-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkleiner.tex
618 lines (501 loc) · 23.8 KB
/
kleiner.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
%%!TEX root = the-kleiner.tex
\chapter{Barycenters}\label{chap:barycenter}
\section{Definition}
Let us denote by $\triangle^k\subset \RR^{k+1}$\index{$\triangle^m$}
the \index{standard simplex}\emph{standard $k$-simplex};
that is, $\bm{m}=(m_0,\dots,m_k)\in\triangle^k$ if $m_0+\dots+m_k=1$ and $m_i\ge0$ for all $i$.
Consider a point array $\bm{p}=(p_0,\dots,p_k)$ in the Euclidean space $\EE^n$.
Recall that
\[z=m_0\cdot p_0+\dots+m_k\cdot p_k\]
is called the \index{barycenter}\emph{barycenter} of the point array $\bm{p}=(p_0,\dots,p_k)$ with masses $\bm{m}\z=(m_0,\dots, m_k)\in \triangle^k$.
Equivalently,
\[z\df \argmin (m_0\cdot f_0+\dots+m_k\cdot f_k),\eqlbl{eq:f-spx}\]
where $f_i=\tfrac12\cdot\distfun_{p_i}^2$ for each $i$, and $\argmin f$\index{$\argmin$} denotes a point of minimum of the function $f$.
The map $\spx{}\:\triangle^k\mapsto \EE^n$ defined by $\spx{}\:\bm{m}\mapsto z$ is called the \index{barycentric simplex} \emph{barycentric simplex} of the array $\bm{p}$.
If needed we may denote this map by $\spx{\bm{p}}$ or, more generally, $\spx{\bm{f}}$.
The latter means that we define the map via \ref{eq:f-spx} for an array of functions $\bm{f}=(f_0,f_1,\dots,f_k)$.
Formally speaking, the definition \ref{eq:f-spx} makes sense for any array of functions in a metric space;
but in this case, the map might be undefined or non-uniquely defined.
Further, we will work with this definition in $\CAT(0)$ spaces instead of $\EE^n$.
It will be used to define and study dimension of $\CAT$ spaces.
We will use that on a geodesic $\CAT(0)$ space
functions of the type $f=\tfrac12\cdot\distfun_{p}^2$ are 1-convex; see \ref{ex:convex-distfun}.
This will be the only way we will use the $\CAT(0)$ condition for most of this chapter.
\section{Barycentric simplex}
\begin{thm}{Theorem}\label{thm:barycenter}
Let $\spc{X}$ be a complete geodesic space
and $\bm{f}\z=(f_0,\z\dots,f_k)\:\spc{X}\to\RR^{k+1}$
be an array of nonnegative 1-convex locally Lipschitz functions.
Then the barycentric simplex
$\spx{\bm{f}}\:\triangle^k\to \spc{X}$ is a uniquely defined Lipshitz map.
In particular, we have that for any point array $\bm{p}\z=(p_0,\z\dots,p_k)$ in a complete geodesic $\CAT(0)$ space
the barycentric simplex $\spx{\bm{p}}$ is a uniquely defined Lipschitz map.
\end{thm}
\begin{thm}{Lemma}\label{lem:argmin(convex)}
Suppose $\spc{X}$ is a complete geodesic space and $f\:\spc{X}\z\to\RR$ is a locally Lipschitz, $1$-convex function.
Then $\argmin f$ is uniquely defined.
\end{thm}
\parit{Proof.}
Note that
\begin{clm}{}\label{midpoint}
if $z$ is a midpoint of the geodesic $[x y]$, then
\[s\le f(z)
\le
\tfrac{1}{2}\cdot f(x)+\tfrac{1}{2}\cdot f(y)-\tfrac{1}{8}\cdot\dist[2]{x}{y}{},
\]
where $s$ is the infimum of $f$.
\end{clm}
\parit{Uniqueness.}
Assume that $x$ and $y$ are distinct minimum points of $f$.
Let $z$ be the midpoint of a geodesic $[x y]$.
From \ref{midpoint} we have
\[f(z)<f(x)=f(y)\]
--- a contradiction.
\parit{Existence.}
Fix a point $p\in \spc{X}$, and
let $\Lip\in\RR$ be a Lipschitz constant of $f$ in a neighborhood of $p$.
Choose a sequence of points $p_n\in \spc{X}$ such that $f(p_n)\to s$.
