]}} } % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
Setup: uniform secret $s\in \F$, $g\in G$-group with pairing.\\
\noindent
CRS: $g,g^s,\ldots,g^{s^n}$.\\
\vspace{0.2in}
\noindent
$\prv$ computes $T=(L\cdot R - O)/Z$.\\
\vspace{0.2in}
\noindent
$\prv$ computes and sends $g^{L(s)},g^{R(s)},g^{O(s)},g^{T(s)}$.\\
\vspace{0.2in}
\noindent
\end{frame}
\begin{frame}
\frametitle{\normalsize{Verifying first cond. with pairings+KEA \normalsize{[Groth10,...]}} } % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
Setup: uniform secret $s\in \F$, $g\in G$-group with pairing.\\
\noindent
CRS: $g,g^s,\ldots,g^{s^n}$.\\
\vspace{0.2in}
\noindent
$\prv$ computes $T=(L\cdot R - O)/Z$.\\
\vspace{0.2in}
\noindent
$\prv$ computes and sends $g^{L(s)},g^{R(s)},g^{O(s)},g^{T(s)}$.\\
\vspace{0.2in}
\noindent
$\ver$ checks using pairings if
\[L(s)\cdot R(s) - O(s) = T(s)\cdot Z(s)\]
\end{frame}
\begin{frame}
\noindent
CRS:=$g,g^s,\ldots,g^{s^n}$.\\
\vspace{0.2in}
\noindent
CRS is universal and updatable:
\begin{itemize}
\item Universal - depends only on circuit size
\end{itemize}
\end{frame}
\begin{frame}
\noindent
CRS:=$g,g^s,\ldots,g^{s^n}$.\\
\vspace{0.2in}
\noindent
CRS is universal and updatable:
\begin{itemize}
\item Universal - depends only on circuit size
\item Updatable: At any point new party $P$ can update CRS with new secret $s'$
\[\mathrm{CRS_{new}}\defeq g,(g^s)^{s'},\ldots,(g^{s^n})^{s'^n}\]
\end{itemize}
\end{frame}
\begin{frame}
\noindent
CRS:=$g,g^s,\ldots,g^{s^n}$.\\
\vspace{0.2in}
\noindent
CRS is universal and updatable:
\begin{itemize}
\item Universal - depends only on circuit size
\item Updatable: At any point new party $P$ can update CRS with new secret $s'$
\[\mathrm{CRS_{new}}\defeq g,(g^s)^{s'},\ldots,(g^{s^n})^{s'^n}\]
\end{itemize}
Set of all updaters from all time is required to reconstruct secret of current CRS.
\end{frame}
\begin{frame}
\frametitle{Verifying second condition} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
Now to check $(L,R,O) \in V_C$. \spac
Include in CRS
$g^{\alpha\cdot f(s)}$
for secret $\alpha\in \F$ (only) for $f\in V_C$. \spac
Ruins universality and updatability of CRS.
\end{frame}
\begin{frame}
\frametitle{Polynomial commitment schemes} % Insert frame title between curly braces
{\small{[Groth10,GGPR,..]}} approach: check equation at secret point in the exponent, \emph{limited to degree two checks because of pairings}\\
\vspace{0.2in}
\noindent
\end{frame}
\begin{frame}
\frametitle{Polynomial commitment schemes} % Insert frame title between curly braces
{\small{[Groth10,GGPR,..]}} approach: check equation at secret point in the exponent, \emph{limited to degree two checks because of pairings}\\
\vspace{0.2in}
\noindent
``PCS approach:'' {\small{[MBKM,..,..]}} $\prv$ will commit to its polynomials
and open them later at random verifier point.
\end{frame}
\begin{frame}
\frametitle{Polynomial commitment schemes} % Insert frame title between curly braces
{\small{[Groth10,GGPR,..]}} approach: check equation at secret point in the exponent, \emph{limited to degree two checks because of pairings}\\
\vspace{0.2in}
\noindent
``PCS approach:'' {\small{[MBKM,..,..]}} $\prv$ will commit to its polynomials
and open them later at random verifier point. \spac
Can be done with single group element commit/opens using {\small [KZG]} scheme.
\end{frame}
\begin{frame}
\frametitle{The KZG polynomial commitment scheme} % Insert frame title between curly braces
SRS: \enc{1},\enc{s},\ldots,\enc{s^d}, for random $s\in \F$.\\
\vspace{0.4in}
$f(X) = \sum_{i=0}^d a_i X^i$\\
\vspace{0.4in}
$\cm(f)\defeq \sum_{i=0}^d a_i \enc{s^i}= \enc{f(s)}$\\
\vspace{0.4in}
\end{frame}
\begin{frame}
SRS: \enc{1},\enc{s},\ldots,\enc{s^d},\\
for random $s\in \F$.
