-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreliminaries.tex
914 lines (744 loc) · 37 KB
/
preliminaries.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
%%!TEX root = the-preliminaries.tex
\chapter{Preliminaries}\label{prelim}
In this lecture we fix some conventions and recall the main definitions.
It may be used as a quick reference when reading the book.
To learn background in metric geometry, the reader may consult the book of Dmitri Burago, Yuri Burago, and Sergei Ivanov~\cite{burago-burago-ivanov}
or the book by the third author \cite{petrunin-2023}.
\section{Metric spaces}
\label{sec:metric spaces}
The distance between two points $x$ and $y$ in a metric space $\spc{X}$ will be denoted by $\dist{x}{y}{}$ or $\dist{x}{y}{\spc{X}}$.
The latter notation is used if we need to emphasize
that the distance is taken in the space~${\spc{X}}$.
The function
\[\distfun_x\:y\mapsto \dist{x}{y}{}\]
is called the \index{distance function}\emph{distance function} from~$x$.
\begin{itemize}
\item The \index{diameter}\emph{diameter} of a metric space $\spc{X}$ is defined as
\[\diam \spc{X}=\sup\set{\dist{x}{y}{\spc{X}}}{x,y\in \spc{X}}.\]
\item Given $R\in[0,\infty]$ and $x\in \spc{X}$, the sets
\begin{align*}
\oBall(x,R)&=\{y\in \spc{X}\mid \dist{x}{y}{}<R\},
\\
\cBall[x,R]&=\{y\in \spc{X}\mid \dist{x}{y}{}\le R\}
\end{align*}
are called, respectively, the \index{open ball}\emph{open} and the \index{closed ball}\emph{closed balls} of radius $R$ with center~$x$.
Again, if we need to emphasize that these balls are taken in the metric space $\spc{X}$,
we write
\[\oBall(x,R)_{\spc{X}}\quad\text{and}\quad\cBall[x,R]_{\spc{X}}.\]
\end{itemize}
\section{Geodesics, triangles, and hinges}
\label{sec:geods}
\parbf{Geodesic.}
Let $\spc{X}$ be a metric space
and $\II$\index{$\II$} be a real interval.
A~globally isometric map $\gamma\:\II\to \spc{X}$ is called a \index{geodesic}\emph{geodesic}%
\footnote{Various authors call it differently: {}\emph{shortest path}, {}\emph{minimizing geodesic}.};
in other words, $\gamma\:\II\to \spc{X}$ is a geodesic if
\[\dist{\gamma(s)}{\gamma(t)}{\spc{X}}=|s-t|\]
for any pair $s,t\in \II$.
We say that $\gamma\:\II\to \spc{X}$ is a geodesic from point $p$ to point $q$ if
$\II=[a,b]$ and $p=\gamma(a)$, $q=\gamma(b)$.
In this case the image of $\gamma$ is denoted by $[p q]$\index{$[pq]$ (geodesic)} and with an abuse of notations we also call it a \index{geodesic}\emph{geodesic}.
%Given a geodesic $[pq]$, we can parametrize it by distance to $p$; this parametrization will be denoted by $\geod_{[p q]}(t)$.
We may write $[p q]_{\spc{X}}$
to emphasize that the geodesic $[p q]$ is in the space ${\spc{X}}$.
We also use the following shortcut notation:
\begin{align*}
\left] p q \right[&=[pq]\setminus\{p,q\},
&
\left] p q \right]&=[pq]\setminus\{p\},
&
\left[ p q \right[&=[pq]\setminus\{q\}.
\end{align*}
In general, a geodesic between $p$ and $q$ need not exist and if it exists, it need not be unique.
However, once we write $[p q]$ we mean that we have made a choice of geodesic.
A metric space is called \index{geodesic}\emph{geodesic} if any pair of its points can be joined by a geodesic.
A \index{geodesic path}\emph{geodesic path} is a geodesic with constant-speed parametrization by $[0,1]$.
%Given a geodesic $[p q]$, we denote by $\geodpath_{[pq]}$ the corresponding geodesic path; that is, $$\geodpath_{[pq]}(t)\z\df\geod_{[pq]}(t\cdot\dist[{{}}]{p}{q}{}).$$
A curve $\gamma\:\II\to \spc{X}$ is called a \index{geodesic!local geodesic}\emph{local geodesic} if for any $t\in\II$ there is a neighborhood $U$ of $t$ in $\II$ such that the restriction $\gamma|_U$ is a geodesic.
A constant-speed parametrization of a local geodesic by the unit interval $[0,1]$ is called a \index{geodesic!local geodesic}\emph{local geodesic path}.
\parbf{Triangle.}
For a triple of points $p,q,r\in \spc{X}$, a choice of a triple of geodesics $([q r], [r p], [p q])$ will be called a \index{triangle}\emph{triangle}; we will use the short notation
$\trig p q r=([q r], [r p], [p q])$\index{$\trig {{*}}{{*}}{{*}}$}.
Again, given a triple $p,q,r\in \spc{X}$ there may be no triangle
$\trig p q r$ simply because one of the pairs of these points cannot be joined by a geodesic.
Also, many different triangles with these vertices may exist, any of which can be denoted by $\trig p q r$.
However, if we write $\trig p q r$, it means that we have made a choice of such a triangle;
that is, we have fixed a choice of the geodesics $[q r]$, $[r p]$, and $[p q]$.
The value
\[\dist{p}{q}{}+\dist{q}{r}{}+\dist{r}{p}{}\]
will be called the {}\emph{perimeter of the triangle} $\trig p q r$.
\parbf{Hinge.}
Let $p,x,y\in \spc{X}$ be a triple of points such that $p$ is distinct from $x$ and~$y$.
A pair of geodesics $([p x],[p y])$ will be called a \index{hinge}\emph{hinge} and will be denoted by
$\hinge p x y$\index{$\hinge{{*}}{{*}}{{*}}$}.
\parbf{Convex set.}\label{def:convex-set}
A set $A$ in a metric space $\spc{X}$ is called
\index{convex set}\emph{convex}
if for every two points $p,q\in A$,
{}\emph{every} geodesic $[pq]$ in $\spc{X}$
lies in~$A$.
A set $A\subset\spc{X}$ is called
\index{locally convex}\emph{locally convex}
if every point $a\in A$ admits an open neighborhood $\Omega\ni a$ in $\spc{X}$
such that any geodesic lying in $\Omega$ and with ends in $A$ lies completely in~$A$.