Applying \ref{midpoint} for $x\z=p_n$, $y\z=p_m$, we see that $p_n$ is a Cauchy sequence.
Thus the sequence $p_n$ converges to a minimum point of $f$.
\qeds
\parit{Proof of \ref{thm:barycenter}.}
Since each $f_i$ is $1$-convex, for any $\bm{x}=(x_0,x_1,\dots,x_k)\z\in\triangle^k$
the convex combination
\[\left(\sum_i x_i\cdot f_i\right)\:\spc{X}\to\RR\]
is also $1$-convex.
Therefore, according to \ref{lem:argmin(convex)}, the barycentric simplex
%$\spx{\bm{f}}(\bm{x})$ is defined for any $\bm{x}\in\triangle^k$.
$\spx{\bm{f}}$ is uniquely defined on $\triangle^k$.
For $\bm{x},\bm{y}\in\triangle^k$,
let
\begin{align*}
f_{\bm{x}}
&=\sum_i x_i\cdot f_i,
&
f_{\bm{y}}
&=\sum_i y_i\cdot f_i,
\\
p
&=\spx{\bm{f}}(\bm{x}),
&
q
&=\spx{\bm{f}}(\bm{y}),
\end{align*}
Choose a geodesic $\gamma$ from $p$ to $q$;
suppose $s=\dist{p}{q}{}$ and so $\gamma(0)=p$ and $\gamma(s)=q$.
Observe the following:
\begin{itemize}
\item The function $\phi(t)=f_{\bm{x}}\circ\gamma(t)$ has a minimum at $0$.
Therefore $\phi^+(0)\ge 0$.
\item The function $\psi(t)=f_{\bm{y}}\circ\gamma(t)$ has a minimum at $s$.
Therefore $\psi^-(s)\ge 0$.
\end{itemize}
From $1$-convexity of $f_{\bm{y}}$, we have
\[\psi^+(0)+\psi^-(s)+s\le0.\]
Let $\Lip$ be a Lipschitz constant for all $f_i$ in a neighborhood $\Omega\ni p$.
Then
\[\psi^+(0)
\le
\phi^+(0)+\Lip\cdot\|\bm{x}-\bm{y}\|_1,\]
where $\|\bm{x}-\bm{y}\|_1=\sum_{i=0}^k|x_i-y_i|$.
It follows that given $\bm{x}\in\triangle^k$, there is a constant $\Lip$ such that
\begin{align*}
\dist{\spx{\bm{f}}(\bm{x})}{\spx{\bm{f}}(\bm{y})}{}
&=
s
\le
\\
&\le
\Lip\cdot\|\bm{x}-\bm{y}\|_1
\end{align*}
for any $\bm{y}\in\triangle^k$.
In particular, there is $\eps>0$ such that if $\|\bm{x}-\bm{y}\|_1<\eps,$ $\|\bm{x}-\bm{z}\|_1 <\eps$, then $\spx{\bm{f}}(\bm{y})$, $\spx{\bm{f}}(\bm{z})\in\Omega$.
Thus the same argument as above implies
\[\dist{\spx{\bm{f}}(\bm{y})}{\spx{\bm{f}}(\bm{z})}{}
\le \Lip\cdot\|\bm{y}-\bm{z}\|_1\]
for any $\bm{y}$ and $\bm{z}$ sufficiently close to $\bm{x}$; that is, $\spx{\bm{f}}$ is locally Lipschitz.
Since $\triangle^k$ is compact, $\spx{\bm{f}}$ is Lipschitz.
\qeds
\begin{thm}{Exercise}\label{ex:finite-action-CAT}
Let $G$ be a subgroup of the group of isometries of a proper geodesic $\CAT(0)$ space.
Assume that
\begin{subthm}{ex:finite-action-CAT:finite}
$G$ is finite, or, more generally,
\end{subthm}
\begin{subthm}{ex:finite-action-CAT:compact}
$G$ is compact.
\end{subthm}
Show that the action of $G$ has a fixed point.
\end{thm}
\section{Convexity of up-set}
\begin{thm}{Definition}\label{def:ordung}
For two real arrays $\bm{v}$, $\bm{w}\in \RR^{\kay+1}$,
$\bm{v}=(v_0,\z\dots,v_\kay)$
and
$\bm{w}=(w_0,\z\dots,w_\kay)$,
we will write
$\bm{v}\succcurlyeq\bm{w}$ if $v_i\ge w_i$ for each $i$.
