-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmult.tex
839 lines (710 loc) · 30 KB
/
mult.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
\chapter{Multidistance functions}
\section{Composite subfunction}\label{sec:composite}
All the constructions in this section
work in general metric spaces;
the lower curvature bound as well as dimension
will come into the game only in the next section.
In this section
we introduce so called \emph{composite functions},
which will be used later to define \emph{multidistance functions},
a generalization of the distance functions
which
is sufficiently flexible for applications.
Formally composite subfunction is a pair of
a map $\bm{f}$ from the space to $\RR^\kay$
and a subfunction $F$ on $\RR^\kay$.
But it is better to think of it as of subfunction $F\circ \bm{f}$
with an extra structure, which we will call ``cannonical representation''.
This canonical representaion has to be remembered all the time one work with composite functions, but it used only ocasionally.
\parbf{Composite subfunctions.}
Let $\spc{X}$ be a metric space
and $\bm{f}=(f^1,f^2,\dots,f^\kay)$ be an aray of real functions on $\spc{X}$; we can also regard $\bm{f}$ as a map $\bm{f}\:\spc{X}\to\RR^\kay$.
Let $F\:\RR^\kay\subto\RR$ be a subfunction and $\phi=F\circ\bm{f}$.
The subfunction $\phi\:\spc{X}\subto\RR$ together with a choice of \emph{canonical representation}\index{canonical representation} $\phi=F\circ\bm{f}$ will be called \emph{composite subfunction}\index{composite subfunction}.
For a composite function $\phi$,
we write $\phi\can F\circ\bm{f}$ if we want to emphasise that $F\circ\bm{f}$ is its canonical representation.
Let $F\circ\bm{f}=F(f^1,f^2,\dots,f^\kay)$ be a canonical representation and $\sigma$ is a permutation of $(1,2,\dots,\kay)$.
Assume $H\circ\bm{h}=H(h^1,h^2,\dots,h^\kay)$ is an other representaion such that
\begin{clm}{}\label{clm:F=H}
$F(x^{\sigma(1)},x^{\sigma(2)},\dots,x^{\sigma(\kay)})
\equiv
H(x^1,x^2,\dots,x^\kay)$
and
$f^i\equiv h^{\sigma(i)}$
for all $i$.
\end{clm}
\noi Then the presentations $F\circ\bm{f}$ and $H\circ\bm{h}$
are regarded to be the same.
A presentation $G\circ \bm{g}=G(g^1,g^2,\dots,g^{\kay+m})$
is also considered to be the same as $F\circ\bm{f}$
if
\begin{clm}{}\label{clm:F=G}
$F(x^1,x^2,\dots,x^\kay)
\equiv
G(x^1,x^2,\dots,x^{\kay+m})$
and
$f^i\equiv g^i$
for all $i\le \kay$.
\end{clm}
\noi In other words, if $G\circ \bm{g}$ can be obtained from $F\circ\bm{f}$ by including in the function array some extra functions on which $F$ does not depend.
Clearly the conditions \ref{clm:F=H} and \ref{clm:F=G} imply
\[H\circ\bm{h}
\equiv
F\circ\bm{f}\equiv G\circ \bm{g},\]
but the converse does not hold.
On the formal base,
a composite function on $\spc{X}$
is a pair $\phi=(\bm{f}, F)$, where $\bm{f}\:\spc{X}\to\RR^\kay$ and $F\:\RR^\kay\subto\RR$ up to the minimal equivalence relation which includes \ref{clm:F=H} and \ref{clm:F=G}.
\parbf{Operations.}
The arithmetic operations can be naturally extended to the class of composite subfunctions.
For example, given $\theta\can H\circ\bm{h}$, $\phi\can F\circ\bm{f}$, we will write $\psi=\theta+\phi$ where $\psi\can G\circ\bm{g}$,
the function array
$\bm{g}$ is joint of arrays $\bm{h}=(h^1,h^2,\dots,h^n)$ and $\bm{f}=(f^1,f^2,\dots,f^\kay)$ and
\[
G(x^1,x^2,\dots,x^n,y^1,y^2,\dots,y^\kay)
\df
H(x^1,x^2,\dots,x^n)
+
F(y^1,y^2,\dots,y^\kay).\]
Similarly, we can define multiplication, maximum and minimum in the class of composite subfunctions.
Even more generally,
given a subfunction $\map\:\RR^n\to\RR$
and an array of composite subfunctions $(\phi^1,\phi^2,\dots,\phi^n)$ on space $\spc{X}$,
the subfunction
\[
\map(\phi^1,\phi^2,\dots,\phi^n)\:\spc{X}\subto\RR
\]
has natural canonical representation,
and thus it can be regarded as a composite subfunction it-self.
\parbf{Second derivative of composite functions.}
Let $\phi\can F\circ\bm f$ be a composite function defined on a smooth manifold $\spc{M}$
and all the functions $F$ and $f^i$ are smooth.
Given a geodesic $\gamma\:\II\to\spc{M}$, we have
\[
(\phi\circ\gamma)''(t)
=
(\Hess_{\bm{x}} F)(\bm{x}',\bm{x}')
+
(\d_{\bm{x}}F)(\bm{x}''),
\]
where $\bm{x}=\bm{f}\circ\gamma(t)$,
$\bm{x}'=(\bm{f}\circ\gamma)'(t)$
and
$\bm{x}''=(\bm{f}\circ\gamma)''(t)$.