\vspace{0.4in}
$\cm(f)\defeq \enc{f(s)}$\\
\vspace{0.4in}
$\open{f,i}\defeq \enc{h(s)}$, where
$h(X)\defeq \frac{f(X)-f(i)}{X-i}$
\vspace{0.4in}
\end{frame}
\begin{frame}
\frametitle{Idealized Polynomials Protocols} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\textbf{Preprocessing:} $\ver$ chooses polynomials $g_1,\ldots,g_t\in \polysofdeg{d}$.\\
\vspace{0.4in}
\textbf{Protocol:}
\begin{enumerate}
%\item The protocol definition includes a set of \emph{preprocessed polynomials} $g_1,\ldots,g_\ell \in \polysofdeg{d}$.
\item
$\prv$'s msgs are to ideal party $\ideal$. Must be $f_i\in \polysofdeg{d}$.
\item At protocol end $\ver$ asks $\ideal$ if some identities hold between $\set{f_1,\ldots,f_\ell,g_1,\ldots,g_t}$. Outputs $\acc$ iff they do.
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{Plonk \normalsize{[GWC19]}:} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\begin{enumerate}
%\item The protocol definition includes a set of \emph{preprocessed polynomials} $g_1,\ldots,g_\ell \in \polysofdeg{d}$.
\item All you need is a permutation check.
\item Permutations are easier to check on mutliplicative subgroups
\end{enumerate}
\end{frame}
\begin{frame}
\textbf{example:} Prove knowledge of $a,b,c$ with
\[(a+b)\cdot c =7\]
\end{frame}
\begin{frame}
Left values:
$l_1,l_2$\\
Right values: $r_1,r_2$\\
Output values:
$o_1,o_2$
\vspace{0.2in}
\end{frame}
\begin{frame}
Left values:
$l_1,l_2$\\
Right values: $r_1,r_2$\\
Output values:
$o_1,o_2$
\vspace{0.2in}
Gate checks:
$l_1 + r_1 = o_1 , l_2\cdot r_2 = o_2$
Wire/copy checks:
$o_1 = l_2$
Public input checks: $o_2=7$.
\end{frame}
\begin{frame}
\frametitle{Copy checks with permutations\\ \normalsize{similar to [Groth09,BCGGHJ17]}} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\[V= (l_1,l_2,r_1,r_2,o_1,o_2)\]
\end{frame}
\begin{frame}
\frametitle{Copy checks with permutations\\ \normalsize{similar to [Groth09,BCGGHJ17]}} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\[V= (l_1,l_2,r_1,r_2,o_1,o_2)\]
$o_1=l_2$ iff $V=\sigma(V)$ \\
For permutation $\sigma = (25)$
\end{frame}
\begin{frame}
\large{Part 2: Permutations are easier to check on mutliplicative subgroups
}
\end{frame}
% \begin{frame}
% \textbf{Feel life is too short to constantly cite the Schwartz-Zippel Lemma?}
% \end{frame}
%
% \begin{frame}
% \textbf{Feel life is too short to constantly cite the fundamental thm of Algebra?}
% \end{frame}
\begin{frame}
\frametitle{$H$-ranged Polynomials Protocols} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\textbf{Preprocessing:} $\ver$ chooses polynomials $g_1,\ldots,g_t\in \polysofdeg{d}$, $H\subset\F$.\\
\vspace{0.4in}
\textbf{Protocol:}
\begin{enumerate}
%\item The protocol definition includes a set of \emph{preprocessed polynomials} $g_1,\ldots,g_\ell \in \polysofdeg{d}$.
\item $\prv$'s msgs are to ideal party $\ideal$. Must be $f_i\in \polysofdeg{d}$.
\item At end, $\ver$ asks $\ideal$ if some identities hold between $\set{f_1,\ldots,f_\ell,g_1,\ldots,g_t}$ \textbf{\textit{on $H$}}.
\end{enumerate}
\end{frame}
% \begin{frame}
% \frametitle{$H$-ranged protocol using polynomial protocol:} % Insert frame title between curly braces
% %Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
%
%
% $\ver$ wants to check identities $P_1,P_2$ on $H$.\\
% \vspace{0.2in}
% \begin{itemize}
% \item After $\prv$ finished sending \set{f_i}, $\ver$ sends random $a_1,a_2\in \F$.\\
% \item $\prv$ sends $T\in \polysofdeg{d}$.\\
% \item $\ver$ checks identity
% $a_1\cdot P_1 + a_2\cdot P_2 \equiv T\cdot Z_H$.
% \end{itemize}
%
%
% \end{frame}
\begin{frame}
\frametitle{Checking permutations with $H$-ranged protocols} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
Permutation $\sigma: [n]\to [n]$.
