-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnon-pos.tex
483 lines (399 loc) · 26.5 KB
/
non-pos.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
%%!TEX root = all.tex
\chapter{Spaces of curvature bounded above}
\section{Line strip theorem}
\begin{thm}{Line strip theorem}\label{split=<0}
Let $\spc{U}$ be a complete length $\CAT0$ space and $\ell???$ be a line in $\spc{U}$.
Let $\spc{U}_\ell$ denotes the subset of all points in $\spc{U}$ for which sum of two Busemann functions ??? is equlal $0$.
Then $\spc{U}_\ell$ is a closed convex subset of $\spc{U}$ and it admits an isometric splitting $\spc{U}_\ell=\ell^\perp\oplus\ell$
\end{thm}
%\begin{thm}{Exercise}
%(Gluing with short maps)
% Let $X,X' \in\Cat{}{0}$, $K \subset X, K' \subset X'$ be closed convex subsets,
%and suppose the length-distance between any two points
%on $\partial_X K$ and $\Fr_{X'} K'$ are finite.
%Suppose $\phi\: \partial_X K \to \Fr_{X'} K'$ is length-preserving and
%short with respect to the inherited
%metrics.
%To $X'\setminus\Int K'$ in its length metric,
%glue $K$ along $\phi$, to obtain the space $Y$.
%Show $Y \in \Cat{}{0}$.
%For example, take $K= \cBall[x,\sinh R] \subset \Lob{m}0$ and $K' = \cBall(x',R) \subset \Lob{m}{-1}$.
%\end{thm}
\section{Strip spaces}
%5.1 Metrics on strip spaces. In [A1A1] wd approxhmasdd B x f R eor
%K = 0 ax nonporhshvdlx curvdd rsrhp rpacdr+ crdasdd erom rsrhpr hn B x R
%whsh shd producs mdsrhc- Hdrd wd a rhdflx rdvhdw shd conrsrucshon+ and
%rhow shas+ whdn K = 1+ wd can rdsahn shd ddrhrdd curvasurd aound on
%shd rs rhp rpacd ax plachnf a ruhsaald hxpdraolhcallx warpdd mdsrhc B %arkx R
%(= R xark B whsh shd orddr oee acsorr rdvdrrdd) on shd rs rhpr-
A \emph{strip space} is an important way to construct CBA and CBB spaces. This construction is used to characterise warped products with a given curvature bound.
Consider isometric copies (indexed by $i\in Z$) of a \emph{strip} $W^{(i)}$ in $ B \times R$:
\begin{eqnarray}
W_{\epsilon}^{(i)} = \{(p, u) : -\epsilon f(p) \le u\le \epsilon f(p)\}. \end{eqnarray}
The strip space $W_\epsilon$ is obtained by gluing the strips $W_{\epsilon}^{(i)}$
sequentially along
their boundaries. There is a natural homeomorphism $\phi : B \times_ f R \to W_\epsilon$
given by decomposing $B \times_ f R$ into horizontal strips
$\{(p, y) : (2i-1)\epsilon\le y\le (2i+1) \epsilon \}$.
The restriction $\phi_\epsilon^{(i)}$ of $\phi_\epsilon$ to this horizontal strip maps it onto $W_{\epsilon}^{(i)}$
by linear reparametrization of the fibers:
\begin{eqnarray}
\phi_\epsilon^{(i)}: (p,y) \to ( p,f(p)[y-2i\epsilon) .
\end{eqnarray}
Take the metric of $W_\epsilon$ to be that induced from $B_{\cs\kappa}\times R$,
where $k$ will be chosen to control the curvature of $W_\epsilon$ in the limit.
