-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgrad.tex
1972 lines (1631 loc) · 77.2 KB
/
grad.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%%!TEX root = the-grad.tex
%arrays^%arXiv
\chapter{Gradient flow}\label{chap:grad}
Gradient flow could be considered as a nonsmooth version of first-order ordinary differential equations.
It provides a universal tool in Alexandrov geometry with most significant applications to $\Alex{}{}$ spaces.
The theory of gradient flows of semiconvex functions on Hilbert spaces (which are of course both $\Alex{0}{}$ and $\CAT{0}$) is classical, see for example \cite{Brezis-book}.
The technique of gradient flows in the context of comparison geometry takes its roots in \index{Sharafutdinov's retraction}\emph{Sharafutdinov's retraction},
introduced by Vladimir Sharafutdinov \cite{sharafutdinov}.
It has been used widely in comparison geometry
since then.
In $\Alex{}$ spaces, it was first used by Grigory Perelman and the third author \cite{perelman-petrunin:qg, petrunin:qg}.
A bit later, independently Jürgen Jost and Uwe Mayer \cite{jost,mayer}
used the gradient flow in $\CAT{}$ spaces.
Later, Alexander Lytchak unified and generalized these two approaches
to a wide class of metric spaces \cite{lytchak:open-map}.
It was developed yet further by Shin-ichi Ohta \cite{ohta} and by Giuseppe Sevar\'e \cite{sevare}.
It is based on the more analytic approach suitable for the study of synthetic spaces with lower Ricci bounds was developed by Luigi Ambrosio, Nicola Gigli, and Giuseppe Sevar\'e in a general metric and metric measure setting
\cite{ambrosio-gigli-savare}.
{\sloppy
The following exercise is a stripped-down version of Sharfutdinov's retraction;
it gives the idea behind gradient flow.
}
\begin{thm}{Exercise}\label{ex:sharafutdinov}
Assume that a one-parameter family of convex sets $K_t\subset \EE^m$ is nested;
that is, $K_{t_1}\supset K_{t_2}$ if $t_1\le t_2$.
Show that there is a family of short maps $\phi_t\:\EE^m\to K_t$
such that $\phi_t|_{K_t}=\id$ for any $t$ and $\phi_{t_2}\circ\phi_{t_1}=\phi_{t_2}$ if $t_1\le t_2$.
\end{thm}
\section{Gradient-like curves}\label{sec:gradient-like}
Gradient-like curves will be used later in the construction of gradient curves.
The latter are a special reparametrization of gradient-like curves.
\begin{thm}{Definition}\label{def:grad-like-curve}{\sloppy
Let $\spc{Z}$ be a complete length space,
and let $f\:\spc{Z}\subto\RR$ be locally Lipschitz semiconcave subfunction.
Suppose that $\spc{Z}$ is either $\Alex{}$ or $\CAT{}$.
}
A Lipschitz curve $\hat\alpha\:[s_{\min},s_{\max})\to\Dom f$ will be called an \index{gradient-like curve}\emph{$f$-gradient-like curve} if
\[\hat\alpha^+=\tfrac{1}{|\nabla_{\hat\alpha} f|}\cdot\nabla_{\hat\alpha} f;\]
that is, for any $s\in[s_{\min},s_{\max})$, the right derivative $\hat\alpha^+(s)$ is defined and
\[\hat\alpha^+(s)=\tfrac{1}{|\nabla_{\hat\alpha(s)} f|}\cdot\nabla_{\hat\alpha(s)} f.\]
\end{thm}
Note that this definition implies that $|\nabla_p f|>0$ for any point $p$ on $\hat\alpha$.
The following theorem gives a seemingly weaker condition that is equivalent to the definition of gradient-like curve.
\begin{thm}{Theorem}\label{thm:grad-like-2nd-def}
Suppose $\spc{Z}$ is a complete length space,
$f\:\spc{Z}\subto\RR$ is a locally Lipschitz semiconcave subfunction,
and
$|\nabla_p f|>0$ for any $p\in\Dom f$.
Assume that $\spc{Z}$ is either $\Alex{}$ or $\CAT{}$.
A curve $\hat\alpha\:[s_{\min},s_{\max})\to\Dom f$ is an $f$-gradient-like curve if and only if it is $1$-Lipschitz and
\[\liminf_{s\to s_0+}\frac{f\circ\hat\alpha(s)-f\circ\hat\alpha(s_0)}{s-s_0}
\ge
|\nabla_{\hat\alpha(s_0)} f|
\eqlbl{eq:thm:grad-like-2nd-def-1}\]
for almost all $s_0\in [s_{\min},s_{\max})$.
\end{thm}
\parit{Proof.} The only-if part follows directly from the definition.
To prove the if part, note that for any $s_0\in[s_{\min},s_{\max})$ we have
\begin{align*}
\liminf_{s\to s_0+}\frac{f\circ\hat\alpha(s)-f\circ\hat\alpha(s_0)}{s-s_0}
&\ge
\liminf_{s\to s_0+}
\frac{1}{s-s_0}
\cdot
\int\limits_{s_0}^s|\nabla_{\hat\alpha(\under s)}f|\cdot\dd\under s
\ge
\\
&\ge
|\nabla_{\hat\alpha(s_0)}f|;
\end{align*}
the first inequality follows from \ref{eq:thm:grad-like-2nd-def-1}
and the second from lower semicontinuity of the function $x\mapsto|\nabla_x f|$,
see \ref{cor:gradlim}.
From \ref{lem:alm-grad}, we have
\[\hat\alpha^+(s_0)=\tfrac{1}{|\nabla_{\hat\alpha(s_0)} f|}\cdot\nabla_{\hat\alpha(s_0)} f.\]
Hence the result.
\qeds
%It might have sense to generalize the following theorem to the solutions $f''\le \phi(f,f')$ or at least to the solutions of $f''\le \lambda-\kappa\cdot f$ ??
Recall that second-order differential inequalities are understood in a barrier sense; see Section~\ref{sec:conv-real}.
\begin{thm}{Theorem} \label{thm:concave}
Let $\spc{Z}$ be a complete length space,
and let
$f\:\spc{Z}\subto \RR$ be
locally Lipschitz and $\lambda$-concave.
Suppose that $\spc{Z}$ is either $\Alex{}$ or $\CAT{}$.
Assume $\hat\alpha\:[0,s_{\max})\to\Dom f$ is an $f$-gradient-like curve.
Then
\[(f\circ\hat\alpha)''\le\lambda\]
everywhere on $[0,s_{\max})$.
\end{thm}
{\sloppy
Closely related statements were proved independently by Uwe Mayer \cite[2.36]{mayer} and Shin-ichi Ohta \cite[5.7]{ohta}.
}
Before the proof, let us formulate and prove a corollary.
\begin{thm}{Corollary}\label{cor:right-cont}
Let $\spc{Z}$ be a complete length space,
let $f\:\spc{Z}\subto \RR$ be a locally Lipschitz and semiconcave function,
and let $\hat\alpha\:[0,s_{\max})\to\Dom f$ be an $f$-gradient-like curve.