Note that any open set is locally convex by definition.
\section{Length spaces}\label{sec:intrinsic}
A \emph{curve} is defined as a continuous map from a real interval to a space.
If the real interval is $[0,1]$, then the curve is called a \emph{path}.
\begin{thm}{Definition}
Let $\spc{X}$ be a metric space and
$\alpha\: \II\to \spc{X}$ be a curve.
We define the \index{length}\emph{length} of $\alpha$ as
\[
\length \alpha \df \sup_{t_0\le t_1\le\ldots\le t_n}\sum_i \dist{\alpha(t_i)}{\alpha(t_{i-1})}{}.
\]
\end{thm}
Directly from the definition, it follows that if a path $\alpha\:[0,1]\to\spc{X}$ connects two points $x$ and $y$
(that is, if $\alpha(0)=x$ and $\alpha(1)=y$), then
\[\length\alpha\ge \dist{x}{y}{}.\]
Let $A$ be a subset of a metric space $\spc{X}$.
Given two points $x,y\in A$,
consider the value
\[\dist{x}{y}{A}=\inf_{\alpha}\{\length\alpha\},\]
where the infimum is taken for all paths $\alpha$ from $x$ to $y$ in $A$.\footnote{Note that while this notation slightly conflicts with the previously defined notation for distance on a general metric space, we will usually work with ambient length spaces where the meaning will be unambiguous.}
If $\dist{x}{y}{A}$ takes finite value for each pair $x,y\in A$,
then $\dist{x}{y}{A}$ defines a metric on $A$;
this metric will be called the \index{induced length metric}\emph{induced length metric} on $A$.
If for any $\eps>0$ and any pair of points $x$ and $y$ in a metric space $\spc{X}$, there is a path $\alpha$ connecting $x$ to $y$ such that
\[\length\alpha< \dist{x}{y}{}+\eps,\]
then $\spc{X}$ is called a \index{length space}\emph{length space} and the metric on $\spc{X}$ is called a \index{length metric}\emph{length metric}.\label{page:length metric}
If $f\:\tilde{\spc{X}}\to\spc{X}$ is a covering,
then a length metric on $\spc{X}$ can be lifted to $\tilde{\spc{X}}$
by declaring
\[\length_{\tilde{\spc{X}}}\gamma=\length_{\spc{X}}(f\circ\gamma)\]
for any curve $\gamma$ in $\tilde{\spc{X}}$.
The space $\tilde{\spc{X}}$ with this metric is called the \index{metric cover}\emph{metric cover} of $\spc{X}$.
Note that any geodesic space is a length space.
As can be seen from the following example, the converse does not hold.
\begin{thm}{Example}
Let $\spc{X}$ be obtained by gluing a countable collection of disjoint intervals $\{\II_n\}$ of length $1+\tfrac1n$, where for each $\II_n$ the left end is glued to $p$ and the right end to~$q$.
Then $\spc{X}$ carries a natural complete length metric with respect to which $\dist{p}{q}{}=1$ but there is no geodesic connecting $p$ to~$q$.
\end{thm}
\begin{thm}{Exercise}\label{ex:no-geod}
Give an example of a complete length space for which no pair of distinct points can be joined by a geodesic.
\end{thm}
Let $\spc{X}$ be a metric space and $x,y\in\spc{X}$.
\begin{enumerate}[(i)]
\item A point $z\in \spc{X}$ is called a \index{midpoint}\emph{midpoint} between $x$ and $y$
if
\[\dist{x}{z}{}=\dist{y}{z}{}=\tfrac12\cdot\dist[{{}}]{x}{y}{}.\]
\item Assume $\eps\ge 0$.
A point $z\in \spc{X}$ is called an \index{$\eps$-midpoint}\emph{$\eps$-midpoint} between $x$ and $y$
if
\[\dist{x}{z}{},\quad\dist{y}{z}{}\le\tfrac12\cdot\dist[{{}}]{x}{y}{}+\eps.\]
\end{enumerate}
Note that a $0$-midpoint is the same as a midpoint.
\begin{thm}{Menger's lemma}\label{lem:mid>geod}
Let $\spc{X}$ be a complete metric space.
\begin{subthm}{lem:mid>length}
Assume that for any pair of points $x,y\in \spc{X}$
and any $\eps>0$
there is an $\eps$-midpoint~$z$.
Then $\spc{X}$ is a length space.
\end{subthm}
\begin{subthm}{lem:mid>geod:geod}
Assume that for any pair of points $x,y\in \spc{X}$,
there is a midpoint~$z$.
Then $\spc{X}$ is a geodesic space.
\end{subthm}
\end{thm}
The second part of this lemma was proved by Karl Menger \cite[Section 6]{menger}.
\parit{Proof.}
We first prove \ref{SHORT.lem:mid>length}.
Let $x,y\in \spc{X}$ be a pair of points.
Set $\eps_n=\frac\eps{4^n}$, $\alpha(0)=x$ and $\alpha(1)=y$.
Let $\alpha(\tfrac12)$ be an $\eps_1$-midpoint between $\alpha(0)$ and $\alpha(1)$.
Further, let $\alpha(\frac14)$
and $\alpha(\frac34)$ be $\eps_2$-midpoints between the pairs $(\alpha(0),\alpha(\tfrac12))$
and $(\alpha(\tfrac12),\alpha(1))$ respectively.
Applying the above procedure recursively,
on the $n$-th step we define $\alpha(\tfrac{\kay}{2^n})$,
for every odd integer $\kay$ such that $0<\tfrac\kay{2^n}<1$,
as an $\eps_{n}$-midpoint between the already defined
$\alpha(\tfrac{\kay-1}{2^n})$ and $\alpha(\tfrac{\kay+1}{2^n})$.
In this way we define $\alpha(t)$ for $t\in W$,
where $W$ denotes the set of dyadic rationals in $[0,1]$.
Since $\spc{X}$ is complete, the map $\alpha$ can be extended continuously to $[0,1]$.
Moreover,
\[\begin{aligned}
\length\alpha&\le \dist{x}{y}{}+\sum_{n=1}^\infty 2^{n-1}\cdot\eps_n\le
\\
&\le \dist{x}{y}{}+\tfrac\eps2.