\end{thm}
Given a subset $Q\subset \RR^{\kay+1}$,
denote by $\Up Q$ \label{PAGE.def:Up}
the smallest upper set containing $Q$;
that is,
\begin{align*}
\Up Q
&=
\set{\bm{v}\in\RR^{\kay+1}}{\exists\, \bm{w}\in Q\ \text{such that}\ \bm{v}\succcurlyeq\bm{w}},
\end{align*}
\begin{thm}{Proposition}\label{thm:up-convex}
Let $\spc{X}$ be a complete geodesic space
and $\bm{f}\z=(f_0,\z\dots,f_\kay)\:\spc{X}\to\RR^{\kay+1}$
be an array of nonnegative 1-convex locally Lipschitz functions.
Consider the set $W=\Up[\bm{f}(\spc{X})]\subset\RR^{k+1}$.
Then
\begin{subthm}{thm:up-convex:convex}
The set $W$ is convex.
\end{subthm}
\begin{subthm}{thm:up-convex:bry}
$\bm{f}[\spx{\bm{f}}(\triangle^k)]\subset\partial W$.
Moreover, $\bm{f}[\spx{\bm{f}}(\triangle^k)\setminus \spx{\bm{f}}(\partial\triangle^k)]$ is an open set in $\partial W$.
\end{subthm}
\begin{subthm}{thm:up-convex:bry+}
$W=\Up(\bm{f}[\spx{\bm{f}}(\triangle^k)])$;
in other words, $\Up(\bm{f}[\spx{\bm{f}}(\triangle^k)])\supset\bm{f}(\spc{X})$.
\end{subthm}
\end{thm}
Note that since $\triangle^k$ is compact, we also get that $W$ is closed.
\begin{wrapfigure}{r}{48mm}
\vskip0mm
\centering
\includegraphics{mppics/pic-1106}
\end{wrapfigure}
\parit{Proof.}
Let $V=\bm{f}(\spc{X})\subset\RR^{k+1}$; so $W\z=\Up V$.
Denote by $\bar V$ the closure of $V$.
\parit{\ref{SHORT.thm:up-convex:convex}.}
Convexity of all $f_i$ implies that
for any two points $p,q\in \spc{X}$ and $t\z\in[0,1]$ we have
\[(1-t)\cdot\bm{f}(p)+t\cdot \bm{f}(q)
\succcurlyeq
\bm{f}\circ\gamma(t),\]
where $\gamma$ denotes a geodesic path from $p$ to $q$.
Therefore, $W$ is convex.
\parit{\ref{SHORT.thm:up-convex:bry}+\ref{SHORT.thm:up-convex:bry+}.}
Choose $p\in \spx{\bm{f}}(\triangle^k)$.
Note that if $\bm{f}(p)\succcurlyeq\bm{w}$ for some $\bm{w}\in W$, then $\bm{f}(p)\succcurlyeq\bm{w}\succcurlyeq\bm{f}(x)$ for some $x\in \spc{X}$ and hence $x=p$ by the uniqueness of $\spx{\bm{f}}$. Therefore $\bm{f}(p)=\bm{w}$.
It follows that $\bm{f}(p)\in\partial W$;
therefore $\bm{f}[\spx{\bm{f}}(\triangle^k)]$ lies in a convex hypersurface $\partial W$.
Choose $\bm{w}\in W$.
Observe that $\bm{w}\succcurlyeq\bm{v}$ for some $\bm{v}\in \bar V\cap \partial W$.
Note that $W$ is supported at $\bm{v}$ by a hyperplane
\[\Pi=\set{(x_1,\dots,x_k)\in \RR^k}{m_0\cdot x_0+\dots+m_k\cdot x_k=\const}\]
for some $\bm{m}=(m_0,\dots,m_k)\in\triangle^{\kay}$.
Let $p=\spx{\bm f}(\bm m)$.
By \ref{lem:argmin(convex)}, $\bm{f}(p)\z=\bm{v}$;
in particular $\bm{v}\in V$.
Note that $p\in \spx{\bm{f}}(\triangle^k)\setminus\spx{\bm{f}}(\partial\triangle^k)$ if and only if
$\bm{f}(p)$ is supported by a plane as above for some $\bm{m}\in\triangle^{\kay}$,
but it is not supported by a plane for some $\bm{m}\in\partial\triangle^{\kay}$.