Suppose that $\spc{Z}$ is either $\Alex{}$ or $\CAT{}$.
Then the function $s\mapsto |\nabla_{\hat\alpha(s)}f|$
is right-continuous;
that is, for any $s_0\in [0,s_{\max})$ we have
\[|\nabla_{\hat\alpha(s_0)}f|
=
\lim_{s\to s_0+} |\nabla_{\hat\alpha(s)}f|.\]
\end{thm}
\parit{Proof.} Applying \ref{thm:concave} locally, we have that $f\circ\hat\alpha(s)$ is semiconcave.
The statement follows since
\[(f\circ\hat\alpha)^+(s)
=
(\dd_p f)\left(\tfrac{1}{|\nabla_{\hat\alpha(s)}f|}\cdot\nabla_{\hat\alpha(s)}f\right)
=
|\nabla_{\hat\alpha(s)}f|.\]
\qedsf
\parit{Proof of \ref{thm:concave}.} For any $s>s_0$,
\begin{align*}
(f\circ\hat\alpha)^+(s_0)&=|\nabla_{\hat\alpha(s_0)}f|
\ge
\\
&\ge
(d_{\hat\alpha(s_0)}f)(\dir{\hat\alpha(s_0)}{\hat\alpha(s)})
\ge
\\
&\ge
\frac{f\circ\hat\alpha(s)-f\circ\hat\alpha(s_0)}{\dist{\hat\alpha(s)}{\hat\alpha(s_0)}{}}
-
\tfrac\lambda2\cdot\dist[{{}}]{\hat\alpha(s)}{\hat\alpha(s_0)}{}.
\end{align*}
Let $\lambda_+=\max\{0,\lambda\}$.
Since $s-s_0\ge\dist{\hat\alpha(s)}{\hat\alpha(s_0)}{}$, for any $s>s_0$ we have
\[(f\circ\hat\alpha)^+(s_0)\ge
\frac{f\circ\hat\alpha(s)-f\circ\hat\alpha(s_0)}{s-s_0}-\tfrac{\lambda_+}2\cdot(s-s_0).
\eqlbl{eq:thm:concave-1}\]
Thus $f\circ\hat\alpha$ is $\lambda_+$-concave.
That finishes the proof for $\lambda\ge 0$.
For $\lambda<0$ we get only that $f\circ\hat\alpha$ is $0$-concave.
Note that $\dist{\hat\alpha(s)}{\hat\alpha(s_0)}{}=s-s_0-o(s-s_0)$. Thus
\[(f\circ\hat\alpha)^+(s_0)\ge
\frac{f\circ\hat\alpha(s)-f\circ\hat\alpha(s_0)}{s-s_0} -\tfrac\lambda2\cdot(s-s_0)+o(s-s_0).
\eqlbl{eq:thm:concave-2}\]
Together, \ref{eq:thm:concave-1} and \ref{eq:thm:concave-2} imply that $f\circ\hat\alpha$ is $\lambda$-concave.
\qeds
\begin{thm}{Proposition}
\label{prop:grad-like-unique-past}
Let $\spc{L}$ be a complete length $\Alex{\kappa}$ space, $p,q\in\spc{L}$.
Assume $\hat\alpha\:[s_{\min},s_{\max})\to\spc{L}$ is a $\distfun{p}$-gradient-like curve such that $\hat\alpha(s)\to z\in\mathopen{]}p q\mathclose{[}$ as $s\to s_{\max}+$.
Then $\hat\alpha$ is a unit-speed geodesic that lies in $[p q]$.
\end{thm}
\parit{Proof.}
Clearly,
\[ \tfrac{d^+}{dt}\dist[{{}}]{q}{\hat\alpha(t)}{}
\ge
-1.
\eqlbl{eq:>=-1}
\]
On the other hand,
\[\begin{aligned}
\tfrac{d^+}{dt}\dist[{{}}]{p}{\hat\alpha(t)}{}
&\ge
(\dd_{\hat\alpha(t)}\distfun{p}{}{})(\dir{\hat\alpha(t)}{q})
\ge\\
&\ge
-\cos\angk\kappa{\hat\alpha(t)}p q.
\end{aligned}
\eqlbl{eq:>=-cos}\]
Inequalities \ref{eq:>=-1} and \ref{eq:>=-cos} imply that the function $t\mapsto\angk\kappa q {\hat\alpha(t)}p $ is nondecreasing.
Hence the result.
\qeds
\section{Gradient curves}\label{sec:grad-curves:def}
In this section we define gradient curves
and tie them tightly to gradient-like curves
which were introduced in Section~\ref{sec:gradient-like}.
\begin{thm}{Definition}\label{def:grad-curve}{\sloppy
Let $\spc{Z}$ be a complete length space
and $f\:\spc{Z}\subto\RR$ be a locally Lipschitz and semiconcave subfunction.
Suppose that $\spc{Z}$ is either $\Alex{}$ or $\CAT{}$.
}
A locally Lipschitz curve $\alpha\:[t_{\min},t_{\max})\to\Dom f$ will be called an \index{gradient curve}\emph{$f$-gradient curve} if
\[\alpha^+=\nabla_{\alpha} f;\]
that is, for any $t\in[t_{\min},t_{\max})$, $\alpha^+(t)$ is defined and
$\alpha^+(t)=\nabla_{\alpha(t)} f$.
\end{thm}
The following exercise describes a global geometric property of a gradient curve without direct reference to its function.
It uses the notion of \textit{self-contracting curves} introduced by Aris Daniilidis, Olivier Ley, St\'ephane Sabourau \cite{daniilidis-ley-sabourau}.
\begin{thm}{Exercise}\label{ex:elf-contracting}
Let
$\spc{Z}$ be a complete length space,
let $f\:\spc{Z}\to\RR$ a concave locally Lipschitz function,
and let $\alpha\:\II\to\spc{Z}$ an $f$-gradient curve.
Suppose that $\spc{Z}$ is either $\Alex{}$ or $\CAT{}$.
Show that $\alpha$ is \index{self-contracting curve}\emph{self-contracting}; that is,
\[t_1\le t_2\le t_3
\quad\Longrightarrow\quad
\dist{\alpha(t_1)}{\alpha(t_3)}{\spc{Z}}\ge \dist{\alpha(t_2)}{\alpha(t_3)}{\spc{Z}}.\]
\end{thm}
The next lemma states that gradient and gradient-like curves are special reparametrizations of each other.
\begin{thm}{Lemma}\label{lem:grad--grad-like}
Let $\spc{Z}$ be a complete length space,
and let
$f\:\spc{Z}\subto\RR$ be a locally Lipschitz semiconcave subfunction
such that $|\nabla_p f|>0$ for any $p\in\Dom f$.
Suppose that $\spc{Z}$ is either $\Alex{}$ or $\CAT{}$.