\end{aligned}
\eqlbl{eq:eps-midpoint}
\]
Since $\eps>0$ is arbitrary, we get \ref{SHORT.lem:mid>length}.
To prove \ref{SHORT.lem:mid>geod:geod},
one should repeat the same argument
taking midpoints instead of $\eps_n$-midpoints.
In this case \ref{eq:eps-midpoint} holds for $\eps_n=\eps=0$.
\qeds
A metric space $\spc{X}$ is called \index{proper space}\emph{proper} if all closed bounded sets in $\spc{X}$ are compact.
This condition is equivalent to each of the following statements:
\begin{enumerate}
\item For some (and therefore any) point $p\in \spc{X}$ and any $R<\infty$,
the closed ball $\cBall[p,R]\subset\spc{X}$ is compact.
\item The function $\distfun_p\:\spc{X}\to\RR$ is proper for some (and therefore any) point $p\in \spc{X}$;
that is, for any compact set $K\subset \RR$, its inverse image
$\set{x\in \spc{X}}{\dist{p}{x}{\spc{X}}\in K}$
is compact.
\end{enumerate}
Since in a compact space a sequence of $\tfrac1n$-midpoints $z_n$ contains a convergent subsequence, Menger's lemma immediately implies the following.
\begin{thm}{Proposition}\label{prop:length+proper=>geodesic}
A proper length space is geodesic.
\end{thm}
\begin{thm}{Hopf--Rinow theorem}\label{thm:Hopf-Rinow}
Any complete, locally compact length space is proper.
\end{thm}
\parit{Proof.}
Let $\spc{X}$ be a locally compact length space.
Given $x\in \spc{X}$, denote by $\rho(x)$ the supremum of all $R>0$ such that
the closed ball $\cBall[x,R]$ is compact.
Since $\spc{X}$ is locally compact,
$$\rho(x)>0\ \ \text{for any}\ \ x\in \spc{X}.\eqlbl{eq:rho>0}$$
It is sufficient to show that $\rho(x)=\infty$ for some (and therefore any) point $x\in \spc{X}$.
Assume the contrary; that is, $\rho(x)<\infty$. We claim that
\begin{clm}{} $B=\cBall[x,\rho(x)]$ is compact for any~$x$.
\end{clm}
Indeed, $\spc{X}$ is a length space;
therefore for any $\eps>0$,
the set $\cBall[x,\rho(x)-\eps]$ is a compact $\eps$-net in~$B$.
Since $B$ is closed and hence complete, it must be compact.
\claimqeds
Next we claim that
\begin{clm}{} $|\rho(x)-\rho(y)|\le \dist{x}{y}{\spc{X}}$ for any $x,y\in \spc{X}$;
in particular $\rho\:\spc{X}\to\RR$ is a continuous function.
\end{clm}
Indeed,
assume the contrary; that is, $\rho(x)+|x-y|<\rho(y)$ for some $x,y\in \spc{X}$.
Then
$\cBall[x,\rho(x)+\eps]$ is a closed subset of $\cBall[y,\rho(y)]$ for some $\eps>0$.
Then compactness of $\cBall[y,\rho(y)]$ implies compactness of $\cBall[x,\rho(x)+\eps]$, a contradiction.\claimqeds
Set $\eps=\min\set{\rho(y)}{y\in B}$; the minimum is defined since $B$ is compact.
From \ref{eq:rho>0}, we have $\eps>0$.
Choose a finite $\tfrac\eps{10}$-net $\{a_1,a_2,\dots,a_n\}$ in $B$.
The union $W$ of the closed balls $\cBall[a_i,\eps]$ is compact.
Clearly
$\cBall[x,\rho(x)+\frac\eps{10}]\subset W$.
Therefore $\cBall[x,\rho(x)+\frac\eps{10}]$ is compact,
a contradiction.
\qeds
\begin{thm}{Exercise}\label{exercise from BH}
Construct a geodesic space that is locally compact,
but whose completion is neither geodesic nor locally compact.
\end{thm}
\section{Constructions}\label{sec:constructions}
\parbf{Product space.}
Given two metric spaces $\spc{U}$ and $\spc{V}$, the \index{product space}\emph{product space}
$\spc{U}\times\spc{V}$ is defined as the set of all pairs $(u,v)$ where $u\in\spc{U}$ and $v\in \spc{V}$
with the metric defined by formula
\[\dist{(u^1,v^1)}{(u^2,v^2)}{\spc{U}\times\spc{V}}=\sqrt{\dist[2]{u^1}{u^2}{\spc{U}}+\dist[2]{v^1}{v^2}{\spc{V}}}.\]
\begin{thm}{Exercise}\label{ex:length-prod}
Show that product of length spaces is a length space.
\end{thm}
\begin{thm}{Exercise}\label{ex:geod-prod}
Show that projection of a geodesic path from the product space to its factors are geodesic paths.
\end{thm}
\parbf{Cone.}
The \index{cone}\emph{cone} $\spc{V}=\Cone\spc{U}$ over a metric space $\spc{U}$
is defined as the metric space whose underlying set consists of
equivalence classes in
$[0,\infty)\times \spc{U}$ with the equivalence relation ``$\sim$'' given by $(0,p)\sim (0,q)$ for any points $p,q\in\spc{U}$,
and whose metric is given by the cosine rule
\[
\dist{(p,s)}{(q,t)}{\spc{V}}
=
\sqrt{s^2+t^2-2\cdot s\cdot t\cdot \cos\alpha},
\]
where $\alpha= \min\{\pi, \dist{p}{q}{\spc{U}}\}$.
The point in the cone $\spc{V}$ formed by the equivalence class of $0\times\spc{U}$ is called the \index{tip of the cone}\emph{tip of the cone} and is denoted by $0$ or $0_{\spc{V}}$.
The distance $\dist{0}{v}{\spc{V}}$ is called the norm of $v$ and is denoted by $|v|$ or $|v|_{\spc{V}}$.
\begin{thm}{Exercise}\label{ex:cone-geod}
Let $[pq]$ be a geodesic in $\Cone\spc{U}$;
assume it does not pass thru the tip.
Show that the projection of $[pq]$ to $\spc{U}$ (after reparametrization) is a geodesic of length less than $\pi$.