This condition is open, therefore $\spx{\bm{f}}(\triangle^k)\z\setminus\spx{\bm{f}}(\partial\triangle^k)$ is an open set.
\qeds
\section{Nondegenerate simplex}
Given an array $\bm{f}=(f_0,\dots,f_k)$,
we denote by $\bm{f}^{\without i}$ the subarray of $\bm{f}$ with $f_i$ removed;
that is,
\[\bm{f}^{\without i\,}
\df
(f_0,\dots,f_{i-1},f_{i+1},\dots,f_k).\]
It should be clear from the definition that $\spx{\bm{f}^{\without i}}$
coincides with the restriction of $\spx{\bm{f}}$ to the corresponding facet of $\triangle^k$.
If $\Im \spx{\bm{f}}$ is not covered by the union of $\Im \spx{\bm{f}^{\without i}}$ over all $i$
then we say that $\spx{\bm{f}}$ is nondegenerate.
In other words, $\spx{\bm{f}}$ is \index{nondegenerate simplex}\emph{nondegenerate} if
\[\spx{\bm{f}}(\triangle^k)\setminus \spx{\bm{f}}(\partial \triangle^k)\ne\emptyset.\]
\begin{thm}{Exercise}\label{ex:barysimple}
Let $\spc{U}$ be a complete geodesic $\CAT(0)$ space.
Show that the image 1-dimensional barycentric simplex for a pair of points $p_0,p_1\in\spc{U}$ is the geodesic $[p_0p_1]$.
Construct a $\CAT(0)$ space with a three-point array $(p_0,p_1,p_2)$ such that its barycentric simplex is nondegenerate and noninjective.
\end{thm}
\begin{thm}{Exercise}\label{lem:nondeg-test-with-balls}
Let $\bm{p}\z=(p_0,\dots, p_\kay)$ be a point array
in a complete length $\CAT(0)$ space $\spc{U}$,
and $B_i=\cBall[p_i,r_i]$ for some array of positive reals $(r_0,r_1,\dots,r_\kay)$.
\begin{subthm}{lem:nondeg-test-with-ball:U}
Suppose $\bigcap_i B_i\ne \emptyset$.
Show that
\[\Im\spx{\bm{p}}\subset \bigcup_i B_i.\]
\end{subthm}
\begin{subthm}{lem:nondeg-test-with-balls:nondeg}
Suppose $\bigcap_i B_i= \emptyset$, but $\bigcap_{i\ne j} B_i\ne \emptyset$ for any $j$.
Show that
$\spx{\bm{p}}$ is nondegenerate.
\end{subthm}
\begin{subthm}{lem:nondeg-test-with-balls:nondeg+}
Suppose $\spx{\bm{p}}$ is nondegenerate.
Show that the condition in \ref{SHORT.lem:nondeg-test-with-balls:nondeg} hold for some
array of positive reals $(r_0,\dots,r_\kay)$.
\end{subthm}
\end{thm}
\section{bi-H\"older embedding}
\begin{thm}{Theorem}\label{thm:bihoelder}
Let $\spc{X}$ be a complete geodesic space
and $\bm{f}\z=(f_0,\z\dots,f_k)\:\spc{X}\to\RR^{k+1}$
be an array of 1-convex locally Lipschitz functions.
Then the set
\[Z=\spx{\bm{f}}(\triangle^k)\setminus \spx{\bm{f}}(\partial \triangle^k)\]
is $C^{\frac12}$-bi-H\"older to an open domain in $\RR^k$.
\end{thm}
\parit{Proof.}
Let $\proj\:\RR^{k+1}\to\Pi$ be orthogonal projection to the hyperplane $x_0+\dots+x_k=0$.
Let us show that the restriction $\proj\circ \bm{f}|_Z$ is a bi-H\"older embedding.
The map $\proj\circ \bm{f}$ is Lipschitz;
it is sufficient to construct its right inverse and show that it is $C^{\frac12}$-continuous.
Given $\bm{v}=(v_0,v_1,\dots,v_\kay)\in\Pi$, consider the function
$h_{\bm{v}}\: \spc{X}\to \RR$ defined by
\[h_{\bm{v}}(p)=\max_i\{f_i(p)-v_i\}.\]
Note that $h_{\bm{v}}$ is $1$-convex.