$H=\set{\gen,\gen^2,\ldots,\gen^n}$.\\
\vspace{0.2in}
$\prv$ has sent $f\in \polysofdeg{d}$.\\
\vspace{0.2in}
Wants to prove $f=\sigma(f)$:
\[\forall i\in [n], f(\gen^i) = f(\gen^{\sigma(i)})\]
\end{frame}
\begin{frame}
\frametitle{Using [BG12] reduces to:} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
$H=\set{\gen,\gen^2,\ldots,\gen^n}$.\\
\vspace{0.2in}
$\prv$ has sent $f,g\in \polysofdeg{d}$.\\
\vspace{0.2in}
Wants to prove:
\[\prod_{i\in [n]} f(\gen^i) = \prod_{i\in [n]} g(\gen^i)\]
\end{frame}
\begin{frame}
\frametitle{Checking products with $H$-ranged protocols} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\begin{enumerate}
\item $\prv$ computes $Z$ with
$ Z(\gen)=1, Z(\gen^i) = \prod_{j<i} f(\gen^j)/g(\gen^j)$, {\small{$i=2..n+1$}}.
\item Sends $Z$ to $\ideal$.
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{Checking products with $H$-ranged protocols} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\begin{enumerate}
\item $\prv$ computes $Z$ with
$ Z(\gen)=1, Z(\gen^i) = \prod_{j<i} f(\gen^j)/g(\gen^j)$.
\item Sends $Z$ to $\ideal$.
\item $\ver$ checks following identities on $H$.
\begin{enumerate}
\item $L_1(X) (Z(X)-1) =0$
\item $Z(X) f(X) = Z(\gen\cdot X)g(X)$
\item $L_n(X) (Z(\gen\cdot X) -1)=0$
\end{enumerate}
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{The bottom line {\normalsize{(on BLS-381 curve)}}} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
600 byte proofs with one trusted setup for all fan-in two circuits of $n$ gates.\\
\vspace{0.2in}
Prover does $11n$ $G_1$ exp {\small{(or $9n$ $G_1$ exp with 700 byte proof)}}.\\
\vspace{0.2in}
For batch of proofs on same circuit only $3n$ $G_1$ exp and $240$ bytes for each additional proof.
\end{frame}
\begin{frame}
\large{Bonus material: The KZG polynomial commitment scheme
}
\end{frame}
\begin{frame}
SRS: \enc{1},\enc{x},\ldots,\enc{x^d}, for random $x\in \F$.\\
\vspace{0.4in}
$f(X) = \sum_{i=0}^d a_i X^i$\\
\vspace{0.4in}
$\cm(f)\defeq \sum_{i=0}^d a_i \enc{x^i}= \enc{f(x)}$\\
\vspace{0.4in}
\end{frame}
\begin{frame}
SRS: \enc{1},\enc{x},\ldots,\enc{x^d},\\
for random $x\in \F$.
\vspace{0.4in}
$\cm(f)\defeq \enc{f(x)}$\\
\vspace{0.4in}
$\open{f,i}\defeq \enc{h(x)}$, where
$h(X)\defeq \frac{f(X)-f(i)}{X-i}$
\vspace{0.4in}
\end{frame}
%
% \begin{frame}
% $\cm(f)\defeq \enc{f(x)}$\\
% \vspace{0.4in}
% $\open{f,i}\defeq \enc{h(x)}$, where
% $h(X)\defeq \frac{f(X)-f(i)}{X-i}$\\
% \vspace{0.4in}
% \textbf{exercise} - using pairing, define:\\
% \vspace{0.2in}
% $\verify{\cm,\pi,z,i}$,
% where $z$ is allegedly $f(i)$
% \end{frame}
\begin{frame}
$\cm(f)\defeq \enc{f(x)}$\\
\vspace{0.4in}
$\open{f,i}\defeq \enc{h(x)}$, where
$h(X)\defeq \frac{f(X)-f(i)}{X-i}$\\
\vspace{0.4in}
$\verify{\cm,\pi,z,i}:$
\[e(\cm-\enc{z},\enc{1}) \stackrel{?}{=} e(\pi, \enc{x-i})\]
\end{frame}
\begin{frame}
$\cm(f)\defeq \enc{f(x)}$\\
\vspace{0.4in}
$\open{f,i}\defeq \enc{h(x)}$, where
$h(X)\defeq \frac{f(X)-f(i)}{X-i}$\\
\vspace{0.4in}
$\verify{\cm,\pi,z,i}:$
\[e(\cm-\enc{z},\enc{1}) \stackrel{?}{=} e(\pi, \enc{x-i})\]
\vspace{0.4in}
\textbf{Thm}{\footnotesize{[KZG,MBKM]}}: \emph{This works in the Algebraic Group Model.}
\end{frame}
\end{document}