\end{thm}
\parbf{Suspension.}
The \index{suspension}\emph{suspension} $\spc{V}=\Susp\spc{U}$ over a metric space $\spc{U}$
is defined as the metric space whose underlying set consists of equivalence classes in
$[0,\pi]\times \spc{U}$ with the equivalence relation ``$\sim$'' given by $(0,p)\z\sim (0,q)$ and $(\pi,p)\z\sim (\pi,q)$ for any points $p,q\in\spc{U}$,
and whose metric is given by the spherical cosine rule
\[
\cos\dist{(p,s)}{(q,t)}{\Susp\spc{U}}
=
\cos s\cdot\cos t-\sin s\cdot\sin t\cdot\cos\alpha,
\]
where $\alpha= \min\{\pi, \dist{p}{q}{\spc{U}}\}$.
The points in $\spc{V}$ formed by the equivalence classes of $0\times\spc{U}$ and $\pi\times\spc{U}$ are called the \emph{north} and the \index{pole of suspension}\emph{south poles} of the suspension.
\begin{thm}{Exercise}\label{ex:product-cone}
Let $\spc{U}$ be a metric space.
Show that the spaces
\[\RR\times \Cone\spc{U}\quad\text{and}\quad\Cone[\Susp\spc{U}]\]
are isometric.
\end{thm}
\section{Model angles and triangles}\label{sec:mod-tri/angles}
Let $\spc{X}$ be a metric space and
$p,q,r\in \spc{X}$.
Let us define the \index{model triangle}\emph{model triangle} $\trig{\tilde p}{\tilde q}{\tilde r}$
(briefly,
$\trig{\tilde p}{\tilde q}{\tilde r}=\modtrig(p q r)_{\EE^2}$%
\index{$\modtrig$!$\modtrig({*}{*}{*})_{\EE^2}$}) to be a triangle in the plane $\EE^2$ with the same side lengths; that is,
\[\dist{\tilde p}{\tilde q}{}=\dist{p}{q}{},
\quad\dist{\tilde q}{\tilde r}{}=\dist{q}{r}{},
\quad\dist{\tilde r}{\tilde p}{}=\dist{r}{p}{}.\]
In the same way we can define the \index{hyperbolic model triangle}\emph{hyperbolic} and the \index{spherical model triangles}\emph{spherical model triangles} $\modtrig(p q r)_{\HH^2}$, $\modtrig(p q r)_{\mathbb{S}^2}$
in the hyperbolic plane $\HH^2$ and the unit sphere~$\mathbb{S}^2$.
In the latter case the model triangle is said to be defined if in addition
\[\dist{p}{q}{}+\dist{q}{r}{}+\dist{r}{p}{}< 2\cdot\pi.\]
In this case the model triangle again exists and is unique up to an isometry of~$\mathbb{S}^2$.
If
$\trig{\tilde p}{\tilde q}{\tilde r}=\modtrig(p q r)_{\EE^2}$
and $\dist{p}{q}{},\dist{p}{r}{}>0$,
the angle measure of
$\trig{\tilde p}{\tilde q}{\tilde r}$ at $\tilde p$
will be called the \index{model angle}\emph{model angle} of the triple $p$, $q$, $r$ and will be denoted by
$\angk p q r_{\EE^2}$%
\index{$\angk{{*}}{{*}}{{*}}$}.
In the same way we define $\angk p q r_{\HH^2}$ and $\angk p q r_{\mathbb{S}^2}$;
in the latter case we assume in addition that the model triangle $\modtrig(p q r)_{\mathbb{S}^2}$ is defined.
We may use the notation $\angk p q r$ if it is evident which of the model spaces $\HH^2$, $\EE^2$ or $\mathbb{S}^2$ is meant.
\begin{wrapfigure}{r}{25mm}
\vskip-0mm
\centering
\includegraphics{mppics/pic-730}
\end{wrapfigure}
\begin{thm}{Alexandrov's lemma}
\index{Alexandrov's lemma}
\index{lemma!Alexandrov's lemma}
\label{lem:alex}
Let $p,x,y,z$ be distinct points in a metric space such that $z\in \left]x y\right[$.
Then
the following expressions for the Euclidean model angles have the same sign:
\begin{subthm}{lem-alex-difference}
$\angk x p y
-\angk x p z$,
\end{subthm}
\begin{subthm}{lem-alex-angle}
$\angk z p x
+\angk z p y -\pi$.
\end{subthm}
Moreover,
\[\angk p x y \ge \angk p x z + \angk p z y,\]
with equality if and only if the expressions in \ref{SHORT.lem-alex-difference} and \ref{SHORT.lem-alex-angle} vanish.
The same holds for the hyperbolic and spherical model angles,
but in the latter case one has to assume in addition that
\[\dist{p}{z}{}+\dist{p}{y}{}+\dist{x}{y}{}< 2\cdot\pi.\]
\end{thm}
\parit{Proof.}
Consider the model triangle $\trig{\tilde x}{\tilde p}{\tilde z}=\modtrig(x p z)$.
Take
a point $\tilde y$ on the extension of
$[\tilde x \tilde z]$ beyond $\tilde z$ so that $\dist{\tilde x}{\tilde y}{}=\dist{x}{y}{}$ (and therefore $\dist{\tilde x}{\tilde z}{}=\dist{x}{z}{}$).
\begin{wrapfigure}{r}{33mm}
\vskip-0mm
\centering
\includegraphics{mppics/pic-740}
\end{wrapfigure}
Since increasing the opposite side in a plane triangle increases the corresponding angle,
the following expressions have the same sign:
\begin{enumerate}[(i)]
\item $\mangle\hinge{\tilde x}{\tilde p}{\tilde y}-\angk{x}{p}{y}$,
\item $\dist{\tilde p}{\tilde y}{}-\dist{p}{y}{}$,
\item $\mangle\hinge{\tilde z}{\tilde p}{\tilde y}-\angk{z}{p}{y}$.
\end{enumerate}
Since
\[\mangle\hinge{\tilde x}{\tilde p}{\tilde y}=\mangle\hinge{\tilde x}{\tilde p}{\tilde z}=\angk{x}{p}{z}\]
and
\[ \mangle\hinge{\tilde z}{\tilde p}{\tilde y}
=\pi-\mangle\hinge{\tilde z}{\tilde x}{\tilde p}
=\pi-\angk{z}{x}{p},\]
the first statement follows.
