-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathner_metrics.py
62 lines (53 loc) · 2.67 KB
/
ner_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
class NerMetrics(object):
def __init__(self, tagged_sents, predicted):
self.sents = tagged_sents
self.predicted = predicted
self.accuracy = 0.0
self.precision = 0.0
self.recall = 0.0
self.metrics = {} # this will be of the form: {'tag': {'precision':..., 'recall':..., 'f1':...}}
return
def compute(self):
accuracy = 0
count = 0
total = 0
for i in range(len(self.sents)): # each sentence
for j in range(len(self.sents[i])): # each word in a sentence
met = self.metrics.get(self.sents[i][j], {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.0, 'tp': 0.0, 'fp': 0.0, 'total': 0.0})
if (self.sents[i][j] == self.predicted[i][j]): # check exp == predicted
count += 1
met['tp'] += 1
else:
met1 = self.metrics.get(self.predicted[i][j], {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.0, 'tp': 0.0, 'fp': 0.0, 'total': 0.0})
met1['fp'] += 1
self.metrics[self.predicted[i][j]] = met1
total += 1
met['total'] += 1
self.metrics[self.sents[i][j]] = met
accuracy = float(count) / total
for k, v in self.metrics.items():
try:
v['accuracy'] = float(v['tp']) / v['total']
v['recall'] = float(v['tp']) / v['total']
#exp_neg = total - v['total'] # this is FP + TN for the given tag
v['precision'] = float(v['tp']) / (v['tp'] + v['fp'])
v['f1'] = 2.0 * (v['precision'] * v['recall']) / (v['precision'] + v['recall'])
except:
print "Possible div by zero error for: ", k, v
continue
self.metrics["overall"] = {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': accuracy, 'tp': count, 'total': total}
return self.metrics
def print_results(self):
'''
for i in range(len(self.sents)):
print '-' * 10, self.sents[i], '-' * 10
for j in range(len(self.sents[i])):
print self.sents[i][j], self.predicted[i][j]
'''
for i in range(len(self.sents)):
#sent = ' '.join([w['word'] for w in self.sents[i]])
#print '-' * 10, sent, '-' * 10
#print "slen = ", len(self.sents[i]), " rlen = ", len(self.predicted[i])
for j in range(len(self.sents[i])):
print self.sents[i][j], self.predicted[i][j]
return