%ad chordn so consrol shd curvasurd oe We hn shd lhmhs- In shd BAA card+
%shhr curvasurd consrol ddpdndr on Pdrdlman'r doualhnf s hdordm [P]+ rdd
%alro Pdsrunhn'r mord fd ndral fluhnf s hdordm [Pds]; shdrd s hdordmr concdrn
%fluhnf BAA r pacdr alonf hromdsrhc aoundarhdr- In shd BA card+ wd urd
%shd dual conrsrucshon+ namdlx+ Rdrhdsnxak'r f luhnf s hdordm [R] eor fluhnf
%Unk-03+1//3 BTPU:STPD ANTLCR ENP V:PODC OPNCTBSR 0046
%along isometric totally convex sets. This construction was used previously
%in [A1B1], and a similar construction was used by Burago, Ferleger and
%Kononenko in [BuFK] to solve long-standing billiards problems. We de-
%compose copies of B ar ix P into three regions, Lv U We U L\ , where
%U^( = |(p, u) : ef(p) < w} . Ly( = {(p,u) : u < e/(p)} ï (5-3)
%Construct a space W* by sequentially identifying the isometric sets Lv
%l T-f^ )0 ( mi rrr* ï %± ï %Trr %± l l ^ l ï ai 55
%and Le . Ihus Vre is our strip space We augmented by attaching ffns
%rr(i( r^j T f^ )0 ( mi %^- ^ ï %tit -^ if 1 %-^- 1
%Ut = Le . 1 he approximating strip space We may itselt have positively
%inffnite curvature, but is embedded in W* in such a way that we can bound
%its curvature in the limit.
Specifically, take $K\in \{-1,0\}$. If $K = 0$, let $ k = 0$. If $ K = - 1$, let $k = k(\epsilon) = -1+\epsilon$ in case (CBA), and $k=-1$ in case (CBB).
(CBB)Let $B$ be a complete, finite-dimensional space of CBB by $K$
with empty boundary, and $f : B \to \R_{ > 0}$ be a positive K-concave
function.
Then the strip space $W_\epsilon$, formed by sequentially gluing strips $W_\epsilon^{(n)} \subset {B_{\cs{K}}} \times \R$,
has CBB by $K$.
(CBA) Let $B$ be a CAT(K) space and $f : B \to \R_{\ge 0}$
be a Lipschitz
$K$-convex function. Then for $\epsilon$ sufficiently small, the augmented strip
space $W^*_\epsilon$, formed by attaching "fins" to $W_\epsilon$, is CAT($K$) for $k = k(\epsilon)$ as
above.
\parit{Proof.} First note that ${B_{\cs\kappa}}\times\R$ has CBB by k in the case (CBB), and CBA
by $k$ in the case (CBA). Such standard coning constructions are discussed,
for example, in [BuBI]. Now by the doubling and gluing theorems,
respectively, we need only show that in the CBB case, the strip $W_\epsilon^{(i)}$ defined as above is convex in ${B_{\cs\kappa}}\times \R$, and in the CBA case, the fin $U_\epsilon^{(i)}$ defined as above is convex in $ {B_{\cs\kappa}}\times \R$
when $\epsilon$ is sufficiently small.
Since minimizers in ${B_{\cs\kappa}}\times\R$ project t\o minimizers in $B$ (Lemma ),
convexity ol tfie strip $W_\epsilon^{(i)}$ or fin $U_\epsilon^{(i)}$is equivalent to convexity in the
cylinder above a minimizer in $B$. If $k = 0$, this is immediate from the
concavity (CBB) or convexity (BA) of $f$ along geodesies of $B$. In the
remaining cases, the problem reduces to the hyperbolic plane P ari x P.
We must verify the convexity of $\{(t, u) : u \le \epsilon f(t)\}$, where $f"(t)- f(t) \le 0$
in the barrier sense, in the case (CBB); and the same statement with the
inequalities reversed in (CBA). By defnition, the dfferential inequalities
imply that the graph of $f$ lies above (CBB) or below (CBA) sufficiently
fine inscriptions by broken $\mathcal{F}(-1)$-affine graphs, and the one-sided tangen:
vectors of these inscriptions rotate downward (CBB) or upward (CBA) at thee breaks. Therefore it suffices for this calculation to take $f\in \mathcal{F}(-1)$
with a given Lipschitz constant.