The following proposition state that a corollary of the above formula still holds in general metric space.
\begin{thm}{Proposition}\label{prop:composite+convex}
Let $\spc{X}$ is a metric space,
$\bm{f}=(f^1,f^2,\dots,f^\kay)\:\spc{X}\subto\RR^\kay$
be an array of semiconcave subfunctions.
Assume $F\:\RR^k\to\RR$ is a locally Lipschitz subfunction which is nondecreasing in each argument,
$F''(\bm{f}(p))\le \Lambda$
and each $(f^i)''(p)\le \lambda^i$,
then
\[
\phi''(p)
\le
\max
\{\Lambda\cdot(\lip_p\bm{f})^2,-\Lambda\cdot(\colip_p\bm{f})^2\}
+\sum_i\lambda^i\cdot\partial_iF.
\]
\end{thm}
\parit{Proof.}
Note that it is sufficient to consider the case when $\spc{X}$ is a real interval
--- that follows form Definition~\ref{def:f''}.
If all functions $f^i$ and $F$ are smooth,
the statement follows from standard calculus.
In general case, one should present $F$ and $f^i$ as a limits of smooth semiconcave functions with the same bounds on second derivatives and then pass to the limit.
\qeds
\section{Multidistance functions.}
\begin{thm}{Definition}\label{def:MD}
Let $\spc{L}$ be a metric space.
A composite subfunction $\phi\:\spc{L}\subto\RR$ is called \emph{multidistance subfunction}%
\index{multidistance subfunction}
(briefly, $\phi\in \MD(\spc{L},\RR)$)
if
$\phi\can F\circ\distfun{\bm{a}}{}{}$
where $\distfun{\bm{a}}{}{}$ is a distance map; that is,
\[
\distfun{\bm{a}}{}{}
=
(\distfun{a^1}{}{},\dots,\distfun{a^\kay}{}{})\:\spc{L}\to\RR^\kay
\]
for some point array $\bm{a}=(a^1,\dots,a^\kay)$ and
$F\:\RR^\kay\subto\RR$ is a smooth subfunction
which is not decreasing in each argument
and
$\Dom F$
lies in the positve octant of $\RR^\kay$.
\end{thm}
For example,
given a point array $\bm{a}=(a^1,a^2)$ in space $\spc{L}$,
both functions
\begin{align*}
\phi(x)&=\dist{a^1}{x}{}+\dist{a^2}{x}{}
&
\psi&=\dist[{{}}]{a^1}{x}{}\cdot\dist[{{}}]{a^2}{x}{}
\end{align*}
restricted to $\spc{L}\backslash \{a,b\}$
can be interpreted as multidistance functions;
say
\begin{align*}
&\phi\can F\circ\distfun{\bm{a}}{}{}
&
&\psi\can G\circ\distfun{\bm{a}}{}{}
\\
&F(x,y)=x+y,
&
&G(x,y)=x\cdot y
\end{align*}
and $\Dom F=\Dom G=(0,\infty)\times(0,\infty)$.
\parbf{Liftings.}
Recall that for a Gromov--Hausdorff convergence of metric spaces
$\spc{L}_n\GHto\spc{L}$,
a lifting of a point $p\in \spc{L}$ is any sequece $p_n\in\spc{L}_n$ such that $p_n\GHto p$
Let us consider a mutidistnat function
\begin{align*}
\phi&\:\spc{L}\to\RR,
&
\phi&\can F\circ\distfun{\bm{a}}{}{}
\end{align*}
with the point array $\bm{a}=(a^1,a^2,\dots,a^\kay)$ and $F\:\RR^\kay\to \RR$.
A lifting of $\phi$ is any sequence of multidistant
functions
\begin{align*}
\phi_n
&\:\spc{L}_n\to\RR,
&
\phi_n
&\can F\circ\distfun{\bm{a}_n}{}{}
\end{align*}
such that $\bm{a}_n=(a_n^1,a_n^2,\dots,a_n^\kay)$
is a point array in $\spc{L}_n$
and for each $i$ the sequence $a_n^i$ is a lifting of $a^i$.
\section{Convexity}
The following construction produce
a strongly concave multidistance function
defined in a neighborhood of a given point
of a $\Alex{}$ space.
Moreover the concavity of this function survive
after lifting, in the noncollapsing convergence
with lower curvature bound.
\parit{Construction.}
Let $\spc{L}$ be an $m$-dimensional complete length $\Alex{}$ space and $p\in\spc{L}$.
Choose an arbitrary point array
$\bm{a}=(a^1,a^2,\dots,a^\kay)$
such that the distance map $\distfun{\bm{a}}{}{}\:\spc{L}\to\RR^\kay$ is bi-Lipschitz in a neighborhood of $p$.
According to Theorem \ref{thm:dist-emb},
such array $\bm{a}$ exists;
moreover
\begin{itemize}
\item All the points in the array $\bm{a}$ can be chosen arbitrary close to a given point $z\in \spc{L}$. In particular we can assume that $a^i\ne p$ for any $i$.