Assume that $\alpha\:[0,t_{\max})\to \Dom f$ is a locally Lipschitz curve
and $\hat\alpha\:[0,s_{\max})\to \Dom f$ is its reparametrization by arc-length,
so $\alpha\z=\hat\alpha\circ\varsigma$ for a homeomorphism $\varsigma\:[0,t_{\max})\to [0,s_{\max})$.
Then
\begin{align*}
\alpha^+&=\nabla_\alpha f
\\
&\Updownarrow
\\
\hat\alpha^+=\frac{1}{|\nabla_{\hat\alpha} f|}\cdot\nabla_{\hat\alpha} f
\quad
&
\text{and}
\quad
\varsigma^{-1}(s)
=
\int\limits_0^s\frac{\dd\under s}{(f\circ\hat\alpha)'(\under s)
}.
\end{align*}
\end{thm}
\parit{Proof; $(\Downarrow)$.}
According to \ref{thm:speed},
\[
\begin{aligned}
\varsigma'(t)&\ae|\alpha^+(t)|=
\\
&=|\nabla_{\alpha(t)}f|.
\end{aligned}
\eqlbl{eq:lem:grad--grad-like-1}\]
Note that
\begin{align*}
(f\circ\alpha)'(t)&\ae (f\circ\alpha)^+(t)=
\\
&=|\nabla_{\alpha(t)} f|^2.
\end{align*}
Setting $s=\varsigma(t)$, we have
\begin{align*}(f\circ\hat\alpha)'(s)
&\ae\frac{(f\circ\alpha)'(t)}{\varsigma'(t)}
\ae
\\
&\ae|\nabla_{\alpha(t)}f|=
\\
&=|\nabla_{\hat\alpha(s)}f|.
\end{align*}
From \ref{thm:grad-like-2nd-def}, it follows that $\hat\alpha(t)$ is an $f$-gradient-like curve;
that is,
\[\hat\alpha^+=\frac{1}{|\nabla_{\hat\alpha} f|}\cdot\nabla_{\hat\alpha} f.\]
In particular, $(f\circ\hat\alpha)^+(s)=|\nabla_{\hat\alpha^+(s)} f|$, and by \ref{eq:lem:grad--grad-like-1},
\begin{align*}\varsigma^{-1}(s)
&=\int\limits_0^s\frac{\dd\under s}{|\nabla_{\hat\alpha(\under s)} f|}
=
\\
&=
\int\limits_0^s\frac{\dd\under s}{(f\circ\hat\alpha)'(\under s)}.
\end{align*}
\medskip
\noi{$(\Uparrow)$.}
Clearly,
\begin{align*}\varsigma(t)
&=
\int\limits_0^{t}(f\circ\hat\alpha)^+(\varsigma(\under t))\cdot\dd \under t
=
\\
&=
\int\limits_0^{t}|\nabla_{\alpha(\under t)}f|\cdot\dd \under t.
\end{align*}
According to \ref{cor:right-cont}, the function $s\mapsto|\nabla_{\hat\alpha(s)}f|$ is right-continuous.
Therefore so is the function $t\mapsto|\nabla_{\hat\alpha\circ\varsigma(t)}f|=|\nabla_{\alpha(t)}f|$.
Hence, for any $t_0\in[0,t_{\max})$ we have
\begin{align*}\varsigma^+(t_0)
&=
\lim_{t\to t_0+}
\frac1{t-t_0}\cdot\int\limits_{t_0}^t
|\nabla_{\alpha(\under t)}f|\cdot\dd\under t
=
\\
&=
|\nabla_{\alpha(t_0)}f|.
\end{align*}
Thus, we have
\begin{align*}\alpha^+(t_0)
&=
\varsigma^+(t_0)\cdot\hat\alpha^+(\varsigma(t_0))
=
\\
&=
\nabla_{\alpha(t_0)} f.
\end{align*}
\qedsf
\begin{thm}{Exercise}\label{ex:grad-curve-condition}
Let $\spc{Z}$ be a complete length space, and let
$f\:\spc{Z}\to \RR$ be a semiconcave locally Lipschitz
function.
Suppose that $\spc{Z}$ is either $\Alex{}$ or $\CAT{}$.
Assume $\alpha\:\II\to \spc{Z}$ is a Lipschitz curve such that
\begin{align*}
\alpha^+(t)&\le|\nabla_{\alpha(t)}f|,
\\
(f\circ\alpha)^+(t)&\ge |\nabla_{\alpha(t)}f|^2
\end{align*}
for almost all $t$.
Show that $\alpha$ is an $f$-gradient curve.
\end{thm}
\begin{thm}{Exercise}\label{ex:grad-curve-analitic}
Let $\spc{Z}$ be a complete length space, and let $f\:\spc{Z}\to\RR$ be a concave locally Lipschitz function.
Suppose that $\spc{Z}$ is either $\Alex{}$ or $\CAT{}$.
Show that $\alpha\:\RR\to\spc{Z}$ is an $f$-gradient curve if and only if
\[\dist[2]{x}{\alpha(t_1)}{\spc{Z}}-\dist[2]{x}{\alpha(t_0)}{\spc{Z}}
\le
2\cdot(t_1-t_0)\cdot (f\circ\alpha(t_1)-f(x))\]
for any $t_1>t_0$ and $x\in\spc{Z}$.
\end{thm}
\section{Distance estimates}\label{sec:grad-curv:dist-est}
\begin{thm}{First distance estimate}\label{thm:dist-est}
Let $\spc{Z}$ be a complete length space, and
let $f\:\spc{Z}\to \RR$ be a locally Lipschitz
$\lambda$-concave function.
Suppose that $\spc{Z}$ is either $\Alex{}$ or $\CAT{}$.
Let $\alpha,\beta\:[0,t_{\max})\to \spc{Z}$ be two $f$-gradient curves.
Then
\[\dist{\alpha(t)}{\beta(t)}{}
\le
e^{\lambda\cdot t}\cdot\dist[{{}}]{\alpha(0)}{\beta(0)}{}\]
for any $t$.
Moreover, the statement holds for a locally Lipschitz $\lambda$-concave subfunction $f\:\spc{Z}\subto \RR$ if there is a geodesic $[\alpha(t)\,\beta(t)]$ in $\Dom f$ for any~$t$.
\end{thm}
\parit{Proof.}
If $\spc{Z}$ is not geodesic, then pass to its ultrapower $\spc{Z}^\o$.
Fix a choice of geodesic $[\alpha(t)\,\beta(t)]$ for each $t$.
Setting $\ell(t)=\dist{\alpha(t)}{\beta(t)}{}$, from the first variation inequality (\ref{lem:first-var}) and the estimate in \ref{cor:grad-lip} we get
\[\ell^+(t)\le-\<\dir{\alpha(t)}{\beta(t)},\nabla_{\alpha(t)}f\>-\<\dir{\beta(t)}{\alpha(t)},\nabla_{\beta(t)}f\>\le \lambda\cdot\ell(t).\]
Here one has to apply the first variation inequality for distance to the midpoint $m$ of $[\alpha(t)\,\beta(t)]$, and apply the triangle inequality.