Let
$$\map(\bm{v})\df\argmin h_{\bm{v}}.$$
According to Lemma~\ref{lem:argmin(convex)}, $\map(\bm{v})$ is uniquely defined.
If $\bm{v}=\proj \bm{f}(p)$, then
\[f_i\circ \map(\bm{v})\le f_i(p)\]
for any $i$.
In particular, if $p\in \spx{\bm{f}}(\triangle^k)$, then $p=\map(\bm{v})$.
That is, $\map$ is a right inverse of the restriction $\bm{f}|_{\spx{\bm{f}}(\triangle^k)}$.
Given $\bm{v},\bm{w}\in\RR^{\kay+1}$,
set $p=\map (\bm{v})$ and $q=\map (\bm{w})$.
Since $h_{\bm{v}}$ and $h_{\bm{w}}$ are 1-convex, we have
\begin{align*}
h_{\bm{v}}(q)
&\ge
h_{\bm{v}}(p)+\tfrac{1}{2}\cdot\dist[2]{p}{q}{},
&
h_{\bm{w}}(p)
&\ge
h_{\bm{w}}(q)+\tfrac{1}{2}\cdot\dist[2]{p}{q}{}.
\end{align*}
Therefore,
\begin{align*}
\dist[2]{p}{q}{}
&\le
2\cdot\sup_{x\in\spc{X}}\{ |h_{\bm{v}}(x)-h_{\bm{w}}(x)| \}
\le
\\
&\le
2\cdot\max_{i}\{|v_i-w_i|\}.
\end{align*}
In particular,
$\map$ is $C^{\frac{1}{2}}$-continuous.
Finally, by \ref{thm:up-convex:bry}, $\bm{f}(Z)$ is a $k$-dimensional manifold, hence the result.
\qeds
\section{Topological dimension}
Let $\spc{X}$ be a metric space and $\{V_\beta\}_{\beta\in\mathcal{B}}$
be an open cover of $\spc{X}$.
Let us recall two notions in general topology:
\begin{itemize}
\item The \index{order of a cover}\emph{order} of $\{V_\beta\}$ is the supremum of all integers $n$ such that there is a collection of $n+1$ elements of $\{V_\beta\}$ with nonempty intersection.
\item An open cover $\{W_\alpha\}_{\alpha\in\IndexSet}$ of $\spc{X}$ is called a \index{refinement of a cover}\emph{refinement} of $\{V_\beta\}_{\beta\in\mathcal{B}}$ if for any $\alpha\in\IndexSet$ there is $\beta\in\mathcal{B}$ such that $W_\alpha\subset V_\beta$.
\end{itemize}
\begin{thm}{Definition}\label{def:TopDim}\index{dimension!topological dimension}\index{topological dimension}
Let $\spc{X}$ be a metric space.
The topological dimension of $\spc{X}$ is defined to be the minimum of nonnegative integers $n$
such that for any open cover of $\spc{X}$ there is a locally finite open refinement with order~$n$.
If no such $n$ exists, the topological dimension of $\spc{X}$ is infinite.
The topological dimension of $\spc{X}$ will be denoted by $\TopDim\spc{X}$.
\end{thm}
The invariants satisfying the following two statements \ref{dim-axiom-norm} and \ref{dim-axiom-sigma} are commonly called the \index{dimension}\emph{dimension};
for that reason, we call these statements axioms.
\begin{thm}{Normalization axiom}
\label{dim-axiom-norm} For any $m\in\ZZ_{\ge0}$,
\[\TopDim\EE^m=m.\]
\end{thm}
\begin{thm}{Cover axiom}\label{dim-axiom-sigma}
If $\{A_n\}_{n=1}^\infty$ is a countable closed cover of $\spc{X}$, then
\begin{align*}
\TopDim \spc{X}&=\sup\nolimits_n\{\TopDim A_n\}.
\end{align*}
\end{thm}
\parbf{On product spaces.}
The following inequality holds for arbitrary metric spaces
\begin{align*}
\TopDim (\spc{X}\times\spc{Y})
&\le
\TopDim \spc{X}+ \TopDim\spc{Y}.
\end{align*}
It is strict for a pair of Pontryagin surfaces \cite{pontyagin-surface}.