\item The Lipshitz and co-Lipschitz constants of the map $\distfun{\bm{a}}{}{}$ near $p$ can be estimated only in terms of $m$, $\kappa$ and the distances $\dist{p}{a^i}{}$ and $\dist{a^i}{a^j}{}$.
\end{itemize}
Set $\bm{x}=\distfun{\bm{a}}{p}\in\RR^\kay$.
Given $\Lambda\in\RR$,
we can choose a smooth subfunction $F\:\RR^\kay\subto\RR$
which is nondecreasing in each argument
and defined in a small neighborhood of $\bm{x}$
and such that $F''(\bm{x})\le \Lambda$ and $\partial_iF\le 1$ for each $i$.
Consider multidistance function $\phi\can F\circ\distfun{\bm{a}}{}{}$.
By Proposition~\ref{prop:composite+convex},
we get that $\phi''(p)\le \lambda$
for some $\lambda=\lambda(\Lambda)$ such that
$\lambda\to-\infty$ as $\Lambda\to-\infty$.
In particular, if $\Lambda$ is near $-\infty$
then $\phi$ is strongly concave
in a neighborhood of $p$.
Assume $\spc{L}_n\to\spc{L}$ where $)\spc{L}_n)$ is a non-collapsing sequence of $m$-dimensional complete length $\Alex\kappa$ spaces
and $\phi\:\spc{L}\to \RR$
is a multidistance function constructed above.
Note that if $\phi_n\:{L}_n\subto\RR$ are the liftings of $\phi$ and $p_n\in{L}_n$ are the liftings of $p$
then $\phi_n''(p_n)\le\lambda$ for all large $n$.
\qeds
Here is a direct corollary from the above construction.
(It is one of the statements which is easy to prove but hard to formulate in sufficient generality.)
\begin{thm}{Corollary}%
\label{cor:strong-conc-approx}
Let $\spc{L}$ be an $m$-dimensional complete length $\Alex{}$ space,
$\lambda\in\RR$,
$\eps>0$
and $p,z\in \spc{L}$.
Then there is a multidistant function
$\phi\can F\circ\distfun{\bm{a}}{}{}$
such that $\Dom\phi\ni p$,
$\phi''(p)\le\lambda$ and
$$\d_p\phi(\xi)<\d_p\distfun{z}{}{}+\eps$$
for any $\xi\in\Sigma_p$.
Moreover,
\begin{itemize}
\item The points in the array $\bm{a}$ can be chosen arbitrary close to $z$
\item For any convergence $\spc{L}_n\GHto\spc{L}$
such that
$\spc{L}_n$ is an $m$-dimensional complete length $\Alex\kappa$ space for each $n$,
any liftings $\phi_n$ of $\phi$ and
any $p_n$ of $p$ we have
$\phi_n''(p_n)\le\lambda$ for all large $n$.
\end{itemize}
\end{thm}
\parit{Proof.}
According to ???,
there is $\delta>0$ such that for any $a\in \oBall(z,\delta)$,
$\d_p\distfun{a}{}{}<\d_p\distfun{z}{}{}+\eps$.
Applying Theorem \ref{thm:dist-emb},
we get a point array $\bm{a}$ in $\oBall(z,\delta)$ such that
the distance map $\distfun{\bm{a}}{}{}$ is bi-Lipschitz in a neighborhood of $p$.
It remains to apply the construction above.
\qeds
\begin{thm}{Proposition}\label{prop:convex-function}
Let $\spc{L}$ be an $m$-dimensional complete length $\Alex{}$ space,
and $p\in\spc{L}$.
Then there is a strongly concave locally Lipschitz subfunction $\phi$
defined in a neighborhood of $p$ which has a maximum at $p$.
\end{thm}
\parit{Proof.}
By Lemma~\ref{lem:comp-sigma}, $\Sigma_p$ is compact.
Therefore there is finite collection of points $z^1,z^2,\dots,z^\kay$
so that the directions $\dir{p}{z^i}$ form a $\tfrac\pi4$-net in $\Sigma_p$.
Applying $\kay$ times Corollary~\ref{cor:strong-conc-approx},
we get a collection of strongly concave functions $\phi^i$
defined on a neighborhood of $p$
such that the differential $\d_p\phi^i$ is arbitrary close to $\d_p\distfun{z^i}{}{}$.
Then the function
\[\phi(x)=\min_i\{\phi^i(x)-\phi^i(p)\}\]
satisfies the condition of theorem.
Indeed, by construction $\phi$ is strongly concave.
Choose $\eps>0$ so that
$\oBall(p,\eps)\subset \Dom \phi$.
By construction $\phi$ is strongly concave,
$\phi(p)=0$ and
$\d_p\phi=\min_i\{d_p\phi^i\}\le 0$.
Therefore
\begin{align*}
\phi(x)&
\le (\d_p\phi)(\ddir{p}{x})
\le 0
\end{align*}
for any $x\in \oBall(p,\eps)$.
Further,
the set
$$K=\set{x\in\spc{L}}{\phi(x)>-\delta}$$
satisfies the second part of theorem for all sufficiently small $\delta>0$ .