Hence the result.
\qeds
{\sloppy
\begin{thm}{Second distance estimate}\label{lem:fg-dist-est}
Let $\spc{Z}$ be a complete length space,
$\eps>0$,
and $f,g\:\spc{Z}\to \RR$ be two $\lambda$-concave locally Lipschitz functions such that $|f-g|<\eps$.
Suppose that $\spc{Z}$ is either $\Alex{}$ or $\CAT{}$.
Assume
$\alpha,\beta\:[0,t_{\max})\to \spc{Z}$ are, respectively, $f$- and $g$-gradient curves.
Let $\ell\:t\mapsto\dist{\alpha(t)}{\beta(t)}{}$.
Then
\[\ell^+\le \lambda\cdot\ell+\tfrac{2\cdot\eps}{\ell}.\]
In particular, if $\alpha(0)=\beta(0)$ and $t_{\max}<\infty$, then
\[\dist{\alpha(t)}{\beta(t)}{}
\le
\Const\cdot\sqrt{\eps\cdot t}\]
for a constant $\Const=\Const(t_{\max},\lambda)$.
Moreover, the same conclusion holds for locally Lipschitz $\lambda$-concave subfunctions $f,g\:\spc{Z}\subto \RR$ if for any $t\in[0,t_{\max})$ there is a geodesic $[\alpha(t)\,\beta(t)]$ in $\Dom f\cap\Dom g$.
\end{thm}
}
\parit{Proof.} Set $\ell=\ell(t)=\dist{\alpha(t)}{\beta(t)}{}$.
Fix $t$, and let $p=\alpha(t)$ and $q=\beta(t)$.
From the first variation formula and \ref{lem:grad-lip},
\begin{align*}
\ell^+
&\le -\<\dir{p}{q},\nabla_{p}f\>
-\<\dir{q}{p},\nabla_{q}g\>
\le
\\
&\le -{\left({f(q)}-{f(p)}-\lambda\cdot\tfrac{\ell^2}2\right)}/{\ell}
-{\left({g(p)}-{g(q)}-\lambda\cdot\tfrac{\ell^2}2\right)}/{\ell}\le
\\
&\le \lambda\cdot\ell+\tfrac{2\cdot\eps}{\ell}.
\end{align*}
By integrating, we get the second statement.
\qeds
\section{Existence and uniqueness}
\label{sec:grad-curv:exist}
In general, the ``past'' of gradient curves can not be determined by the ``present''.
For example, consider the concave function $f\:\RR\to\RR$, $f(x)\z=-|x|$. The
two curves $\alpha(t)=\min\{0,t\}$ with $\beta(t)=0$
are $f$-gradient with $\alpha(t)\z=\beta(t)\z=0$ for all $t\ge0$;
however $\alpha(t)\z\ne\beta(t)$ for all $t<0$.
Another example can be given as follows.
\begin{wrapfigure}[8]{r}{34 mm}
\vskip-0mm
\centering
\includegraphics{mppics/pic-1215}
\vskip0mm
\end{wrapfigure}
\begin{thm}{Example}
Let $f$ be as in \ref{l-inf-grad};
that is, $f\:(x,y)\mapsto-|x|\z-|y|$ be the concave function on the $(x,y)$-plane;
its gradient field is sketched on the figure.
Let $\alpha$ be an $f$-gradient curve that starts at $p=(x,y)$ for $x\z>y\z>0$.
Then
\[\alpha(t)=
\begin{cases}
(x-t,y-t) &\text{for}\quad 0\le t\le x-y,
\\
(x-t,0) &\text{for}\quad x-y\le t\le x,
\\
(0,0) &\text{for}\quad x\le t.
\end{cases}
\]
In particular, gradient curves can merge even in the region where $|\nabla f|\z\ne 0$.
Hence their \textit{past} cannot be uniquely determined from their \textit{present}.
\end{thm}
The next theorem shows that the future gradient curve is determined by its present.
\begin{thm}{Picard's theorem}\label{thm:picard}
Let $\spc{Z}$ be a complete length space,
$f\:\spc{Z}\subto \RR$ be a semiconcave subfunction.
Suppose that $\spc{Z}$ is either $\Alex{}$ or $\CAT{}$.
Assume $\alpha,\beta\:[0,t_{\max})\to\Dom f$ are two $f$-gradient curves
such that $\alpha(0)=\beta(0)$.
Then $\alpha(t)=\beta(t)$ for any $t\in[0,t_{\max})$.
\end{thm}
\parit{Proof.}
Apply the first distance estimate (\ref{thm:dist-est}).
\qeds
\begin{thm}{Local existence}\label{thm:exist-grad-curv}
Let $\spc{Z}$ be a complete length space,
and let $f\:\spc{Z}\subto \RR$ be locally Lipschitz $\lambda$-concave subfunction.
Suppose that $\spc{Z}$ is either $\Alex{}$ or $\CAT{}$.
Then for any $p\in \Dom f$,
\begin{subthm}{}
if $|\nabla_pf|>0$, then for some $\eps>0$,
there is an $f$-gradient-like curve $\hat\alpha\:[0,\eps)\to\spc{Z}$ that starts at $p$ (that is, $\hat\alpha(0)\z=p$);
\end{subthm}
\begin{subthm}{}for some $\delta>0$, there is an $f$-gradient curve $\alpha\:[0,\delta)\to \spc{Z}$ that starts at $p$ (that is $\alpha(0)=p$).
\end{subthm}
\end{thm}
This theorem was proved by Grigory Perelman and the third author \cite{perelman-petrunin:qg};
we present a simplified proof given by Alexander Lytchak \cite{lytchak:open-map}.
\parit{Proof.}
If $|\nabla_p f|=0$, then the constant curve $\alpha(t)=p$ is $f$-gradient.
Otherwise, choose $\eps>0$
such that $\oBall(p,\eps)\subset\Dom f$,
the restriction $f|_{\oBall(p,\eps)}$ is Lipschitz,
and $|\nabla_x f|>\eps$ for all $x\in \oBall(p,\eps)$;
the latter is possible due to semicontinuity of \textbar gradient\textbar\ (\ref{cor:gradlim}).
The curves $\hat\alpha$ and $\alpha$ will be constructed in the following three steps.
First we construct an $f^\o$-gradient-like curve $\hat\alpha_\o\:[0,\eps)\to\spc{Z}^\o$ as an $\o$-limit of a certain sequence of broken geodesics in $\spc{Z}$.
Second, we parametrize $\hat\alpha_\o$ as in \ref{lem:grad--grad-like}, to obtain an $f^\o$-gradient curve $\alpha_\o$ in $\spc{Z}^\o$.