Writing the metric as $ds^2 = \cosh^2 (\sqrt{-k}u)dt^2 + du^2$ , we calculate the
curvature vector of the curve $u = \epsilon f$. Specifically, if $V = \partial_t + f'(t)\partial_u$ is
the velocity vector and $N$ is the unit normal, then the $\partial_u$-component of the
curvature vector $\kappa N$ is
\begin{eqnarray}
|v|^{-4} [\cosh^2 \sqrt{-k}\epsilon f (\epsilon f"- \sqrt{-k}\cosh \sqrt{-k}\epsilon f \sinh\sqrt{-k} \epsilon f) \nonumber \\
- 2\epsilon^2(f')^2\cosh \sqrt{-k}\epsilon f \sinh\sqrt{-k} \epsilon f)
\end{eqnarray}
(CBB) The condition tor convexity of $W_i^{(\epsilon)}$ is that $\kappa N$ point downward,
hence that this expression be nonpositive. After substituting $f''=f$
and multiplying by $|v|^4/\epsilon f \cosh^2 \sqrt{-k} \epsilon f/\sqrt{-k}+2\epsilon^2$, we find that concavity is detected
by the following inequality:
\begin{equation}
(-k)[(\cosh\sqrt{-k}\epsilon f)\sinh\sqrt{-k}\epsilon f/\sqrt{-k}\epsilon f+2\epsilon^2 (f')^2(\tanh\sqrt{-k}\epsilon f)/\sqrt{-k}\epsilon f]\ge 1.
\end{equation}
Clearly this inequality holds if $k =1$, since then it holds for the first
term and the second term is positive .
(CBA) For convexity of $U^{(i)}_\epsilon$, we want the curvature vector to point
upward, hence the inequality in (5.5) to be reversed. Since $f'$and $f$are
bounded, the left-hand expression is on the order of $k[1+C\epsilon^2]$ for a uniform
constant C. Thus the reversed inequality (5.5) is satisfied for e sufficiently
small if $k = k(\epsilon) = -1 + \epsilon$.
\section{Jacobi lengths}
\label{sec:jacobi-length}
This section gives a characterization of locally $\CAT\kappa$ spaces that captures the notion in a Riemannian manifold of lengths of normal and tangential Jacobi fields.
Tangential lengths, which are linear, must be discarded in order to identify specific curvature bounds.
This material is from \cite{???} and \cite{???}.
It is used in \cite{???} to prove a sharp Alexandrov curvature bound above for Riemannian manifolds-with-boundary (\ref{thm:example-mnflds-with-bry:CBA}), and in \cite{} to obtain sharp curvature bounds for subspaces of spaces with curvature $\le\kappa$ (\ref{sec:gauss-equation}).
\begin{thm}{Definition}
Let $[pq]$
be a geodesic in an intrinsic space $\spc{X}$
and $\ell=\dist{p}{q}{}$.
A function $f\:[0,\ell)\to\RR_{\ge0}$ is called %\emph{normal Jacobi length} along $[pq]$
if there is a sequence of geodesics $[pq_n]$ in $\spc{X}$
such that $q_n\to q$ as $n\to\infty$ and
\[f(t)
=
\lim_{n\to\infty}\frac{\dist{\geod_{[pq_n]}(t)}{\geod_{[pq]}(t)}{}}{\dist{q_n}{q}{}}.\]
The geodesic $[pq]$
%is said to satisfy \emph{Jacobi splitting} if
%for any normal Jacobi length $f$ along $[pq]$,
%%the sequence of geodesics $[pq_n]$ as above we have
\[\dist[2]{\gamma(t)}{\gamma_n(t_n)}{}=
f_n(t)^2\cdot\dist[2]{q}{q_n}{}
+
|t-t_n|^2
+
o(\dist[2]{q}{q_n}{}+|t-t_n|^2).\]
\end{thm}
\begin{thm}{Theorem}\label{thm:jacobi-length}
Let $\spc{U}$ be a locally geodesic metric space.
Then $\spc{U}$ is locally $\CAT\kappa$ if and only if for any $p\in\spc{U}$
there is a neighborhood $N\ni p$
such that for any geodesic $[pq]$ in $N$ the following two conditions hold
\begin{subthm}{jacobi-split}
The geodesic $[pq]$ satisfies Jacobi splitting;
\end{subthm}
\begin{subthm}{jacobi-convex}
Any normal Jacobi length $f$ along $[pq]$
satisfies the following differential inequality
\[f''+\kappa\cdot f\ge 0\]
in the sense deascribed in ???
\end{subthm}
\end {thm}
\begin{thm}{Lemma}\label{lem:model-jacobi}
Normal Jacobi length $f$ for any geodesic with lenght $<\varpi\kappa$ in the model space $\Lob2\kappa$
satisfies
$$f'' +\kappa\cdot f=0.$$
\end{thm}
\begin{thm}{Lemma}
Let $\gamma_0,\gamma_1\:[a,b]\to\Lob{}\kappa$,
be two geodesics such that
\[
\dist{\gamma_0(a)}{\gamma_0(b)}{}+ \dist{\gamma_0(b)}{\gamma_1(b)}{}+ \dist{\gamma_1(b)}{\gamma_1(a)}{} + \dist{\gamma_1(a)}{\gamma_0(a)}{} <2 \varpi\kappa.