For the second statement, construct a model triangle $\trig{\tilde p}{\tilde z}{\tilde y'}\z=\modtrig(pzy)_{\EE^2}$ on the opposite side of $[\tilde p\tilde z]$ from $\trig{\tilde x}{\tilde p}{\tilde z}$.
Note that
\begin{align*}
\dist{\tilde x}{\tilde y'}{}
&\le \dist{\tilde x}{\tilde z}{} + \dist{\tilde z}{\tilde y'}{}=
\\
&=\dist{x}{z}{}+\dist{z}{y}{}=
\\
&=\dist{x}{y}{}.
\intertext{Therefore}
\angk{p}{x}{z} + \angk{p}{z}{y}
&
=
\mangle\hinge{\tilde p}{\tilde x}{\tilde z}+ \mangle\hinge{\tilde p}{\tilde z}{\tilde y'}
=
\\
&
=
\mangle\hinge{\tilde p}{\tilde x}{\tilde y'}
\le
\\
&\le \angk p x y.
\end{align*}
Equality holds if and only if $\dist{\tilde x}{\tilde y'}{}=\dist{x}{y}{}$,
as required.
\qeds
\section{Angles and the first variation}\label{sec:angles}
Given a hinge $\hinge p x y$, we define its \index{angle}\emph{angle} as
the limit\index{$\mangle$!$\mangle\hinge{{*}}{{*}}{{*}}$}
\[\mangle\hinge p x y
\df
\lim_{\bar x,\bar y\to p} \angk p{\bar x}{\bar y}_{\EE^2},\eqlbl{eq:def-angle}\]
where $\bar x\in\left]p x\right]$ and $\bar y\in\left]p y\right]$.
(The angle $\mangle\hinge p x y$ is defined if the limit exists.)
The value under the limit can be calculated from the cosine law:
\[\cos\angk{p}{x}{y}_{\EE^2}
=
\frac{\dist[2]{p}{x}{}+\dist[2]{p}{y}{}-\dist[2]{x}{y}{}}{2\cdot \dist[{{}}]{p}{x}{}\cdot\dist[{{}}]{p}{y}{}}.\]
The following lemma implies that in \ref{eq:def-angle}, one can use $\angk p{\bar x}{\bar y}_{\mathbb{S}^2}$ or $\angk p{\bar x}{\bar y}_{\HH^2}$ instead of $\angk p{\bar x}{\bar y}_{\EE^2}$.
\begin{thm}{Lemma}\label{lem:k-K-angle}
For any three points $p,x,y$ in a metric space the following inequalities
\[
\begin{aligned}
|\angk p{x}{y}_{\mathbb{S}^2}-\angk p{x}{y}_{\EE^2}|
&\le
\dist[{{}}]{p}{x}{}\cdot\dist[{{}}]{p}{y}{},
\\
|\angk p{x}{y}_{\HH^2}-\angk p{x}{y}_{\EE^2}|
&\le
\dist[{{}}]{p}{x}{}\cdot\dist[{{}}]{p}{y}{}
\end{aligned}
\eqlbl{eq:k-K}\]
hold whenever the left-hand side is defined.
\end{thm}
\parit{Proof.}
Note that
\[\angk p{x}{y}_{\HH^2}\le\angk{p}{x}{y}_{\EE^2}\le \angk p{x}{y}_{\mathbb{S}^2}.\]
Therefore
\begin{align*}
0&\le \angk p{x}{y}_{\mathbb{S}^2}-\angk p{x}{y}_{\HH^2}\le
\\
&\le\quad \angk p{x}{y}_{\mathbb{S}^2}+\angk {x}p{y}_{\mathbb{S}^2}+\angk {y}p{x}_{\mathbb{S}^2}
-
\\
&\quad-\angk p{x}{y}_{\HH^2}-\angk {x}p{y}_{\HH^2}-\angk {y}p{x}_{\HH^2}
=
\\
&=\area\modtrig(pxy)_{\mathbb{S}^2}+\area\modtrig(pxy)_{\HH^2}.
\end{align*}
The inequality \ref{eq:k-K} follows since
\begin{align*}
0
&\le
\area\modtrig(pxy)_{\HH^2}\le
\\
&\le\area\modtrig(pxy)_{\mathbb{S}^2}\le
\\
&\le\dist[{{}}]{p}{x}{}\cdot\dist[{{}}]{p}{y}{}.
\end{align*}
\qedsf
\begin{thm}{Exercise}\label{ex:angle-on-shortest}
Let $\spc{X}$ be a complete length space and $p,x,y\in \spc{X}$.
Show that if $p\in \left] x y \right[$, then
\[\mangle\hinge pxy=
\pi.\]
\end{thm}
\begin{thm}{Triangle inequality for angles}
\label{claim:angle-3angle-inq}
Let $[px^1]$, $[px^2]$ and $[px^3]$ be three geodesics in a metric space.
If all the angles $\alpha^{i j}=\mangle\hinge p {x^i}{x^j}$ are defined, then they satisfy the triangle inequality:
\[\alpha^{13}\le \alpha^{12}+\alpha^{23}.\]
\end{thm}
\parit{Proof.}
Since $\alpha^{13}\le\pi$, we may assume that $\alpha^{12}+\alpha^{23}< \pi$.
Let $\gamma^i$ be the unit-speed parametrization of $[px^i]$ from $p$ to $x^i$.
Given any $\eps>0$, for all sufficiently small $t,\tau,s\in\RR_+$ we have
\begin{align*}
\dist{\gamma^1(t)}{\gamma^3(\tau)}{}
\le
\ &\dist{\gamma^1(t)}{\gamma^2(s)}{}+\dist{\gamma^2(s)}{\gamma^3(\tau)}{}<\\
<
\ &\sqrt{t^2+s^2-2\cdot t\cdot s\cdot \cos(\alpha^{12}+\eps)}\ +
\\
&+\sqrt{s^2+\tau^2-2\cdot s\cdot \tau\cdot \cos(\alpha^{23}+\eps)}\le
\end{align*}
\begin{wrapfigure}{o}{30 mm}
\vskip-6mm
\centering
\includegraphics{mppics/pic-615}
\vskip3mm
\end{wrapfigure}
Below we define
$s(t,\tau)$ so that for
$s=s(t,\tau)$, this chain of inequalities can be continued as follows:
\[\le
\ \sqrt{t^2+\tau^2-2\cdot t\cdot \tau\cdot \cos(\alpha^{12}+\alpha^{23}+2\cdot \eps)}.