Third, applying Picard's theorem (\ref{thm:picard}) together with Lemma~\ref{lem:X-X^w}, we obtain that $\alpha_\o$ lies in $\spc{Z}\subset \spc{Z}^\o$ and therefore one can take $\alpha=\alpha_\o$ and $\hat\alpha=\hat\alpha_\o$.
Note that if $\spc{Z}$ is proper, then $\spc{Z}$ is a metric component of $\spc{Z}^\o$ and $f=f^\o|_{\spc{Z}}$.
Thus, in this case, the third step is not necessary.
\parit{Step 1.}
Given $n\in \NN$,
by an open-closed argument,
we can construct a unit-speed curve $\hat\alpha_n\:[0,\eps] \to \spc{Z}$ starting at $p$, with a partition of $[0,\eps)$ into a countable number of half-open intervals $[\varsigma_i,\bar\varsigma_i)$
such that for each $i$ we have
\begin{enumerate}[(i)]
\item $\hat\alpha_n([\varsigma_i,\bar\varsigma_i])$ is a geodesic and $\bar\varsigma_i-\varsigma_i<\tfrac{1}{n}$,
\item\label{alm-grad}
$f\circ\hat\alpha_n(\bar\varsigma_i)-f\circ\hat\alpha_n(\varsigma_i)
>
(\bar\varsigma_i-\varsigma_i)
\cdot
(|\nabla_{\hat\alpha_n(\varsigma_i)}f|-\tfrac{1}{n}).$
\end{enumerate}
Passing to a subsequence of $\hat\alpha_n$ such that $f\circ\hat\alpha_n$ uniformly converges, let
\[h(s)=\lim_{n\to\infty}f\circ\hat\alpha_n(s).\]
Let $\hat\alpha_\o=\lim_{n\to\o}\hat\alpha_{n}$;
it is a curve in $\spc{Z}^\o$ that starts at $p\in \spc{Z}\subset \spc{Z}^\o$.
Clearly $\hat\alpha_\o$ is $1$-Lipschitz.
From (\ref{alm-grad}) and \ref{lem:gradcon}, we have
\[(f^\o\circ\hat\alpha_\o)^+(\varsigma)
\ge
|\nabla_{\hat\alpha_\o(\varsigma)}f^\o|.\]
According to \ref{thm:grad-like-2nd-def}, $\hat\alpha_\o\:[0,\eps)\to \spc{Z}^\o$ is an $f^\o$-gradient-like curve.
\parit{Step 2.}
Clearly $h(s)=f^\o\circ\alpha_\o$.
Therefore, according to \ref{thm:concave}, $h$ is $\lambda$-concave.
Thus we can define a homeomorphism $\varsigma\:[0,\delta]\to[0,\eps]$ by
\[{\varsigma^{-1}(s)}
=
\int\limits_0^{s}\frac{\dd\under s}{h'(\under s)},
\eqlbl{eq:thm:exist-grad-curv-1}\]
According to \ref{lem:grad--grad-like}, $\alpha(t)=\hat\alpha\circ\varsigma(t)$ is an $f^\o$-gradient curve in $\spc{Z}^\o$.
\parit{Step 3.}
Clearly, $\nabla_p f=\nabla_p f^\o$ for any $p\in \spc{Z}\subset \spc{Z}^\o$;
more formally, if $\iota\:\spc{Z}\hookrightarrow\spc{Z}^\o$ is the natural embedding, then
$(\dd_p\iota)(\nabla_p f)=\nabla_p f^\o$.
Thus it is sufficient to show that $\alpha_\o$ lies in $\spc{Z}$.
Assume the contrary, then according to \ref{lem:X-X^w}, there is a subsequence $\hat\alpha_{n_\kay}$ such that
\[\hat\alpha_\o\not
=
\hat\alpha'_\o
\df
\lim_{\kay\to\o}\hat\alpha_{n_\kay}.\]
Clearly $h(s)=f^\o\circ\hat\alpha_\o=f^\o\circ\hat\alpha'_\o$.
Thus for $\varsigma\:[0,\delta]\to[0,\eps]$ defined by \ref{eq:thm:exist-grad-curv-1},
we have that both curves
$\hat\alpha_\o\circ\varsigma$ and $\hat\alpha'_\o\circ\varsigma$ are $f^\o$-gradient.
From Picard's theorem (\ref{thm:picard}), we have $\hat\alpha_\o\circ\varsigma=\hat\alpha'_\o\circ\varsigma$.
Therefore $\hat\alpha_\o=\hat\alpha'_\o$, a contradiction.
\qeds
\section{Convergence}
\begin{thm}{Ultralimit of gradient curves}\label{ultr-lim-g-curve}
Assume
\begin{itemize}
\item $\spc{Z}_n$ is a sequence of complete spaces, $\spc{Z}_n \to \spc{Z}_\o$ as $n\to\o$, and $p_n\to p_\omega$ for a sequence of points $p_n\in \spc{Z}_n$;
\item all spaces $\spc{Z}_n$ are either $\Alex\kappa$ or $\CAT\kappa$;
\item $f_n\:\spc{Z}_n\subto \RR$ are $\Lip$-Lipschitz and $\lambda$-concave,
$f_n\to f_\o$ as $n\to\o$, and $p_\o\in\Dom f_\o$.
\end{itemize}
Then:
\begin{subthm}{thm:convex-limit-cbb}
$f_\o$ is $\lambda$-concave.
\end{subthm}
{\sloppy
\begin{subthm}{lim-grad-like}
If $|\nabla_{p_\o}f_\o|>0$, then there is $\eps>0$ such that, the $f_n$-gradient-like curves $\hat\alpha_n\:[0,\eps)\to\spc{Z}_n$ are defined for $\o$-almost all $n$.
Moreover, a curve $\hat\alpha_\o\:[0,\eps)\to\spc{Z}_\o$ is a gradient-like curve that starts at $p_\o$ if and only if
$\hat\alpha_n(s)\to\hat\alpha_\o(s)$ as $n\to\o$ for all $s\in[0,\eps)$.
\end{subthm}
}
\begin{subthm}{lim-grad}
For some $\delta>0$, the $f_n$-gradient curves $\alpha_n\:[0,\delta)\to\spc{Z}_n$ are defined for $\o$-almost all $n$.
Moreover, a curve $\alpha_\o\:[0,\delta)\to\spc{Z}_\o$ is a gradient curve that starts at $p_\o$ if and only if
$\alpha_n(t)\to\alpha_\o(t)$ as $n\to\o$ for all $t\in[0,\delta)$.
\end{subthm}
\end{thm}
%A: Do we need a convergence theorem, which would work for radial curves as well??
Note that according to Exercise~\ref{ex:nonconvex-limit}, part \ref{SHORT.thm:convex-limit-cbb} does not hold for general metric spaces.
The idea of the proof is the same as in the proof of local existence (\ref{thm:exist-grad-curv}).