\]
Set $f(t)=\dist{\gamma_0(t)}{\gamma_1(t)}{}$.
Then
\[f''+K\cdot f\ge 0\]
where
\[
K=\min\{0,-\kappa\cdot\bigl(\varpi\kappa/(b-a)\bigr)^2\}.
\]
\end{thm}
%\begin{thm}{Definition (Jacobi
%length)}\label{def:jac}
%Let $\spc{X}$ be an intrinsic metric space, and $\gamma:\II\to\spc{X}$
%be a geodesic, where $\II$ is an interval. Then $f:\II\to [0,\infty)$ is
%called a \emph{Jacobi length along $\gamma$} if there is a sequence of
%geodesics $\gamma^i:\II\to\spc{X}$ and a sequence of positive numbers $u_i\to 0$ such that for all $s\in \II$,
%\[
%f(s) = \lim_{i\to\infty} \ \dist{\gamma(s)}{\gamma^i(s)}{}/u_i.
%\eqlbl{eq:jac-length}
%\]
%If moreover
%\[
%\dist{\gamma^i(t)}{\gamma(t)}{}= \dist{\gamma^i(t)}%{\gamma(\II)}{} + o(u^i),\]
%then $f$ is called a \emph{normal Jacobi length %along $\gamma$}.
%\end{thm}
Given a point $p$ and a curve $\alpha\:[0,1]\to \spc{X}$ of constant speed $A$, recall that a map
\[
[0,1]\times[0,1]\to\spc{X}\:(t,s)\mapsto\gamma_t(s)
\]
is a \emph{line-of-sight map from $p$ to $\alpha$}
if each curve $\gamma_t$ is a geodesic from $p$ to $\alpha(t)$ (\ref{def:sight}).
\parbf{Example.}
Any $\kappa$-convex function $f:[a,b]\to [0,\infty)$ must be continuous on $(a,b)$.
However, a $\kappa$-convex Jacobi length $f:[a,b]\to [0,\infty)$ in a $\CAT\kappa$ space may be discontinuous at the endpoints.
Consider the complement $\spc{U}$ in $ \EE^2$ of an open disk, and a
geodesic $\gamma\: [0,1]\to\spc{U}$ which lies on the bounding circle.
A line-of-sight map is defined by lifting the endpoint $\gamma(1)$ along an ``evolute'' curve of speed $1$ running at constant \,$\spc{U}$-distance from $\gamma(0)$.
There is a corresponding Jacobi length $f$ along $\gamma$, where $f(s)=0$ for $0\le s <1$ \,and\, $f(1)=1$.
%\parit{Proof of Lemma \ref{lem:jac-exist}.}
%By assumption,
%$$f_i(s)\,\le\,(\,\dist{\alpha(t)}{\alpha(t_i)}{} /\sn{K}1\,)\,\cdot\, \sn{K}s\,+\, o(t-t_i).$$
% Therefore for fixed $s$, any limiting value
%of $f_i(s)/(t-t_i)$ as $i\to\infty$ is at most equal to\,
%$ A\cdot(\sn{K}s) /\sn{K}1).$
%Now that infinite limits are ruled
%out, we can use a diagonal process to pass to a subsequence of the $\gamma_i$ such that $f(s)<\infty$ is defined on a countable dense subset $S$ of $[0,1]$.
%To show that $f$ exists and is continuous on $[0, 1)$, it suffices to show, for
%fixed $s_0\in [0, 1)$, that any limiting value \,$C$\, of $f_i(s_0)/(t-t_i)$ is equal to any limiting value $D$ of $f(s_i)$, as $s_i\in S$ converges monotonically to $s_0$.
%Since the $K$-sinusoid with values
%$f(s_1)$ and $C$ at $s_1$ and $s_0$, respectively, dominates $f(s_i)$ for all $i$, then $D\le C$.
%When $s_0=0$, we have $D=C$ since $C=0$.