\medskip
\begin{thm}{Definition}
Let $\spc{X}$ be a metric space
and $F\:\spc{X}\to\RR^m$ be a continuous map.
A point $\bm{z}\in \Im F$ is called a \emph{stable value} of $F$
if there is $\eps>0$ such that $\bm{z}\in\Im F'$
for any \emph{$\eps$-close} to $F$ continuous map $F'\:\spc{X}\to\RR^m$,
that is, $|F'(x)-F(x)|<\eps$ for all $x\in \spc{X}$.
\end{thm}
The next theorem follows from \cite[theorems VI 1$\&$2]{hurewicz-wallman}.
(This theorem also holds for non-separable metric spaces \cite{nagata}, \cite[3.2.10]{engelking}).
\begin{thm}{Stable value theorem}\label{thm:stable-value}
Let $\spc{X}$ be a separable metric space.
Then $\TopDim\spc{X}\ge m$ if and only if there is a map $F\:\spc{X}\to\RR^{m}$ with a stable value.
\end{thm}
\section{Dimension theorem}\label{sec:dim-CAT}
\begin{thm}{Theorem}\label{thm:dim-infty-CBA}
For any proper geodesic $\CAT(0)$ space $\spc{U}$, the following statements are equivalent:
\begin{subthm}{thm:dim-infty-CBA:TopDim}
\[\TopDim \spc{U}\ge m.\]
\end{subthm}
\begin{subthm}{thm:dim-infty-CBA:bary}
For some $z\in \spc{U}$ there is an array of $m+1$ balls $B_i\z=\oBall(a_i,r_i)$
such that
\[\bigcap_i B_i=\emptyset
\quad\text{and}\quad
\bigcap_{i\ne j} B_i\ne \emptyset
\quad \text{for each $j$}.\]
\end{subthm}
\begin{subthm}{thm:dim-infty-CBA:mnfld}
There is a $C^{\frac{1}{2}}$-embedding of an open set in $\RR^m$ to $\spc{U}$;
that is, $\map$ is bi-Hölder with exponent $\tfrac{1}{2}$.
\end{subthm}
\end{thm}
\begin{thm}{Lemma}\label{lem:approximation-cba}
Let $\spc{U}$ be a proper geodesic $\CAT(0)$ space
and $\rho\:\spc{U}\z\to\RR$ be a continuous positive function.
Then there is a locally finite countable simplicial complex $\spc{N}$,
a locally Lipschitz map $\map\:\spc{U}\z\to \spc{N}$,
and a Lipschitz map $\Psi\:\spc{N}\to\spc{U}$ such that:
\begin{subthm}{lem:approximation-cba:displacement}
The displacement of the composition $\Psi\circ\map\:\spc{U}\to\spc{U}$ is bounded by $\rho$;
that is,
\[\dist{x}{\Psi\circ\map(x)}{}<\rho(x)\]
for any $x\in\spc{U}$.
\end{subthm}
\begin{subthm}{lem:approximation-cba:im}
If $\TopDim\spc{U}\le m$,
then the $\Psi$-image of $\spc{N}$
coincides with the image of its $m$-skeleton.
\end{subthm}
\end{thm}
\parit{Proof.}
Choose a locally finite countable covering $\set{\Omega_\alpha}{\alpha\in\IndexSet}$ of $\spc{U}$ such that $\Omega_\alpha\subset \oBall(x,\tfrac{1}{3}\cdot\rho(x))$ for any $x\in \Omega_\alpha$.
Denote by $\spc{N}$ the \index{nerve}\emph{nerve} of the covering $\{\Omega_\alpha\}$;
that is, $\spc{N}$ is an abstract simplicial complex with
%set of vertexes formed by $\IndexSet$,
vertex set $\IndexSet$,
such that a finite subset
$\{\alpha_0,\z\dots,\alpha_n\}\subset\IndexSet$
forms a simplex if and only if
\[\Omega_{\alpha_0}
\cap
\dots\cap
\Omega_{\alpha_n}\ne\emptyset.\]
Choose a Lipschitz partition of unity
$\phi_\alpha\:\spc{U}\to [0,1]$ subordinate to $\{\Omega_\alpha\}$.
Consider the map $\map\:\spc{U}\to \spc{N}$ such that the barycentric coordinate of $\map(p)$ is $\phi_\alpha(p)$.
Note that $\map$ is locally Lipschitz.