\parit{Proof of \ref{ultr-lim-g-curve}; \ref{SHORT.thm:convex-limit-cbb}.}
Fix a geodesic $\gamma_\o\:\II\to \Dom f_\o$;
we need to show that the function
\[t\mapsto f_\o\circ\gamma_\o(t)-\tfrac\lambda 2\cdot t^2\eqlbl{eq:lambda-concave}\]
is concave.
Since the $f_n$ are $\Lip$-Lipschitz, so is $f_\o$.
Therefore it is sufficient to prove concavity in the interior of $\II$.
In particular, we can assume that $\gamma_\o$ is sufficiently short and can be extended behind its ends $p_\o$ and $q_\o$ as a minimizing geodesic.
If $\spc{Z}$ is $\Alex{}$, then by Theorem~\ref{thm:almost.geod}, $\gamma_\o$ is the unique geodesic connecting $p_\o$ to $q_\o$.
The same holds true if $\spc{Z}$ is $\CAT{}$ by the uniqueness of geodesics (\ref{thm:cat-unique}).
Construct two sequences of points $p_n,q_n\in\spc{Z}_n$ such that $p_n\to p_\o$ and $q_n\to q_\o$ as $n\to \o$.
Applying either \ref{thm:almost.geod} or \ref{thm:cat-unique},
we can assume that for each $n$ there is a geodesic $\gamma_n$ from $p_n$ to $q_n$ in $\spc{Z}_n$.
Since $f_n$ is $\lambda$-concave, the function
\[t\mapsto f_n\circ\gamma_n(t)-\tfrac\lambda 2\cdot t^2\]
is concave.
The $\o$-limit of the sequence $\gamma_n$ is a geodesic in $\spc{Z}_\o$ from $p_\o$ to $q_\o$.
By uniqueness of such geodesics, we have that $\gamma_n\to \gamma_\o$ as $n\to \o$.
Passing to the limit, we have \ref{eq:lambda-concave}.
\parit{If part of \ref{SHORT.lim-grad-like}.}
Take $\eps>0$ so small that $\oBall(p_\o,\eps)\subset\Dom f_\o$ and $|\nabla_{x_\o}f_\o|\z>0$ for any $x_\o\in\oBall(p_\o,\eps)$ (this is possible by \ref{cor:gradlim}).
Clearly $\hat\alpha_\o$ is $1$-Lipschitz.
From \ref{lem:gradcon}, we get
\[(f_\o\circ\hat\alpha_\o)^+(s)
\ge
|\nabla_{\hat\alpha_\o(s)}f^\o|.\]
According to \ref{thm:grad-like-2nd-def}, $\hat\alpha_\o\:[0,\eps)\to \spc{Z}^\o$ is an $f_\o$-gradient-like curve.
\parit{If part of \ref{SHORT.lim-grad}.}
Assume first that $|\nabla_{p_\o}f_\o|>0$,
so we can apply the if part of \ref{SHORT.lim-grad-like}.
Let $h_n=f_n\circ\hat\alpha_n\:[0,\eps)\to \RR$
and $h_\o=f_\o\circ\hat\alpha_\o$.
From \ref{thm:concave}, the $h_n$ are $\lambda$-concave, and clearly $h_n\to h_\o$ as $n\to\o$.
Let us define reparametrizations
\begin{align*}
{\varsigma_n^{-1}(s)}
&=
\int\limits_0^{s}\frac{\dd\under s}{h_n'(\under s)},
&
{\varsigma_\o^{-1}(s)}
&=
\int\limits_0^{s}\frac{\dd\under s}{h_\o'(\under s)}.
\end{align*}
The $\lambda$-convexity of the $h_n$ implies that $\sigma_n\to\sigma_\o$ as $n\to\o$.
By \ref{lem:grad--grad-like},
$\alpha_n=\hat\alpha_n\circ\varsigma_n$.
Applying the if part of \ref{SHORT.lim-grad-like} together with Lemma~\ref{lem:grad--grad-like},
we get that $\alpha_\o=\hat\alpha_\o\circ\varsigma_\o$ is gradient curve.
The remaining case $|\nabla_{p_\o}f_\o|=0$ can be reduced to the one above using the following trick.
Consider the sequence of spaces $\spc{Z}_n^{\times}=\spc{Z}_n\times\RR$,
with the sequence of subfunctions $f^{\times}_n\:\spc{Z}_n^{\times}\to\RR$ defined by
\[f^{\times}_n(p,t)=f_n(p)+t.\]
Applying either \ref{thm:warp-curv-bound:cbb:E} or \ref{thm:cbb-product}, we have that
$\spc{Z}_n^{\times}$ is a $\Alex{\kappa_-}$ space for $\kappa_-=\min\{\kappa,0\}$, or $\CAT{\kappa_+}$ space for $\kappa_+=\max\{\kappa,0\}$.
Note that the $f_n^{\times}$ are $\lambda_+$-concave
for $\lambda_+=\max\{\lambda,0\}$.
Now let $\spc{Z}_\o^{\times}=\spc{Z}_\o\times\RR$,
and $f^{\times}_\o(p,t)=f_\o(p)+t$.
Clearly
$\spc{Z}_n^{\times}\to\spc{Z}_\o^{\times}$,
$f_n^{\times}\to f_\o^{\times}$ as $n\to\o$,
and $|\nabla_xf^{\times}_\o|>0$ for any $x\in\Dom f_\o^{\times}$.
Thus for the sequence $f_n^{\times}\:\spc{Z}_n^{\times}\subto\RR$,
we can apply the if part of \ref{SHORT.lim-grad-like}.
It remains to note that the curve $\alpha^{\times}_\o(t)=(\alpha_\o(t),t)$ is an $f^{\times}_\o$-gradient curve in $\spc{Z}^{\times}_\o$
if and only if $\alpha_\o(t)$ is an $f_\o$-gradient curve.
\parit{Only-if part of \ref{SHORT.lim-grad} and \ref{SHORT.lim-grad-like}.}
The only-if part of \ref{SHORT.lim-grad} follows from
the if part of \ref{SHORT.lim-grad} and Picard's theorem (\ref{thm:picard}).
Applying Lemma~\ref{lem:grad--grad-like}, we get the only-if part of \ref{SHORT.lim-grad-like}.
\qeds
From local existence (\ref{thm:exist-grad-curv}) and the distance estimates (\ref{thm:dist-est}), we obtain the following.
\begin{thm}{Global existence}\label{thm:glob-exist-grad-curv}
Let $f\:\spc{Z}\subto \RR$ be a locally Lipschitz and $\lambda$-concave subfunction on a complete length space $\spc{Z}$.
Suppose that $\spc{Z}$ is either $\Alex{}$ or $\CAT{}$.
Then for any $p\in \Dom f$, there is $t_{\max}\in(0,\infty]$ such that
there is an $f$-gradient curve $\alpha\:[0,t_{\max})\to \spc{Z}$ with $\alpha(0)=p$.
Moreover, for any sequence $t_n\to t_{\max}-$, the sequence $\alpha(t_n)$ does not have a limit point in $\Dom f$.