%Suppose $s_0\in (0,1)$. Take $ \bar s\in S$ on the opposite side of $s_0$ from the monotonically converging $s_i$. The $K$-sinusoid ${\bar f}_i$ with values $f(s_i)$ and $f(\bar s)$ at $s_i$ and $\bar s$, respectively, satisfies ${\bar f}_i(s_0) \ge C$ for all $i$.
%Hence $D \ge C$.\qeds
%\begin{thm}{Definition}
%\label{def:line-of-sight}
%Let $\spc{X}$ be an intrinsic metric space.
%A line-of-sight map
%is said to \,\emph{satisfy Jacobi %splitting}\, if
%the following holds:
%For each $t\in[0,1)$ there is a %sequence $t_i\to t^+$, and a %Jacobi length $f$ along $\gamma$ %given by \ref{eq:jac-length},
%%and continuous on $[0,1)$,
%where $\gamma=\gamma_t$ , %$\gamma_i=\gamma_{t_i}$ and %$u_i=t_i-t$. In addition, setting %\,$\ell=\length\gamma$\, and\, %$\ell_i=\length\gamma_i$, for $s\in %(0,1)$ set
\[
g_i(s)=
\dist{\gamma(s)}{\gamma_i(
\ell\cdot
{\ell_i}^{-1}
\cdot s)}{}.
\]
%\Then, passing to a subsequence,
%the \emph{normal Jacobi length} %$f_N$ and \emph{tangential Jacobi %length} $f_T$ defined on $(0,1)$ by
\[
f_N(s)\, = \,\lim_{i\to \infty} \bigl( g_i(s)/(t-t_i)\bigr),\ \ \
f_T(s) \,= \, \lim_{i\to\infty}\bigl(|\ell - \ell_i|\cdot s\,/(t-t_i)\bigr)
\eqlbl{eq:normal-tangent-jacobi-length}
\]
%exist and satisfy
\[
f^2 = {f_N}^2 + {f_T}^2.\\
\eqlbl{eq:jacobi-split}
\]%If there is no sequence $t_i\to t^+$ %such that $\ell_i\ge\ell$, then %$g_i(1)$ is undefined, and we %define $f_N(1)$ by \,\ref{eq:jacobi-split}; that is, $f_N(1)^2=f(1)^2-f_T(1)^2$.
%\end{thm}
Recall that $\geodpath_{[xy]}$ denote a geodesic path from $x$ to $y$.
%\begin{thm}{Lemma}\label{lem:model-jacobi}
%For any $p\in\Lob{}\kappa$ and any triangle $\trig {\tilde x}{\tilde y}{\tilde z}$ in $\oBall(p,\tfrac{\varpi\kappa}{2})$, the line-of-sight map from $\tilde x$ to $\geodpath_{[\tilde y\tilde z]}$ satisfies Jacobi splitting. Moreover, for each $t\in [0,1)$ the corresponding normal Jacobi length is a $(\kappa\cdot\ell^2)$-sinusoid.
%let $\gamma$ and $\sigma$ be geodesics of length $\le\varpi\kappa$ and speed $\le 1$. Then $\dist{\gamma(s)}{\sigma_i(s)}{}$ is sinusoidally $\hat\kappa$-convex where $\hat\kappa=\max\{0,\kappa\}$.
\begin{thm}{Theorem}\label{thm:jacobi-length}
Let $\spc{U}$ be a locally geodesic metric space.
Then $\spc{U}$ is locally $\CAT\kappa$ if and only if for any $p\in\spc{U}$ and any triangle $\trig {x}{y}{z}$ in some open ball about $p$:
%\begin{subthm}{jacobi-lip}
%line-of-sight maps are Lipschitz;
%\end{subthm}
%\begin{subthm}{first-var}
%first variation equation holds from $x$ to $\geodpath_{[yz]}$;\end{subthm}
\begin{subthm}{jacobi-split}
the line-of-sight map from $x$ to $\geodpath_{[yz]}$
%is Lipschitz and
satisfies Jacobi splitting;
\end{subthm}
\begin{subthm}{jacobi-convex}
each corresponding normal Jacobi length is sinusoidally $(\kappa\cdot\ell^2)$-convex,
where $\ell$ denotes ???.
\end{subthm}
\end {thm}
\parit{Proof of ``only if''.}
%\parit{($\Rightarrow$)}
Suppose $\spc{U}$ is locally $\CAT\kappa$.