\]
Thus for any $\eps>0$,
\[\alpha^{13}\le \alpha^{12}+\alpha^{23}+2\cdot \eps.\]
Hence the result.
To define $s(t,\tau)$, consider three rays $\tilde\gamma^1$, $\tilde\gamma^2$, $\tilde\gamma^3$ on a Euclidean plane starting at one point, such that $\mangle(\tilde\gamma^1,\tilde\gamma^2)=\alpha^{12}+\eps$, $\mangle(\tilde\gamma^2,\tilde\gamma^3)=\alpha^{23}+\eps$ and $\mangle(\tilde\gamma^1,\tilde\gamma^3)=\alpha^{12}+\alpha^{23}+2\cdot \eps$.
We parametrize each ray by the distance from the starting point.
Given two positive numbers $t,\tau\in\RR_+$, let $s=s(t,\tau)$ be
the number such that
$\tilde\gamma^2(s)\in[\tilde\gamma^1(t)\ \tilde\gamma^3(\tau)]$.
Clearly $s\le\max\{t,\tau\}$, so $t,\tau,s$ may be taken sufficiently small.
\qeds
\begin{thm}{Exercise}\label{ex:adjacent-angles}
Prove that the sum of adjacent angles is at least~$\pi$.
More precisely, let $\spc{X}$ be a complete length space and $p,x,y,z\in \spc{X}$.
If $p\in \left] x y \right[$, then
\[\mangle\hinge pxz+\mangle\hinge pyz\ge \pi\]
whenever each angle on the left-hand side is defined.
\end{thm}
\begin{thm}{First variation inequality}\label{lem:first-var}
Assume that for a hinge $\hinge q p x$
the angle $\alpha=\mangle\hinge q p x$ is defined.
Then
\[\dist{p}{\gamma(t)}{}
\le
\dist{q}{p}{}-t\cdot \cos\alpha+o(t),\]
where $\gamma$ is the unit-speed parametrization of $[qx]$ from $q$ to $x$.
\end{thm}
\parit{Proof.} Take a sufficiently small $\eps>0$.
Denote by $\beta$ the the unit-speed parametrization of $[qp]$ from $q$ to $p$.
For all sufficiently small $t>0$, we have
\begin{align*}
\dist{\beta(t/\eps)}{\gamma(t)}{}
&\le
\tfrac{t}{\eps}\cdot \sqrt{1+\eps^2 -2\cdot \eps\cdot \cos\alpha}+o(t)\le
\\
&\le \tfrac{t}{\eps} -t\cdot \cos\alpha + t\cdot \eps.
\end{align*}
Applying the triangle inequality, we get
\begin{align*}
\dist{p}{\gamma(t)}{}
&\le \dist{p}{\beta(t/\eps)}{}+\dist{\beta(t/\eps)}{\gamma(t)}{}
\le
\\
&\le
\dist{p}{q}{} -t\cdot \cos\alpha + t\cdot \eps
\end{align*}
for any fixed $\eps>0$ and all sufficiently small~$t$.
Hence the result.
\qeds
\section{Space of directions and tangent space}
\label{sec:tangent-space+directions}
Let $\spc{X}$ be a metric space with defined angles for all hinges.
Fix a point $p\in \spc{X}$.
Consider the set $\mathfrak{S}_p$
of all nontrivial geodesics that start at~$p$.
By \ref{claim:angle-3angle-inq}, the triangle inequality holds for the angle measure $\mangle$ on $\mathfrak{S}_p$,
so
$(\mathfrak{S}_p,\mangle)$
forms a \index{pseudometric space}\emph{pseudometric space};
that is, $\mangle$ satisfies all the conditions of a metric on $\mathfrak{S}_p$, except that the angle between distinct geodesics might vanish.
The metric space corresponding to $(\mathfrak{S}_p,\mangle)$ is called the \index{space of geodesic directions}\emph{space of geodesic directions} at $p$, denoted by $\Sigma'_p$ or $\Sigma'_p\spc{X}$.
Elements of $\Sigma'_p$ are called \index{geodesic directions}\emph{geodesic directions} at~$p$.
Each geodesic direction is formed by an equivalence class of geodesics in $\mathfrak{S}_p$
for the equivalence relation
\[[px]\sim[py]\ \ \iff\ \ \mangle\hinge pxy=0.\]
The completion of $\Sigma'_p$ is called the
\index{space of directions}\emph{space of directions} at $p$ and is denoted by $\Sigma_p$ or $\Sigma_p\spc{X}$.
Elements of $\Sigma_p$ are called \index{direction}\emph{directions} at~$p$.
The Euclidean cone $\Cone\Sigma_p$ over the space of directions $\Sigma_p$ is called the \index{tangent space}\emph{tangent space} at $p$ and is denoted by $\T_p$ or $\T_p\spc{X}$.
The tangent space $\T_p$ could also be defined directly, without introducing the space of directions.
To do so, consider the set $\mathfrak{T}_p$ of all geodesics with constant-speed parametrizations starting at~$p$.
Given $\alpha,\beta\in \mathfrak{T}_p$,
set
\[\dist{\alpha}{\beta}{\mathfrak{T}_p}
=
\lim_{\eps\to0}
\frac{\dist{\alpha(\eps)}{\beta(\eps)}{\spc{X}}}\eps
\eqlbl{eq:dist-in-T_p}\]
Since the angles in $\spc{X}$ are defined,
\ref{eq:dist-in-T_p}
defines a pseudometric on $\mathfrak{T}_p$.
The corresponding metric space admits a natural isometric identification with the cone $\T'_p=\Cone\Sigma'_p$.
The elements of $\T'_p$ are equivalence classes for the relation
\[\alpha\sim\beta\ \ \iff\ \ \dist{\alpha(t)}{\beta(t)}{\spc{X}}=o(t).\]
The completion of $\T'_p$ is therefore naturally isometric to~$\T_p$.
Elements of $\T_p$ will be called
\index{tangent vector}\emph{tangent vectors}
at $p$, regardless of the fact that $\T_p$ is only a metric cone and need not be a vector space.
Elements of $\T'_p$ will be called
\index{geodesic tangent vector}\emph{geodesic tangent vectors}
at~$p$.