\end{thm}
The following theorem guarantees the existence of gradient curves for all times for the special type of semiconcave functions that play important role in the theory.
It follows from \ref{thm:glob-exist-grad-curv},
\ref{thm:concave} and \ref{lem:grad--grad-like}.
\begin{thm}{Theorem}\label{thm:comp-grad-test}
Let $\spc{Z}$ be a complete length space
and $f\:\spc{Z}\to\RR$ satisfies
\[f''+\kappa\cdot f\le \lambda\]
for real constants $\kappa$ and $\lambda$.
Suppose that $\spc{Z}$ is either $\Alex{}$ or $\CAT{}$.
Then $f$ has \emph{complete gradient};
that is, for any $x\in\spc{Z}$ there is a $f$-gradient curve $\alpha\:[0,\infty)\to\spc{Z}$ that starts at~$x$.
\end{thm}
\section{Gradient flow}\label{sec:Gradient flow}
In this section we define gradient flow for semiconcave subfunctions
and reformulate theorems obtained earlier in this chapter using this new terminology.
Let $\spc{Z}$ be a complete length space,
and let $f\:\spc{Z}\subto \RR$ be a locally Lipschitz semiconcave subfunction.
Suppose that $\spc{Z}$ is either $\Alex{}$ or $\CAT{}$.
For any $t\ge 0$, we write $\GF^t_f(x)=y$ if there is an $f$-gradient curve $\alpha$ such that $\alpha(0)=x$ and $\alpha(t)=y$.
The partially defined map $\GF^t_f$ from $\spc{Z}$ to itself is called the \index{gradient flow}\emph{$f$-gradient flow} for time $t$.
From \ref{lem:fg-dist-est},
it follows that for any $t\ge 0$, the domain of definition of $\GF^t_f$ is an open subset of $\spc{Z}$;
that is, $\GF^t_f$ is a submap.
Moreover, if $f$ is defined on all of $\spc{Z}$ and $f''+\Kappa\cdot f\le \lambda$ for constants $\Kappa,\lambda\in\RR$,
then according to \ref{thm:comp-grad-test}, $\GF^t_f(x)$ is defined for all pairs $(x,t)\in\spc{Z}\times\RR_{\ge0}$.
Clearly $\GF^{t_1+t_2}_f=\GF_f^{t_1}\circ\GF_f^{t_2}$;
in other words, gradient flow is given by an action of the semigroup $(\RR_{\ge0},+)$.
From the first distance estimate (\ref{thm:dist-est}),
we have the following:
\begin{thm}{Proposition}\label{prop:GF-is-lip}
Let $\spc{Z}$ be a complete length $\Alex{}$ or $\CAT{}$ space,
and let $f\:\spc{Z}\to \RR$ be a semiconcave function.
Then the map $x\mapsto\GF^t_f(x)$ is locally Lipschitz.
Moreover, if $f$ is $\lambda$-concave, then $\GF^t_f$ is $e^{\lambda\cdot t}$-Lipschitz.
\end{thm}
The next proposition states that gradient flow is stable under Gromov--Hausdorff convergence.
The proposition follows directly from the proposition on ultralimit of gradient curves~\ref{ultr-lim-g-curve}.
\begin{thm}{Proposition}\label{grad-curve-conv}
Supose $\spc{Z}_\infty,\spc{Z}_1,\spc{Z}_2,\dots$ are complete length $\Alex\kappa$ space, $\spc{Z}_n\xto{\GH} \spc{Z}_\infty$, and $f_n\:\spc{Z}_n\to\RR$ is a sequence of
$\lambda$-concave functions that converges to $f_\infty\:\spc{Z}_\infty\to \RR$.
Then
$\GF_{f_n}^t\:\spc{Z}_n\to \spc{Z}_n$ converges to $\GF_{f_\infty}^t\:\spc{Z}_\infty\to \spc{Z}_\infty$.
\end{thm}%do we need it for ultralimits?
%\begin{thm}{Exercise}\label{ex:grad-flow-bry}
%Let $\spc{L}$ be an $m$-dimensional complete length $\Alex{}$ space, $\partial\spc{L}=\emptyset$, $K\subset \spc{L}$ be a compact subset, and let $f\:\spc{L}\to\RR$ be semiconcave function.
%Assume that for some $t>0$ the gradient flow $\GF^t_f$ is defined everywhere in $K$.
%Prove that
%$$\partial_{\spc{L}}\GF^t_fK\subset\GF^t_f\Fr K.$$
%\end{thm} %finite-dimensional problem
\section{Line splitting theorem}
Let $\spc{X}$ be a metric space, and let $A,B\subset \spc{X}$.
We say that $\spc{X}$ is a \index{direct sum}\emph{direct sum} of $A$ and $B$,
briefly
\[\spc{X}=A\oplus B,\]\index{$A\oplus B$ (direct sum)}
if there are projections $\proj_A\:\spc{X}\to A$
and
$\proj_B\:\spc{X}\to B$
such that
\[\dist[2]{x}{y}{}=\dist[2]{\proj_A(x)}{\proj_A(y)}{}+\dist[2]{\proj_B(x)}{\proj_B(y)}{}\]
for any two points $x,y\in \spc{X}$.
Note that if
\[\spc{X}=A\oplus B\]
then
\begin{itemize}
\item $A$ intersects $B$ at a single point,
\item both sets $A$ and $B$ are convex sets in $\spc{X}$.
\end{itemize}
Recall that a line in a metric space is a both-sided infinite geodesic; thus it minimizes the length on each segment.
{\sloppy
\begin{thm}{Line splitting theorem}\label{thm:splitting}
Let $\spc{L}$ be a complete length $\Alex{0}$ space
and $\gamma$ be a line in $\spc{L}$.
Then
\[\spc{L}=\spc{L}'\oplus \gamma(\RR)\]
for a subset $\spc{L}'\subset \spc{L}$.
\end{thm}
}
For smooth $2$-dimensional surfaces,
this theorem was proved by Stefan Cohn-Vossen \cite{cohn-vossen_line}.
For Riemannian manifolds of higher dimensions
it was proved by Victor Toponogov \cite{toponogov-globalization+splitting}.
Then it was generalized by Anatoliy Milka \cite{milka-line}
to Alexandrov spaces; nearly the same proof is used in \cite[1.5]{burago-burago-ivanov}.
Further generalizations of the splitting theorem for Riemannian manifolds with nonnegative Ricci curvature were obtained by Jeff Cheeger and Detlef Gromoll \cite{cheeger-gromoll-split}.
This was further generalized by Jeff Cheeger and Toby Colding for limits of Riemannian manifolds with almost nonnegative Ricci curvature \cite{cheeger-colding-alm-rigidity} and to their synthetic generalizations, so-called {}\emph{RCD spaces}, by Nicola Gigli \cite{gigli2013splitting, gigli-splitting-overview}.