For any $p\in\spc{U}$, there is a convex ball
$\oBall(p,R)$ which is $\CAT\kappa$ and $R<\tfrac{\varpi\kappa}{2}$ (\ref{cor:convex-balls}).
Choose the triangle $\trig {x}{y}{z}$ to lie in $\oBall(p,R)$.
%\parit{(\ref{SHORT.first-var}).} (\ref{SHORT.first-var}) holds by \ref{thm:1st-var=cba}.
\parit{(\ref{SHORT.jacobi-split}).}
We use the notation of Definition \ref{def:line-of-sight}. The line-of-sight map from $x$ to $\geodpath_{[yz]}$ is Lipschitz by triangle comparison. Therefore for each $t\in[0,1]$ there is a sequence $t_i\to t^+$, and a Jacobi length $f$ along $\gamma$ given by \ref{eq:jac-length}.
\begin{clm}{}\label{right-angles}
For $s\in (0,1)$
% and also for $s=1$ in case we may choose $t_i\to t^+$ such that $\ell_i\ge\ell$
and $i$ sufficiently large, the angles
%set
%\[
% \mangle^\gamma_i(s) =\mangle\hinge {\gamma( s) }{p}{ \gamma_i(\ell\cdot
%{\ell_i}^{-1}\cdot s)}\,, \ \ \
% \mangle_i(s) =\mangle\hinge {\gamma_i ( \ell\cdot
%{\ell_i}^{-1}\cdot s)}{p}{ \gamma(s)}.
%%\eqlbl{eq:jacfd2}
%\]
\[
\mangle\hinge {\gamma( s) }{\gamma(1)}{ \gamma_i(\ell\cdot
{\ell_i}^{-1}\cdot s)}\,, \ \ \
\mangle\hinge {\gamma_i ( \ell\cdot
{\ell_i}^{-1}\cdot s)}{\gamma_i(1)}{ \gamma(s)}.
\eqlbl{eq:jacfd}
\]
converge to $\pi/2$, as do the angles
\[
\mangle\hinge {\gamma( s) }{\gamma(1)}{ \gamma_i(\ell\cdot
{\ell_i}^{-1}\cdot s)}\,, \ \ \
\mangle\hinge {\gamma_i ( \ell\cdot
{\ell_i}^{-1}\cdot s)}{\gamma_i(1)}{ \gamma(s)}.
\eqlbl{eq:jacfd1}
\]
%
%\[
%\mangle\hinge {\gamma( s) }{p}{ \gamma_i(\ell\cdot
%{\ell_i}^{-1}\cdot s)}\,, \ \ \
% \mangle\hinge {\gamma_i ( \ell\cdot
%{\ell_i}^{-1}\cdot s)}{p}{ \gamma(s)}.
%\eqlbl{eq:jacfd2}
%\]
(If $g_i$ vanishes on an
initial interval, we set the undefined angles to be $\pi/2$.)
\end{clm}
By majorization (\ref{thm:major}), since $g_i$ is sinusoidally $K$-convex for some $K$, hence semiconvex. Therefore $g_i$ has derivatives almost everywhere and one-sided derivatives everywhere. Since $g_i\to 0$, it follows that $g_i^{\pm}\to 0$
%converge uniformly to $0$ on $[0,1-\epsilon)$
(Corollary \ref{lem:der-conv-lim}).
By the first variation equation \ref{cor:both-end-first-var-cba},
\[g_i^-
= -\cos \mangle^{\gamma}_i - \cos \mangle_i.
\]
By convexity of balls, the angles \ref{eq:jacfd} are $\le\pi/2$.
Hence $\mangle^{\gamma}_i (s)$ and $\mangle_i(s)$ approach $\pi/2$ as $i\to\infty$.
Similarly, since
the angles \ref{eq:jacfd1} are $
\ge \pi/2$ by the triangle inequality for angles, both angles
approach
$\pi/2$. Hence claim \ref{right-angles}.
\begin{clm}{}\label{curv-jacobi-split}
The line-of-sight map from $x$ to $\geodpath_{[yz]}$
%is Lipschitz and
satisfies Jacobi splitting.\end{clm}
We continue in
the notation of Definition \ref{def:line-of-sight}.