\section{Hausdorff convergence}
Let $\spc{X}$ be a metric space and $A\subset \spc{X}$.
We will denote by $\distfun_A(x)$ the distance from $A$ to a point $x$ in $\spc{X}$;
that is,
$$\distfun_A(x)\df\inf\set{\dist{a}{x}{\spc{X}}}{a\in A}.$$
It is natural to assume that $\distfun_\emptyset(x)=\infty$ for any $x$.
\begin{thm}{Definition of Hausdorff convergence}\label{def:hausdorff-coverge}
Given a sequence of closed sets $(A_n)_{n=1}^\infty$ in a metric space $\spc{X}$,
a closed set $A_\infty\subset \spc{X}$ is called the \emph{Hausdorff limit} of $(A_n)_{n=1}^\infty$,
briefly $A_n\to A_\infty$, if
$$\distfun_{A_n}(x)\to\distfun_{A_\infty}(x)\ \ \text{as}\ \ n\to\infty$$
for every $x\in \spc{X}$.
In this case, the sequence of closed sets $(A_n)_{n=1}^\infty$ is said to \index{converge in the sense of Hausdorff}\emph{converge in the sense of Hausdorff}.
\end{thm}
\parbf{Examples.}
Let $D_n$ be the disc in the coordinate plane
with center $(0,n)$ and radius~$n$.
Then $D_n$ converges to the upper half-plane as $n\to\infty$.
Note that sequence of one-point sets $\{(0,n)\}$ converges to the empty set.
Indeed, for any $\distfun_{\{(0,n)\}}(x)\to \infty=\distfun_\emptyset(x)$ for any~$x$.
\begin{thm}{Exercise}\label{ex:hausdorff-conv}
Let $A_n\to A_\infty$ as in Definition \ref{def:hausdorff-coverge}.
Show that $A_\infty$ is the set of all points $p$ such that $p_n\to p$ for some sequence of points $p_n\in A_n$.
Does the converse hold? That is, suppose $(A_n)_{n=1}^\infty, A_\infty$ are closed sets such that $A_\infty$ is the set of all points $p$ such that $p_n\to p$ for some sequence of points $p_n\in A_n$.
Does this imply that $A_n\to A_\infty$?
\end{thm}
\begin{thm}{First selection theorem}
Let $\spc{X}$ be a proper metric space
and $(A_n)_{n=1}^\infty$ be a sequence of closed sets in~$\spc{X}$.
Then the sequence $(A_n)_{n=1}^\infty$ has a convergent subsequence in the sense of Hausdorff.
\end{thm}
\parit{Proof.}
Since $\spc{X}$ is proper,
there is a countable dense set $\{x_1,x_2,\dots\}$ in~$\spc{X}$.
We can assume that the sequence $d_n=\distfun_{A_n}(x_\kay)$ is bounded for each~$\kay$.
Otherwise there is a subsequence such that $\distfun_{A_n}(x)\to \infty$ as $n\to \infty$ for some (and therefore any) $x$.
Therefore, the corresponding subsequence of $A_n$ converges to the empty set.
Therefore, passing to a subsequence of $(A_n)_{n=1}^\infty$,
we can assume that $\distfun_{A_n}(x_\kay)$ converges as $n\to\infty$ for any fixed~$\kay$.
Note that for each $n$, the function $\distfun_{A_n}\:\spc{X}\to\RR$ is 1-Lipschitz and nonnegative.
Therefore the sequence $\distfun_{A_n}$ converges pointwise to a 1-Lipschitz nonnegative function $f\:\spc{X}\to\RR$.
Set $A_\infty=f^{-1}(0)$. Let us show that
\[\distfun_{A_\infty}(y)\le f(y)\]
for any~$y$.
Assume the contrary;
that is,
$f(z)<R<\distfun_{A_\infty}(z)$
for some $z\in \spc{X}$ and $R>0$.
Then for any sufficiently large $n$, there is a point $z_n\in A_n$ such that
$\dist{x}{z_n}{}\le R$.
Since $\spc{X}$ is proper, we can pass to a partial limit $z_\infty$ of $z_n$ as $n\to\infty$.
It is clear that $f(z_\infty)=0$;
that is, $z_\infty\in A_\infty$.
(Note that this implies that $A_\infty\ne \emptyset$.)
On the other hand,
\begin{align*}
\distfun_{A_\infty}(y)
\le
\dist{z_\infty}{y}{}
\le R
<
\distfun_{A_\infty}(y),
\end{align*}
a contradiction.
On the other hand, since $f$ is 1-Lipschitz, $\distfun_{A_\infty}(y)\ge f(y)$.
Therefore
\[\distfun_{A_\infty}(y)= f(y)\]
for any $y\in \spc{X}$.
Hence the result.
\qeds
\section{Gromov--Hausdorff convergence}
\begin{thm}{Definition}\label{def:comp-metr}
Let $\set{\spc{X}_\alpha}{\alpha\in\IndexSet}$ be a collection of metric spaces.
A metric $\rho$ on the disjoint union
$$\bm{X}=\bigsqcup_{\alpha\in\IndexSet} \spc{X}_\alpha$$
is called a \index{compatible metric}\emph{compatible metric}
if the restriction of $\rho$ to every $\spc{X}_\alpha$ coincides with the original metric on~$\spc{X}_\alpha$.
\end{thm}
\begin{thm}{Definition}\label{def:GH}
Let $\spc{X}_1,\spc{X}_2,\dots$
and $\spc{X}_\infty$ be proper metric spaces
and $\rho$ be a compatible metric on their disjoint union~$\bm{X}$.
Assume that $\spc{X}_n$ is an open set in
$(\bm{X},\rho)$ for each $n\ne\infty$, and
$\spc{X}_n\to \spc{X}_\infty$ in $(\bm{X},\rho)$ as $n\to\infty$ in the sense of Hausdorff (see Definition~\ref{def:hausdorff-coverge}).
Then we say $\rho$ defines a
\index{convergence in the sense of Gromov--Hausdorff}\emph{convergence}%
\footnote{Formally speaking, convergence in the topology induced by $\rho$ on~$\bm{X}$.}
in the sense of \emph{Gromov--Hausdorff}%
\index{convergence in the sense of Gromov--Hausdorff},
and write $\spc{X}_n\to \spc{X}_\infty$ or $\spc{X}_n\xrightarrow{\rho} \spc{X}_\infty$.