Jost-Hinrich Eschenburg obtained an analogous result for Lorentzian manifolds \cite{eshenburg-split}, that is, pseudo-Riemannian manifolds of signature $(1,n)$.
We present a proof that uses gradient flow for Busemann functions.
It is close in spirit to the proof given in \cite{cheeger-gromoll-split}.
Before going into the proof, let us state a few corollaries of the theorem.
\begin{thm}{Corollary}\label{cor:splitting}
Let $\spc{L}$ be a complete length $\Alex{0}$ space.
Then there is an isometric splitting
\[
\spc{L}=\spc{L}'\oplus H,
\]
where $H\subset \spc{L}$ is a subset isometric to a Hilbert space, and $\spc{L}'\subset \spc{L}$ is a convex subset that contains no line.
\end{thm}
{\sloppy
\begin{thm}{Corollary}\label{cor:splitting-vectors}
Let $\spc{K}$ be a finite-dimensional complete length $\Alex0$ cone, and let $v_+,v_-\in \spc{K}$ be a pair of opposite vectors
(that is, $v_+ + v_-=0$, see Definiton~\ref{def:opp+Lin}).
Then there is an isometry $\iota\:K\to K'\times \RR$ such that
$\iota:v_\pm\mapsto (\0',\pm|v_\pm|)$, where $K'$ is a complete length $\Alex0$ space having a cone structure with tip $\0'$.
\end{thm}
}
\begin{thm}{Corollary}\label{cor:splitting-CBB[1]}
Let $\spc{L}$ be an $m$-dimensional complete length $\Alex1$ space, $2\le m<\infty$, and $\rad\spc{L}=\pi$.
Then \[\spc{L}\iso \mathbb{S}^m.\]
\end{thm}
The following lemma is closely relevant to the first distance estimate (\ref{thm:dist-est}); its proof goes along the same lines.
\begin{thm}{Lemma}\label{lem:dist-estimate}
Let $\spc{L}$ be a complete length $\Alex{0}$ space.
Suppose $f\:\spc{L}\to\RR$ be a concave 1-Lipschitz function.
Consider two $f$-gradient curves $\alpha$ and $\beta$.
Then for any $t, s\ge 0$ we have
\begin{align*}
&\dist[2]{\alpha(s)}{\beta(t)}{}
\le
\dist[2]{p}{q}{}+
2\cdot(f(p)-f(q))\cdot(s-t)+ (s-t)^2,
\end{align*}
where $p=\alpha(0)$ and $q=\beta(0)$.
\end{thm}
\parit{Proof.}
If $\spc{L}$ is not geodesic, then pass to its ultrapower $\spc{L}^\o$.
Since $f$ is 1-Lipschitz, $|\nabla f|\le1$.
Therefore
\[f\circ\beta(t)\le f(q)+t\]
for any $t\ge0$.
Set $\ell(t)=\dist{p}{\beta(t)}{}$.
Applying \ref{lem:grad-lip:lam=0} and the first variation inequality (\ref{lem:first-var}), we get
\begin{align*}
\ell^2(t)^+
&\le 2\cdot \left(f\circ\beta(t)-f(p)\right)\le
\\
&\le2\cdot\left(f(q)+t-f(p)\right).
\end{align*}
Therefore
\[\ell^2(t)-\ell^2(0)\le 2\cdot\left(f(q)-f(p)\right)\cdot t + t^2.\]
It proves the needed inequality in case $s=0$.
Combining it with the first distance estimate (\ref{thm:dist-est}), we get the result in case $s\le t$.
The case $s\ge t$ follows by switching the roles of $s$ and $t$.
\qeds
\parit{Proof of \ref{thm:splitting}.} Consider two Busemann functions, $\bus_+$ and $\bus_-$, asociated with half-lines $\gamma:[0,\infty)\to \spc{L}$ and $\gamma:(-\infty,0]\to \spc{L}$, respectively; that is,
\[
\bus_\pm(x)
=
\lim_{t\to\infty}\dist{\gamma(\pm t)}{x}{}- t.
\]
According to Exercise~\ref{ex:busemann-CBB},
both functions $\bus_\pm$ are concave.
Fix $x\in \spc{L}$.
Note that since $\gamma$ is a line, we have
\[\bus_+(x)+\bus_-(x)\ge0.\]
On the other hand, by \ref{comp-kappa},
$f(t)=\distfun[2]{x}{}{}\circ\gamma(t)$
is $2$-concave.
In particular, $f(t)\le t^2+at+b$ for some constants $a,b\in\RR$.
Passing to the limit as $t\to\pm\infty$, we have \[\bus_+(x)+\bus_-(x)\le0.\]
Hence
\[
\bus_+(x)+\bus_-(x)= 0
\]
for any $x\in \spc{L}$.
In particular, the functions $\bus_\pm$ are \index{affine function}\emph{affine};
that is, they are convex and concave at the same time.
It follows that for any $x$,
\begin{align*}
|\nabla_x \bus_\pm|
&=\sup\set{\dd_x\bus_\pm(\xi)}{\xi\in\Sigma_x}=
\\
&=\sup\set{-\dd_x\bus_\mp(\xi)}{\xi\in\Sigma_x}\equiv
\\
&\equiv1.
\end{align*}
By Exercise~\ref{ex:grad-curve-condition}, a
$1$-Lipschitz curve $\alpha$ such that $\bus_\pm(\alpha(t))=t+\Const$ is a $\bus_\pm$-gradient curve.
In particular, $\alpha(t)$ is a $\bus_+$-gradient curve if and only if $\alpha(-t)$ is a $\bus_-$-gradient curve.
It follows that for any $t>0$, the $\bus_\pm$-gradient flows commute;
that is,
\[\GF_{\bus_+}^t\circ\GF_{\bus_-}^t=\id_\spc{L}.\]
Setting
\[\GF^t=\left[\begin{matrix}
\GF_{\bus_+}^t&\hbox{if}\ t\ge0\\
\GF_{\bus_-}^t&\hbox{if}\ t\le0
\end{matrix}\right.\]
defines an $\RR$-action on $\spc{L}$.
Consider the level set $\spc{L}'=\bus_+^{-1}(0)=\bus_-^{-1}(0)$;
it is a closed convex subset of $\spc{L}$, and therefore forms an Alexandrov space.
Consider the map $h\:\spc{L}'\times \RR\to \spc{L}$ defined by $h\:(x,t)\mapsto \GF^t(x)$.
Note that $h$ is onto.
Applying Lemma \ref{lem:dist-estimate} for $\GF_{\bus_+}^t$ and $\GF_{\bus_-}^t$ shows that $h$ is short and non-contracting at the same time; that is, $h$ is an isometry.
\qeds
\section{Radial curves}\label{sec:Radial curves: definition}
The radial curves are specially reparametrized gradient curves for distance functions.
This parametrization makes them behave like unit-speed geodesics in a natural comparison sense (\ref{sec:Radial comparisons}).
\begin{thm}{Definition}\label{def:rad-curv}