% Passing to a subsequence, we obtain a Jacobi length $f_N$ along $\gamma|[0,1)$ given by \ref{eq:normal-tangent-jacobi-length}.
Let $s\in (0,1)$.
We must prove
\[
f(s)^2 = f_N(s)^2 + s^2\cdot \lim_{i\to\infty} \bigl((\ell -\ell_i)/(t-t_i)\bigr)^2,
%= F(s)^2 + s^2\cos^2\theta,
\]
or equivalently,
\[
g_i(s)^2 - f_i(s)^2 + s^2\cdot(\ell -\ell_i)^2 = o((t-t_i)^2).
\]
Let $\triangle_i=[{\gamma(s)}\ {\gamma_i( \ell\cdot{\ell_i}^{-1}\cdot s)} \ \gamma_i(s)]$. Then $\triangle_i$ has sidelengths $g_i(s)$,
$s\cdot (\ell_i -\ell)$, $f_i(s)$.
Let $\triangle_i^0=\modtrig 0({\gamma(s)}\,{\gamma_i( \ell\cdot{\ell_i}^{-1}\cdot s)}\,{\gamma_i(s)})$ be the Euclidean model triangle for $\triangle_i$. Let $\mangle_i(s)$ be the angle of $\triangle_i$ at the vertex $\gamma_i( \ell\cdot{\ell_i}^{-1}\cdot s)$ and $\mangle_i^0(s)$ be the corresponding angle of ${\triangle}_i^0$. Let $\mangle_i^\kappa(s)$ be the corresponding comparison angle in $\Lob{}\kappa$.
By triangle comparison,
${\mangle}_i^\kappa(s)\ge \mangle_i(s)$.
By the law of cosines,
\[
g_i(s)^2 - f_i(s)^2 + s^2\cdot(\ell -\ell_i)^2=
g_i(s)\cdot s \cdot (\ell -\ell_i)\cdot\cos\mangle_i^0(s).
\eqlbl{eq:jacfd3}
\]
Consider the quadrilateral $\Box_i= [{\gamma(s)}\,{\gamma_i( \ell\cdot{\ell_i}^{-1}\cdot s)}\,{\gamma_i(s)} \gamma(\ell_i\cdot{\ell}^{-1}\cdot s))]$.
By majorization (\ref{thm:major}), $\Box_i$ is majorized by a quadrilateral ${\Box}_i^\kappa$ in $\Lob{}\kappa$.
${\Box}_i^\kappa$ has two
adjacent sidelengths agreeing with those of ${\triangle}_i^\kappa$,
and the diagonal joining their endpoints is $\ge f_i(s)$, which is the third sidelength of
${\triangle}_i^\kappa$. Therefore the included angle $\mangle_i^{\Box^\kappa}$ satisfies
\[
\mangle_i^{\Box^\kappa}\ge \mangle_i^\kappa(s) \ge \mangle_i(s).
\eqlbl{eq:jacfd4}
\]
All four angles of $\Box_i^\kappa$
majorize angles that become, by claim \ref{right-angles}, arbitrarily close to $\pi/2$ as $i\to\infty$. Therefore all
angles of $\Box_i^\kappa$, including $\mangle_i^{\Box^\kappa}$, become
arbitrarily close to $\pi/2$ as $i\to\infty$. By \ref{eq:jacfd4}, the same is true of $\mangle_i^\kappa(s)$.
Thus the expression \ref{eq:jacfd3}, when divided by $(t-t_i)^2$, approaches $0$, since
\[
\lim_{i\to\infty} \cos\mangle_i^0(s)=\lim_{i\to\infty} \cos\mangle_i^\kappa(s)=0,
\]
$\lim_{i\to \infty}\bigl( g_i(s)/(t-t_i)\bigr)=f_N(s)\,$ and \,$\lim_{i\to \infty}\bigl((\ell_i - \ell)\,/(t-t_i)\bigr)=\cos\mangle\hinge {\alpha(t)} {\alpha(1)} {p}$. This completes the verification of
claim \ref{curv-jacobi-split} and hence of (\ref{SHORT.jacobi-split}).
\parit{(\ref{SHORT.jacobi-convex}).}
As in the proof of (\ref{SHORT.jacobi-split}), the angles of the
quadrilateral ${\Box}_i^\kappa$ in $\Lob{}\kappa$ become arbitrarily close to $\pi/2$ as $i\to\infty$.