Clearly, the $\map$-preimage of any open simplex in $\spc{N}$ lies in $\Omega_\alpha$ for some $\alpha\in\IndexSet$.
For each $\alpha\in\IndexSet$,
choose $x_\alpha\in\Omega_\alpha$.
Let us extend the map $\alpha\mapsto x_\alpha$
to a map $\Psi\:\spc{N}\to\spc{U}$ that is barycentric on each simplex.
According to \ref{thm:barycenter}, this extension exists,
and $\Psi$ is locally Lipschitz.
\parit{\ref{SHORT.lem:approximation-cba:displacement}.}
Fix $x\in\spc{U}$.
Denote by $\triangle$ the minimal simplex that contains $\map(x)$,
and let $\alpha_0,\alpha_1,\dots,\alpha_n$ be the vertexes of $\triangle$.
%Denote by $\triangle$ the minimal simplex that contains $\map(x)$;
%and let $(\alpha_0,\alpha_1,\dots,\alpha_n)$ be the vertices of $\triangle$.
Note that $\alpha$ is a vertex of $\triangle$ if and only if $\phi_{\alpha}(x)>0$.
Thus
\[\dist{x}{x_{\alpha_i}}{}<\tfrac{1}{3}\cdot\rho(x)\]
for any $i$.
Therefore
\[\diam\Psi(\triangle)
\le
\max_{i,j}\{\dist{x_{\alpha_i}}{x_{\alpha_j}}{}\}
<
\tfrac{2}{3}\cdot\rho(x).\]
In particular,
\[\dist{x}{\Psi\circ\map(x)}{}\le\dist{x}{x_{\alpha_0}}{}+\diam \Psi(\triangle) <\rho(x).\]
\parit{\ref{SHORT.lem:approximation-cba:im}.}
Assume the contrary;
that is, $\Psi(\spc{N})$ is not contained in the $\Psi$-image of the $m$-skeleton of $\spc{N}$.
Then for some $\kay>m$,
there is a $\kay$-simplex $\triangle^\kay$ in $\spc{N}$
such that the barycentric simplex $\sigma=\Psi|_{\triangle^\kay}$ is nondegenerate;
that is,
$$W=\Psi(\triangle^\kay)\setminus\Psi(\partial\triangle^\kay)\ne \emptyset.
$$
By \ref{thm:bihoelder}, $\TopDim\spc{U}\ge \kay$ --- a contradiction.
\qeds
\parit{Proof of \ref{thm:dim-infty-CBA}; \ref{SHORT.thm:dim-infty-CBA:bary}$\Rightarrow$\ref{SHORT.thm:dim-infty-CBA:mnfld}$\Rightarrow$\ref{SHORT.thm:dim-infty-CBA:TopDim}.}
The implication \ref{SHORT.thm:dim-infty-CBA:bary}$\Rightarrow$\ref{SHORT.thm:dim-infty-CBA:mnfld} follows from Lemma~\ref{lem:nondeg-test-with-balls}
and Theorem~\ref{thm:bihoelder}, and \ref{SHORT.thm:dim-infty-CBA:mnfld}$\Rightarrow$\ref{SHORT.thm:dim-infty-CBA:TopDim} is trivial.
\parit{\ref{SHORT.thm:dim-infty-CBA:TopDim}$\Rightarrow$\ref{SHORT.thm:dim-infty-CBA:bary}.}
According to \ref{thm:stable-value},
there is a continuous map $F\:\spc{U}\to \RR^{m}$ with a stable value.
Fix $\eps>0$.
Since $F$ is continuous, there is a continuous positive function $\rho$ defined on $\spc{U}$ such that
\[\dist{x}{y}{}<\rho(x)
\quad\Rightarrow\quad
|F(x)- F(y)|<\tfrac13\cdot\eps.\]
Apply \ref{lem:approximation-cba} to $\rho$.
For the resulting simplicial complex $\spc{N}$
and the maps $\map\:\spc{U}\to \spc{N}$, $\Psi\:\spc{N}\to \spc{U}$, we have
\[|F\circ \Psi\circ\map(x)-F(x)|<\tfrac13\cdot\eps\]
for any $x\in \spc{U}$.
Arguing by contradiction,
assume $\TopDim\spc{U}<m$.