\qeds
Although the next statement follows trivially from the corollary above,
we call it a ``theorem'' since it is conceptually important.
Essentially it says that any point of an $m$-dimensional complete length $\Alex{}$ space admits
an arbitrary small closed neighborhood
which is forms an $m$-dimensional complete length $\Alex{}$ subspace.
For infinite dimensional $\Alex{}$ spaces,
an analogous statement does not hold;
see Exercise~\ref{ex:no-convex-nbhd-CBB}.
\begin{thm}{Theorem on convex neighborhood}\label{thm:convex-nbhd}
Let $\spc{L}$ be an $m$-dimensional complete length $\Alex{}$ space,
$\eps>0$
and $p\in\spc{L}$.
Then
there is a compact convex set $K\subset\oBall(p,\eps)$
which contains $p$ in its interior.
\end{thm}
The statement of following theorem is very similar to the Existence and uniqueness of gradient (\ref{thm:ex-grad});
it differ mainly by sign of scalar product in the formula;
see also Exericise~\ref{ex:supporting-vector}.
\begin{thm}{Existance of supporting vector}
\label{prop:support}
Let $\spc{L}$ be an $m$-dimensional complete length $\Alex{}$ space.
Then for any multidistant subfunction $\phi\:\spc{L}\subto\RR$
and any point $p\in \Dom\phi$
there is a vector $w\in \T_p$ such that
\[\<w,x\>+\d_p\phi(x)\le 0\]
for any $x\in\T_p$.
\end{thm}
The proof of the proposition relies on the following Sum lemma;
this lemma should be compared with Anti-sum lemma \ref{lem:minus-sum}.
\begin{thm}{Sum lemma}\label{lem:sum}
Let $\spc{L}$ be an $m$-dimensional complete length $\Alex\kappa$ space,
$p\in \spc{L}$ and $v^1,v^2,\dots,v^\kay\in\T_p$.
Then there is a vector $w\in \T_p$ such that for any semiconcave locally Lipschitz subfunction $f\:\spc{L}\subto\RR$ we have
\[(\d_pf)(w)\ge \sum_i(\d_pf)(v^i)\eqlbl{eq:df(w)>0}.\]
In particular, for any $x\in\T_p$ we have
\[\<w,x\>\le \sum_i\<v^i,x\>.\]
\end{thm}
\parit{Proof.}
By Theorem~\ref{thm:tan4finite},
$\T_p$ is an $m$-dimensional complete length $\Alex0$ space;
in particular $\T_p$ is a geodesic space.
Since $\d_pf\:\T_p\to\RR$ is concave and positive-homogenous,
for any two vectors $u,v\in \T_p$ we have that
\[\d_pf(w)\ge \d_pf(u) + \d_pf(v)
\eqlbl{eq:df(w)}\]
if $\tfrac12\cdot w$ is the midpoint for a geodesic $[uv]$.
Let us define a sequence of vectors $w^j\in\T_p$ recursively.
Set $w^1=v^1$
and $w^{j+1}=\tfrac12\cdot z^{j}$,
where $z^j$ is the midpoint of a geodesic $[v^j w^j]$.
Applying inequality \ref{eq:df(w)} few times,
we get that $w=w^{m+1}$ satisfies \ref{eq:df(w)>0}.
Now let us turn to the second part of lemma.
Note that we can assume that $x\ne 0$.
Therefore we can choose a sequence of points $a_n\to p$ such that $\dir{p}{a_n}\to x/|x|$ as $n\to\infty$.
Set $f_n=\distfun{a_n}{}{}$.
We can assume that the geodesic $[pa_n]$ is unique for all $n$,
so $\d_pf_n(z)=-\<\dir p{a_n},z\>$ for all $z$.
It remains to apply \ref{eq:df(w)>0} for $f_n$
and pass to the limit as $n\to\infty$.
\qeds
\parit{Proof of Proposition~\ref{prop:support}.}
Let $\phi\can F\circ\distfun{\bm{a}}{}{}$.
Set $v^i=\partial_i F\cdot\dir{p}{a^i}$
for some choice of geodesics $[pa^i]$.
From \ref{???}, we have
\[d_p\phi(x)\le -\sum_i\<v^i,x\>\]
for any $x\in\T_p$.
The result then follows from the Sum lemma (\ref{lem:sum}).
\qeds
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Struts revisited}
Our next aim is to define
$\kappa$-strutting array of multidistance functions for a given point.
To do this we need a new comparison function;
it takes two multidistance functions $\phi$ and $\psi$ and returns a real value at given point $p$,
which will be denoted as
$\sdk\kappa{p}{\phi}{\psi}$.
If $\phi\can F\circ\distfun{\bm{a}}{}{}$
and $\psi\can G\circ\distfun{\bm{b}}{}{}$
then
$$\sdk\kappa{p}{\phi}{\psi}
\df
\sum_{i,j}\partial_iF\cdot\partial_jG\cdot \cos\angk\kappa p{a^i}{b^j}.$$
The expression $\sdk\kappa{p}{\phi}{\psi}$
should be red \emph{$\kappa$-comparison scalar of $\phi$ and $\psi$ at $p$};
it is a model analog for the scalar product of differentials $\d_p\phi$ and $\d_p\psi$;
compare with Exercise~\ref{ex:d(grad)<0}.
\begin{thm}{Definition}\label{def:strut-II}
Let $\spc{L}$ be a complete length $\Alex{}$ space.