By Reshetnyak majorization and Lemma \ref{lem:model-jacobi}, it follows that
$f_N|[0,1)$ is sinusoidally $(\kappa\cdot\ell^2)$-convex.
\qeds
\parit{Proof of ``if''.}
Suppose
% (\ref{SHORT.first-var}),
(\ref{SHORT.jacobi-split}) and (\ref{SHORT.jacobi-convex}) hold for any triangle $\trig {x}{y}{z}$ in some open ball about each point of $\spc{U}$.
We must show that $\spc{U}$ is locally $\CAT\kappa$.
Let $\tilde \alpha$ be the $\kappa$-development based at $\tilde x$ in $\Lob2\kappa$ of $\geodpath_{[yz]}$ with respect to $x$. We thus obtain a comparison figure in $\Lob2\kappa$, two of whose sides, $[\tilde x\tilde y]$ and $[\bar x \bar z]$, are geodesics of the same length as $[xy]$ and $[xz]$ respectively, and whose third side is $\tilde \alpha$. Since a model triangle for $\trig {x}{y}{z}$ may be obtained by replacing $\tilde \alpha$ with a geodesic of the same length, thereby increasing the angle at $\tilde x$, it suffices to show \,$\mangle\hinge {x}{y}
{z}\le\mangle\hinge {\tilde x}{\tilde y}{\tilde z}$.
Let $y^\prime$ and $z^\prime$ be two points different from $x$ and lying on $[xy]$ and $[ x z]$ respectively. Choose $y^\prime$ and $z^\prime$ sufficiently close to $x$ that a geodesic $\tilde \beta$ joining the corresponding points $\tilde y^\prime$ and $\tilde z^\prime$ on $[\tilde x\tilde y]$ and $[\bar x \bar z]$ respectively remains within the subgraph of $\tilde \alpha$.
Consider a Lipschitz line-of-sight map from $x$ to $\geodpath_{[yz]}$ as in (\ref{SHORT.jacobi-split}) and (\ref{SHORT.jacobi-convex}). By definition of development, there is a corresponding line-of-sight map from $\tilde x$ to $\tilde \alpha$, whose varying sight-geodesics we denote by $\tilde \gamma_t$. Then $\tilde \beta$ intersects transversely each $\tilde \gamma_t$ at a point $\tilde \gamma_t(s)$, and $s=s(t)$ is $C^1$. It follows that the corresponding curve $\beta(t)=\gamma_t(s(t))$ in $\spc{U}$ is Lipschitz. Therefore $\beta$ has speed almost everywhere and its length is obtained by integrating its speed.
%Now fix a value of $t$ at which $\beta$ is differentiable.
By (\ref{SHORT.jacobi-split}), there is a Jacobi length $f$ along \,$\gamma_t$\,
that arises from varying $t$ in the positive direction, and satisfies Jacobi splitting $f^2 = {f_N}^2 + {f_T}^2$. Let $\tilde f$ be the corresponding Jacobi length. By Lemma \ref{lem:model-jacobi}, \,$\tilde f^2 = {\tilde f_N}^2 + {\tilde f_T}^2$, where $\tilde f_N$ is a $(\kappa\cdot\ell^2)$-sinusoid. By (\ref{SHORT.jacobi-convex}), $f_N$ is sinusoidally $(\kappa\cdot\ell^2)$-convex. By definition of development, it follows that $f_N\le\tilde f_N$, and moreover $f_T=\tilde f_T$. Thus the speed of $\beta$ at $t$ is no greater than the corresponding speed of $\tilde \beta$. Therefore $\length \beta\le\length\tilde \beta$, hence $\dist{y^\prime}{z^\prime}{}\le \dist{\tilde y^\prime}{\tilde z^\prime}{}$. By definition of angle, $\mangle\hinge {x}{y}
{z}\le\mangle\hinge {\tilde x}{\tilde y}{\tilde z}$, as required.\qeds
\begin{thm}{Corollary}
Suppose $\spc{X}$ is locally geodesic locally $\CAT{\hat\kappa}$ space for some $\hat\kappa$.
If in some open ball about each point, normal Jacobi lengths satisfy $f''+\kappa f\ge 0$, then $\spc{X}$ is locally $\CAT\kappa$.
\end{thm}