By \ref{lem:approximation-cba:im},
the image $F_\eps\circ\Psi\circ\map(K)$ lies in the $F_\eps$-image of the $(m-1)$-skeleton of $\spc{N}$;
In particular, it can be covered by a countable collection of Lipschitz images of $(m-1)$-simplexes.
Hence
$\bm{0}\in \RR^m$ is not a stable value of $F_\eps\circ\Psi\circ\map$.
Since $\eps>0$ is arbitrary, we get the result.
\qeds
The following exercise is a generalization of Helly's theorem; for closely related statements see \cite[Prop. 5.3]{kleiner} and \cite{ivanov2014}.
\begin{thm}{Exercise}\label{ex:helly}
Let $K_1,\dots,K_n$ be closed convex subsets in a proper length $\CAT(0)$ space $\spc{U}$.
Suppose that $\TopDim \spc{U}=m$ and any $m+1$ subsets from $\{K_1,\dots, K_n\}$ have a common point.
Show that all subsets $K_1,\dots,K_n$ have a common point.
\end{thm}
\section{Hausdorff dimension}
\begin{thm}{Definition}
\label{def:HausDim}\index{dimension!Hausdorff dimension}\index{Hausdorff dimension}
Let $\spc{X}$ be a metric space.
Its \emph{Hausdorff dimension} is defined as
\[\HausDim\spc{X}=\sup\set{\alpha\in\RR}{\HausMes_\alpha(\spc{X})>0},\]
where $\HausMes_\alpha$ denotes the $\alpha$-dimensional Hausdorff measure.
\end{thm}
The following theorem follows from \cite[theorems V 8 and VII 2]{hurewicz-wallman}.
\begin{thm}{Szpilrajn's theorem}\label{thm:szpilrajn}
Let $\spc{X}$ be a separable metric space.
Assume $\TopDim\spc{X}\ge m$.
Then $\HausMes_m \spc{X}>0$.
In particular,
$\TopDim\spc{X}\le\HausDim\spc{X}$.
\end{thm}
Except for Szpilrajn's theorem, there are no other relations between topological and Husdorff dimension for general separable spaces.
Moreover, the following exercise implies that the same holds for compact geodesic $\CAT(0)$ spaces of topological dimension at least 1.
\begin{thm}{Exercise}\label{ex:dim-top-haus-CAT}
For any $\alpha\ge 1$ construct a metric on the binary tree such that it has compact completion of Hausdorff dimension $\alpha$.
Conclude that for any integer $m\ge 1$ and real $\alpha\ge m$ there is a compact $\CAT(0)$ space with topological dimension $m$ and Hausdorff dimension $\alpha$.
\end{thm}
\section{Remarks}
The barycenters in $\CAT(\kappa)$ spaces were introduced by Bruce Kleiner \cite{kleiner}.
He also proved the dimension theorem;
a more exact statement is due to Alexander Lytchak \cite{lytchak:diff}.
Bruce Kleiner made a conjecture that the dimension theorem holds for arbitrary complete geodesic $\CAT(\kappa)$ spaces see \cite{kleiner} and also \cite[p.~133]{gromov:asymt-inv}.
For separable spaces, the answer is ``yes'', and it follows from Kleiner's argument \cite[Corollary 14.13]{alexander-kapovitch-petrunin-2025}.
One may wonder if bi-H\"older condition \ref{thm:dim-infty-CBA:mnfld} can be improved to bi-Lipschitz;
this is unknown even for compact spaces.
However if a compact geodesic $\CAT(0)$ space $\spc{U}$ has finite topological dimension $m$,
then a slight modification of Kleiner's technique can be used to show that there is a bi-Lipschitz embedding of an $m$-cube into $\spc{U}$ \cite[Theorem 14.15]{alexander-kapovitch-petrunin-2025}.
In particular, there is a bi-Lipschitz embedding of an $n$-cube for any $n\le m$.
If $\TopDim\spc{U}=\infty$, then we expect existence of a bi-Lipschitz embedding of an $n$-cube for any integer $n\ge1$.
The statement is trivial for $n=1$; in this case any geodesic gives an isometric embedding.
For $n=2$, it follows since minimal and metric minimizing surfaces in $\spc{U}$ are $\CAT(0)$;
see \cite{petrunin-stadler} and the references therein.
Any such surface is locally bi-Lipschitz to the Euclidean plane.
For $n\ge 3$ the question remains open.
% ??? Maybe it is solved by Stadler and Wenger --- we need to check later.