An array of multidistant functions
$\bm{\phi}\z=(\phi^0,\phi^1,\dots,\phi^\kay)$
on $\spc{L}$
is \emph{$\kappa$-strutting}\index{strutting array of multidistance functions} for a point $p\in\spc{L}$ if
\[\sdk\kappa{p}{\phi^i}{\phi^j}<0\]
for all $i\not=j$.
In this case, we say that $p$ is a
\emph{critical point}\index{critical point}
for the submap $\bm{\phi}\:\spc{L}\subto \RR^{\kay+1}$
if
\[\min_i\d_p\phi^i\le 0\]
and otherwise $p$ is called
\emph{regular point}\index{regular point} of $\bm{\phi}$.
\end{thm}
Note that if there is a point array $(a^0,a^1,\dots,a^\kay)$
such that%
\footnote{More formally, $\phi^i\can F\circ\distfun{a^i}{}{}$ where $F(x)=x$ and $\Dom F=(0,\infty)$.} $\phi^i\can\distfun{a^i}{}{}$ for each $i$
then $(\phi^0,\phi^1,\dots,\phi^\kay)$
is $\kappa$-strutting $p$
if and only if
$(a^0,a^1,\dots,a^\kay)$ is $\kappa$-strutting $p$.
That is, the above definition is a direct generalization of Definition \ref{def:strut-I}.
\begin{thm}{Lemma}\label{lem:multi+rank}
Let $\spc{L}$ be an $m$-dimensional complete length $\Alex\kappa$ space,
$p\in \spc{L}$
and an array of multidistant subfunctions $\bm{\phi}=(\phi^0,\phi^1,\dots,\phi^\kay)$ struts $p$.
Then $\rank_p\ge \kay$
\end{thm}
This lemma,
together with Corollary~\ref{cor:strong-conc-approx}
and Proposition~\ref{prop:stutt} implies the following.
\begin{thm}{Corollary}\label{cor:multi+rank}
Let $\spc{L}$ be an $m$-dimensional complete length $\Alex\kappa$ space,
$p\in \spc{L}$.
Then $\rank_p\ge \kay$
if and only if there is an array of multidistant functions $\bm{\phi}=(\phi^0,\phi^1,\dots,\phi^\kay)$ which struts $p$.
Moreover, given a real value $\lambda$
we can assume in addition that each $\phi^i$ meets the following conditions:
\begin{itemize}
\item $(\phi^i)''(p)< \lambda$
\item $(\phi_n^i)''(p_n)< \lambda$ for
any convergence $\spc{L}_n\GHto\spc{L}$,
any lifts $\phi^i_n\:\spc{L}_n\to\RR$ of $\phi^i$,
any lift $p_n\in \spc{L}_n$ of $p$
and all large $n$.
\end{itemize}
\end{thm}
\parit{Proof of Lemma~\ref{lem:multi+rank}.}
Assume that
an array of multidistant functions $(\phi^0,\phi^1,\dots,\phi^\kay)$ is $\kappa$-stratting $p$.
Without loss of generality, we may assume that
$\phi^i\can F^i\circ\distfun{\bm{a}}{}{}$ for a fixed point array $\bm{a}=(a^1,a^2,\dots,a^\kay)$.
Consider vectors $v^i_j=\partial_jF^i\cdot\dir{p}{a^j}$ for some choice of geodesics $[pa^j]$.
Applying the hinge comparison (\ref{angle})
and then Sum lemma (\ref{lem:sum}),
we get that there are vector array
$(w^1,w^2,\dots w^\kay)$ in $\T_p$
such that
\begin{align*}
0&>\sdk\kappa{p}{\phi^i}{\phi^j}
\ge
\\
&\ge\sum_{n,m}\<v^i_n,v^j_m\>\ge
\\
&\ge\sum_n\<v^i_n,w^j\>\ge
\\
&\ge\<w^i,w^j\>
\end{align*}
for all $i\ne j$.
In particular, $\mangle(w^i,w^j)>\tfrac\pi2$ for all $i\ne j$;
that is, $\rank_p\ge \kay$.
\qeds
\begin{thm}{Proposition}\label{prop:regular=+1}
Let $\spc{L}$ be an $m$-dimensional complete length $\Alex\kappa$ space,
$p\in \spc{L}$.
$(\phi^0,\phi^1,\dots,\phi^\kay)$
be an array of multidistant functions which is $\kappa$-strutting $p$.
Then $p$ is a regular point of $\bm{\phi}$ if and only if there is a multidistance subfunction $\psi$ such that
the array
$(\phi^0,\phi^1,\dots,\phi^\kay,\psi)$
is $\kappa$-strutting $p$.
Moreover, given a real value $\lambda$
we can assume in addition that $\psi$ meets the following conditions:
\begin{itemize}
\item $\psi''(p)< \lambda$
\item $\psi_n''(p_n)< \lambda$ for
any convergence $\spc{L}_n\GHto\spc{L}$,
any lifts $\psi_n\:\spc{L}_n\to\RR$ of $\psi$,
any lift $p_n\in \spc{L}_n$ of $p$
and all large $n$.