The space $\spc{X}_\infty$ is called the \emph{limit space} of the sequence $(\spc{X}_n)$ \emph{along} $\rho$.
\end{thm}
Usually Gromov--Hausdorff convergence is defined differently.
We prefer this definition since it induces convergence for a sequence of points $x_n\in\spc{X}_n$ (Exercise \ref{ex:hausdorff-conv}),
as well as
weak convergence of measures $\mu_n$ on $\spc{X}_n$,
and so on,
corresponding to convergence in the ambient space $(\bm{X},\rho)$.
Once we write $\spc{X}_n\to \spc{X}_\infty$, we mean that we have made a choice of convergence.
Note that for a fixed sequence of metric spaces $(\spc{X}_n)$, it might be possible to construct different Gromov--Hausdorff convergences, say $\spc{X}_n\z{\xrightarrow{\rho}} \spc{X}_\infty$ and $\spc{X}_n\xrightarrow{\rho'} \spc{X}_\infty'$, whose limit spaces $\spc{X}_\infty$ and $\spc{X}_\infty'$ need not be isometric to each other.
For example, for the constant sequence $\spc{X}_n\iso\RR_{\ge0}$
may converge to $\RR_{\ge0}$ and $\RR$.
The first convergence is evident and the second could be guessed from the diagram.
\begin{figure}[ht!]
\vskip-0mm
\centering
\includegraphics{mppics/pic-500}
\end{figure}
\begin{thm}{Second selection theorem}\label{thm:gromov-selection}
Let $\spc{X}_n$ be a sequence of proper metric spaces
with marked points $x_n\in \spc{X}_n$.
Assume that for any fixed $R,\eps>0$, there is $N=N(R,\eps)\in\NN$
such that for each $n$
the ball $\cBall[x_n,R]_{\spc{X}_n}$ admits a finite $\eps$-net with at most $N$ points.
Then there is a subsequence of $\spc{X}_n$ admitting a Gromov--Hausdorff convergence
such that the sequence of marked points $x_n\in\spc{X}_n$ converges.
\end{thm}
\parit{Proof.}
From the main assumption in the theorem,
in each space $\spc{X}_n$
there is a sequence of points $z_{i,n}\in\spc{X}_n$ such that the following condition holds for a fixed sequence of integers $M_1<M_2<\dots$
\begin{itemize}
\item $\dist{z_{i,n}}{x_n}{\spc{X}_n}\le \kay+1$ if $i\le M_\kay$,
\item the points $z_{1,n},\dots,z_{M_\kay,n}$ form an $\tfrac1\kay$-net in $\cBall[x_n,\kay]_{\spc{X}_n}$.
\end{itemize}
Passing to a subsequence, we can assume that the sequence \[\ell_n=\dist{z_{i,n}}{z_{j,n}}{\spc{X}_n}\]
converges for any $i$ and~$j$.
Consider a countable set of points $\spc{W}=\{w_1,w_2,\dots\}$
equipped with the pseudometric defined by
\[\dist{w_i}{w_j}{\spc{W}}
=
\lim_{n\to\infty}\dist{z_{i,n}}{z_{j,n}}{\spc{X}_n}.\]
Let $\hat{\spc{W}}$ be the metric space corresponding to $\spc{W}$;
that is, points in $\hat{\spc{W}}$ are equivalence classes in $\spc{W}$
for the relation $\sim$, where $w_i\sim w_j$ if and only if $\dist{w_i}{w_j}{\spc{W}}=0$,
and where
\[\dist{[w_i]}{[w_j]}{\hat{\spc{W}}}\df\dist{w_i}{w_j}{\spc{W}}.\]
Denote by
$\spc{X}_\infty$ the completion of~$\hat{\spc{W}}$.
It remains to show that there is a Gromov--Hausdorff convergence
$\spc{X}_n\to\spc{X}_\infty$ such that the sequence $x_n\in\spc{X}_n$ converges.
To prove this, we need to construct a metric $\rho$ on the disjoint union of \[\bm{X}=\spc{X}_\infty\sqcup\spc{X}_1\sqcup\spc{X}_2\sqcup\dots\] satisfying definitions \ref{def:comp-metr} and~\ref{def:GH}.
The metric $\rho$ can be constructed as the maximal compatible metric
such that
\[\rho(z_{i,n},w_i)\le\tfrac1m\]
for any $n\ge N_m$ and $i<I_m$ for a suitable choice of two sequences
$(I_m)$ and $(N_m)$ with $I_1=N_1=1$.
\qeds
\begin{thm}{Exercise}\label{ex:non-contracting-map}
Let $\spc{K}$ be a compact metric space and
\[f\:\spc{K}\z\to \spc{K}\]
be a distance non-decreasing map.
Prove that $f$ is an isometry.
\end{thm}
\begin{thm}{Exercise}\label{ex:compact-proper-GH}
Let $\spc{X}_n$ be a sequence of metric spaces that admits
two convergences $\spc{X}_n\xrightarrow{\rho}\spc{X}_\infty$ and $\spc{X}_n\xrightarrow{\rho'}\spc{X}_\infty'$.
\begin{subthm}{ex:compact-proper-GH:a}
If $\spc{X}_\infty$ is compact, then $\spc{X}_\infty\iso\spc{X}_\infty'$.
\end{subthm}
\begin{subthm}{ex:compact-proper-GH:b}
If $\spc{X}_\infty$ is proper and there is a sequence of points $x_n\in \spc{X}_n$
that converges in both convergences,
then $\spc{X}_\infty\iso\spc{X}_\infty'$.
\end{subthm}
\end{thm}
\section{Remarks}
It seems that \emph{Hausdorff convergence} was first introduced by Felix Hausdorff in \cite{hausdorff},
and a couple of years later an equivalent definition was given by Wilhelm Blaschke in~\cite{blaschke}.
A refinement of this definition was introduced by Zden\v{e}k Frol\'{\i}k in \cite{frolik},
and later rediscovered by Robert Wijsman in~\cite{wijsman}.
However, this refinement takes an intermediate place between the original Hausdorff convergence and {}\emph{closed convergence}, also introduced by Hausdorff in \cite{hausdorff}.
For this reason we call it Hausdorff convergence
instead of
{}\emph{Hausdorff--Blascke--Frol\'{\i}k--Wijsman convergence}.