\end{itemize}
\end{thm}
\parit{Proof; ``if''-part.}
Assume $(\phi^0,\phi^1,\dots,\phi^\kay,\psi)$ is $\kappa$-strutting $p$.
Assume $\psi\can G\circ\distfun{\bm{b}}{}{}$;
$\bm{b}=(b^1,b^2,\dots,b^m)$.
Set
\[v^j=\partial_jG\cdot \dir{p}{b^j}\]
for some choice of geodesics $[p b^j]$.
Note that $\sdk\kappa p{\phi^i}\psi<0$ implies that
\[\sum_j\d_p\phi^i(v^j)>0.
\eqlbl{eq:sum df(v)}
\]
Therefore applying Sum lemma (\ref{lem:sum})
we get the needed $w$.
To show that $p$ is a regular point of $\bm{\phi}$,
we have to produce a vector $w\in\T_p$ such that
\[\d_p\phi^i(w)>0\]
for each $i$.
\parit{``Only if''.}
Now assume $p$ is a regular point.
Then there is a point $z$ such that
\[d_p\phi^i(\dir{p}{z})>0\]
for each $i$.
If $\bar z\in\l]pz\r]$ and $\bar z\to p$
then
\[\sdk\kappa p{\phi}{\distfun{\bar z}{}{}}\to d_p\phi^i(\dir{p}{z}).\]
In particular,
taking%
\footnote{More formally, $\psi\can G\circ\distfun{a^i}{}{}$ where $G(x)=x$ and $\Dom G=(0,\infty)$.} $\psi=\distfun{\bar z}{}{}$ we get the first part of the proposition.
The second part follows once Corollary~\ref{cor:strong-conc-approx} is applyed for the base point $p$ and the point $\bar z$ found above.
\qeds
\begin{thm}{Proposition}\label{prop:strut>strut}
Let $\spc{L}$ be an $m$-dimensional complete length $\Alex\kappa$ space,
$\lambda\in\RR$,
$p,z^0,z^1,\dots,z^\kay\in \spc{L}$.
Assume $(z^0,z^1,\dots,z^\kay)$ is $\kappa$-strutting $p$.
Then there is a point array
$\bm{a}\z=(a^1,a^2,\dots, a^{n})$
and an array of strongly concave multidistant functions
$\bm{\phi}=(\phi^0,\phi^1,\dots,\phi^\kay)$,
$\phi^i\can F^i\circ\distfun{\bm{a}}{}{}$
such that
\begin{subthm}{prop:strut>strut:strut}
The function array $\bm{\phi}=(\phi^0,\phi^1,\dots,\phi^\kay)$ is $\kappa$-strutting $p$.
\end{subthm}
\begin{subthm}{prop:strut>strut:concave}
$(\phi^i)''(p)<\lambda$ for each $i$.
\end{subthm}
Moreover given a sequence of $m$-dimensional complete length $\Alex\kappa$ spaces $(\spc{L}_n)$
such that $\spc{L}_n\GHto \spc{L}$,
the above conditions hold for the liftings.
That is, if $\phi_n^i\:\spc{L}_n\to\RR$
are liftings of $\phi^i$
and $p_n\in \spc{L}_n$ is a lifting of $p$
then
for all large $n$ we have
(\ref{SHORT.prop:strut>strut:strut})
the function array $\bm{\phi}_n=(\phi_n^0,\phi_n^1,\dots,\phi_n^\kay)$ is $\kappa$-strutting $p_n$
and
(\ref{SHORT.prop:strut>strut:concave}) $(\phi_n^i)''(p_n)<\lambda$ for each $i$.
\end{thm}
\parit{Proof.}
Follows from Corollary~\ref{cor:strong-conc-approx}.
\qeds
\begin{thm}{Corollary}
Let $\spc{L}$ be an $m$-dimensional complete length $\Alex\kappa$ space and $p\in \spc{L}$.
Assume $\rank_p\spc{L}\ge \kay$
then there is an array
of $\kay+1$ strongly concave
multidistant functions which is $\kappa$-strutting $p$.
\end{thm}
Let $p\in\spc{L}$ and $\kay=\rank_p$.
Let us choose an array of strongly concave multidistant subfunctions $(\phi^0,\phi^1,\dots,\phi^\kay)$ which is $\kappa$-strutting $p$.
According to Theorem on convex neighborhood (\ref{thm:convex-nbhd}) we can choose a compact convex neighborhood $K$ of $p$
which lies in $\Dom\phi^i$ for each $i$.
We also can assume that $K$ is chosen so small that $(\phi^0,\phi^1,\dots,\phi^\kay)$ which is $\kappa$-strutting every point of $K$.
In particular, according to ???, $\rank_x\ge \kay$ for any $x\in K$.
In the subspace $K$,
let us consider web for the function array
$-\bm{\phi}$ (the minus-sign is to make the functions strongly \emph{convex}, not \emph{concave}).
Note that $p\in\InWeb(-\bm{\phi})$;
indeed ???.
Note that if for some $x\in\Int K$,
we have $\rank_x=\kay$
then $x\in\InWeb (-\bm{\phi})$.
Indeed, ???
Therefore, by Theorem~\ref{thm:web:bary},
the set
$$\set{x\in K}{\rank_x=\kay}$$
lies in the image of the barycentric simplex $\spx{(-\bm{\phi})}$.
\begin{thm}{Theorem}
Let $\spc{L}$ be an $m$-dimensional complete length $\Alex{}$ space,
$\bm{\phi}=(\phi^0,\phi^1,\dots,\phi^\kay)$
is an array of multidistant functions which
$\kappa$-struts every point in a compact convex set $K\subset \spc{L}$.
Denote by $M$ the set critical points of $\bm{\phi}$ in the interior of $K$.
Then $M$
admits a Lipschitz bijective map to an open subset of $\RR^\kay$ with a $C^{\frac12}$-inverse.
In particular from $M$ forms a $C^{\frac12}$ submanifold of $\spc{L}$.
Moreover $M$ lies in an image of a Lipschitz map $\Delta^\kay\to \spc{L}$.
\end{thm}
\parit{Proof.}
Since each function $-\phi^i$ is strongly convex,
one can apply Theorem~\ref{thm:web} to the
subspace $K$
and the array $-\bm{\phi}=(-\phi^0,-\phi^1,-\dots,-\phi^\kay)$.
We obtain that $M=\Int K\cap \Web{(-\bm{\phi})}$.
According to Proposition~\ref{prop:regular=+1},
any subarray $\bm{\phi}^{\without i}$
has no critical points in $K$.
Therefore $M=\Int K\cap\InWeb{(-\bm{\phi})}$.
From \ref{thm:web:Up-convex} the first part of theorem follows.
The second part follows from \ref{thm:web:lip-const}.
\qeds
\section{Remarks and open questions}
The definitions of strut (\ref{def:strut-I})
gives a necessary condition on the model angles
$\angk{\kappa}{p}{a^i}{a^j}$ which ensure that the distance
map $\distfun{\bm{a}^{\without 0}}{}{}\:\spc{L}\to\RR^m$
is a homeomorphism in a neighborhood of $p$.
One may want to exchange this condition to the following.
\begin{thm}{Definition of generalized struts}\label{def:strut-generalized}
Let $\spc{L}$ be a complete length $\Alex{}$ space.
We say that a point array $(a^0,a^1,\dots,a^\kay)\in\spc{L}^{\kay+1}$
is ??? $\kappa$-strutting for a point $p\in\spc{L}$
if for any points $\tilde p, \tilde a^0, \tilde a^1,\dots,\tilde a^m$ in $\Lob{m}{\kappa}$,
such that
$\dist{\tilde p}{\tilde a^i}{}=\dist{p}{a^i}{}$ for each $i$
and $\dist{\tilde a^i}{\tilde a^j}{}\ge \dist{a^i}{a^j}{}$ for all $i$ and $j$
the point $\tilde p$ is an interior point of the convex hull of $\tilde p, \tilde a^0, \tilde a^1,\dots,\tilde a^m$.
\end{thm}
For example if $p,a^0,a^1,a^2$ be three points in a two-dimensional $\Alex0$ space
such that $\angk0p{a^0}{a^1},\angk0p{a^0}{a^2}>\tfrac34\cdot\pi$
and $\angk0p{a^1}{a^2}>\tfrac13\cdot\pi$, then $(a^0,a^1,a^2)$ is not strutting $p$ in the sense of definition \ref{def:strut-I}, but it does strutting $p$ in the generalized sense.
Although the generalized definition is more natural,
its formulation is more complicated
and it is harder to check it directly.
Let us extend a definition of regular value for $\DC$-submaps.
Let $\spc{L}$ be a complete length $\Alex{}$ space
and $f\: \spc{L}\subto\RR$ is a $\DC$-subfunction.
A point $p\in \spc{L}$ is called regular point of $f$ if there is a representation $f=a-b$, where $a,b$ are concave such that
$(\d_p a)(\nabla_p b)<0$ and $(\d_p b)(\nabla_pa)<0$.
Otherwise, $p$ is a critical point of $f$.
Let ${\bm{f}}=(f^1,f^2,\dots,f^\kay)\:\spc{L}\to\RR^\kay$ be an array of DC-functions.
We say that $p\in \spc{L}$ is a regular point of ${\bm{f}}$ if it is a regular point of $h\circ \bm{f}$ for any nonzero linear function $h\:\RR^m\to\RR$.
\begin{thm}{Question}\label{q:regular}
Let $\spc{L}$ be a complete length $\Alex{}$ space,
${\bm{f}}\:\spc{L}\to\RR^m$ be an array of $\DC$-functions and $p\in \spc{L}$ is a regular point of $\bm{f}$.
Is there a righ-inverse of $\bm{f}$ defined in a neighborhood of $\bm{f}(p)\in \RR^m$?
\end{thm}
The following question remains completely open (so far there is no even technique which could approach it in principle).
\begin{thm}{Question}
Assume $\spc{L}$ is an infinite-dimensional complete length $\Alex{\kappa}$ space,
is it always possible to construct a bi-Lipschitz embedding $\cBall[1]_{\EE^m}\hookrightarrow \spc{L}$ for any positive integer $m$?
\end{thm}
The following seems to be ``right'' definition of strut.
It is completely analogous to the def in CBA,
but it is longer and in all applications the above definition is sufficient.%???
\begin{thm}{Definition of struts}\label{def:strut-I+}
Let $\spc{L}$ be a complete length $\Alex{}$ space.
We say that a point array $(a^0,a^1,\dots,a^\kay)\in\spc{L}^{\kay+1}$
is $\kappa$-strutting for a point $p\in\spc{L}$ if
for any collection of points $\xi^0,\xi^1,\dots,\xi^\kay\in \mathbb{S}^{\kay-1}$
such that $\dist{\xi^i}{\xi^j}{\mathbb{S}^{\kay-1}}\ge \mangle\hinge{p}{a^i}{a^j}$ for all $i$ and $j$
has radius $>\tfrac\pi2$.
\end{thm}
Let
$\spc{L}$ be an $m$-dimensional complete length $\Alex{}$ space
and $f\:\spc{L}\to \RR$ be two locally Lipschitz semicaonave function.
Let us denote by $\Diff f$ the set of all points $q\in\spc{L}$ such that
both differential $\d_qf$ is linear;
that is equivalent to $\d_qf(z)=\<\nabla_qf,z\>$ for any $z\in\T_p$.
According to ???, almost all points of $\spc{L}$ lie in $\Diff f$.
Given two locally Lipschitz semiconcave function $f,h\:\spc{L}\to \RR$,
define
\[
\<\d_qf,\d_qh\>
\df
\<\nabla_qf,\nabla_q h\>
\ \ \t{for any}\ \
q\in \Diff f\cap\Diff h,\]
then extend the function $q\mapsto \<\d_qf,\d_qh\>$ to whole $\spc{L}$ as a lower???-semicontinuous function;
that is,
\[
\<\d_pf,\d_ph\>
\df
\limsup\set{\<\d_qf,\d_qh\>}{q\to p,\ q\in \Diff f\cap \Diff h}.
\]
The following inductive definition was used originally in \cite[???]{perelman:DC};
it is not hard to see that it gives the same value:
Let $\spc{L}$ be an $m$-dimensional complete length $\Alex{}$ space,
$p\in\spc{L}$
and $f,h\:\spc{L}\to \RR$ be two locally Lipschitz semicaonave function.
If $m=1$ define
\[
\<\d_p f,\d_ph\>
=
\sup\set{\d_pf(\xi)\cdot\d_ph(\xi)}{\xi\in\Sigma_p}.
\]
Further assume we already defined scalar product of gradients for all dimensions $<m$.
Set $\phi=(\d_pf)|\Sigma_p$ and $\psi=(\d_ph)|\Sigma_p$;
since $\Sigma_p$ is $(m-1)$-dimensional (see ???) the scalar product
$\<\d_\xi\phi,\d_\xi\psi\>$ is well defined for any $\xi\in\Sigma_p$.
Further,
\[
\<\d_pf,\d_ph\>
\df
\sup
\set{\d_pf(\xi)\cdot\d_ph(\xi)+\<\d_\xi\phi,\d_\xi\psi\>}%
{\xi\in\Sigma_p}.
\]
\section{Exercises}
\begin{thm}{Exercise}
Let $\spc{L}$ be an $m$-dimensional complete length $\Alex{}$ space.
Show that given $\eps>0$,
one can find a countable collection of Lipschitz maps $\map_n\:\spc{L}\to \RR^{\kay_n}$
with $\kay_n\le m$ for each $n$
and present $\spc{L}$ as a countable union of closed sets $\mathfrak C_n$ such that each restriction
$\map_n|\mathfrak C_n$ is $\e^{\pm\eps}$-bi-Lipschitz.
\end{thm}
Hint: Show that for each point $p$ there is a compact neighborhood $K$ and $\delta>0$ such that the set
\[\mathfrak C_p=\set{x\in K}{\Sigma_x\le \Sigma_p+\delta}\]
admits an bi-Lipschitz embedding into $\RR^\kay$, where $\kay=\dim\Lin_p$.
\begin{thm}{Exercise}
Show that given $\eps>0$, $\kappa\in\RR$ and $m\in\ZZ_{\ge0}$ there is $\delta>0$ such that for any $m$-dimensional complet length $\Alex{\kappa}$ space $\spc{L}$ and any point $p\in\spc{L}$ there is a function $f\:\oBall(p,\delta)\to\RR$
such that for any geodesic $[xy]$ with $\dist{x}{y}{}>\eps$ in $\spc{L}$,
the subfunction $f\circ\gamma$ is strongly concave.
\end{thm}
\begin{thm}{Exercise}\label{ex:d(grad)<0}
Let $\spc{L}$ be an $m$-dimensional complete length $\Alex\kappa$ space and
$\phi,\psi\:\spc{L}\subto\RR$ be two multidistance functions.
Then
\[d_p\phi(\nabla_p\psi)
\le
\sdk\kappa{p}{\phi}{\psi}.\]
(Compare with Exercise~\ref{ex:d dist(grad)<0}.)
\end{thm}