-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdim.tex
953 lines (806 loc) · 37.1 KB
/
dim.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
%%!TEX root = the-dim.tex
%arXiv
\chapter{Dimension of CBB spaces}
As the main dimension-like invariant, we will use the linear dimension $\LinDim$;
see Definition~\ref{def:lin-dim}. In other words, by default {}\emph{dimension} means {}\emph{linear dimension}.
\section{Struts and rank}\label{sec:struts+rank}
Our definitions of struts
and distance charts
differ from the one in \cite{burago-gromov-perelman};
it is closer to Perelman's definitions \cite{perelman:spaces2,perelman:morse}.
The term ``strut'' seems to have the closest meaning to the original Russian term used by Yuriy Burago, Grigory Perelman, and Michael Gromov \cite{burago-gromov-perelman}.
In the official translation,
it appears as ``burst'',
and in the authors' translation it was ``strainer''.
Neither seems intuitive,
so we decided to switch to ``strut''.
\begin{thm}{Definition of struts}\label{def:strut-I}
Let $\spc{L}$ be a complete length $\Alex{}$ space.
We say that a point array $(a^0,a^1,\dots,a^\kay)$ in $\spc{L}$
is \index{strutting point array}\emph{$\kappa$-strutting} for a point $p\in\spc{L}$ if $\angk\kappa p {a^i}{a^j}>\tfrac\pi2$ for all $i\ne j$.
\end{thm}
Recall that the packing number is defined in \ref{sec:notations}.
The following definition is motivated by the observation that $k\z=\pack_{\pi/2}(\SS^{k-1})-1$ for any integer $k>0$.
\begin{thm}{Definition}\label{def:rank}
Let $\spc{L}$ be a complete length $\Alex{}$ space,
and let $p\in \spc{L}$.
Let us define rank of $\spc{L}$ at $p$ as
\[\rank_p=\rank_p\spc{L}
\df
\pack_{\pi/2}\Sigma_p-1.\]
\end{thm}
Thus $\rank$ takes values in $\ZZ_{\ge0}\cup\{\infty\}$.
\begin{thm}{Proposition}\label{prop:stutt}
Let $\spc{L}$ be a complete length $\Alex{\kappa}$ space, and let $p\in \spc{L}$.
Then the following conditions are equivalent:
\begin{subthm}{lem:stut<=>rank:rank}$\rank_p\ge\kay$,
\end{subthm}
\begin{subthm}{lem:stut<=>rank:strut}
there is a point array $(a^0,a^1,\dots,a^\kay)$
that is $\kappa$-strutting at $p$.
\end{subthm}
\end{thm}
\parit{Proof of \ref{prop:stutt}, \ref{SHORT.lem:stut<=>rank:strut}$\Rightarrow$\ref{SHORT.lem:stut<=>rank:rank}.}
For each $i$,
choose a point $\acute a^i\in\Str(p)$ sufficiently close to $a^i$ (so $[p\acute a^i]$ exists for each $i$).
One can choose $\acute a^i$ so that we still have
$\angk\kappa{p}{\acute a^i}{\acute a^j}>\tfrac\pi2$ for all $i\ne j$.
From hinge comparison (\ref{angle}),
\[\mangle(\dir{p}{\acute a^j},\dir{p}{\acute a^j})
\ge
\angk\kappa{p}{\acute a^i}{\acute a^j}
>
\tfrac\pi2\]
for all $i\ne j$.
In particular, $\pack_{\pi/2}\Sigma_p\ge \kay+1$.
\parit{\ref{SHORT.lem:stut<=>rank:rank}$\Rightarrow$\ref{SHORT.lem:stut<=>rank:strut}.}
Assume $(\xi^0,\xi^1,\dots,\xi^\kay)$ is an array of directions in $\Sigma_p$, such that $\mangle(\xi^i,\xi^j)>\tfrac\pi2$ if $i\ne j$.
Without loss of generality,
we may assume that each direction $\xi^i$ is geodesic;
that is, for each $i$ there is a geodesic $\gamma^i$ in $\spc{L}$ such that $\gamma^i(0)\z=p$ and $\xi^i=(\gamma^i)^+(0)$.
From the definition of angle, it follows that for sufficiently small $\eps>0$ the array of points $a^i=\gamma^i(\eps)$ satisfies \ref{SHORT.lem:stut<=>rank:strut}.
\qeds
\begin{thm}{Corollary}\label{cor:rank>=k-open}
Let $\spc{L}$ be a complete length $\Alex{}$ space and $\kay\in\ZZ_{\ge0}$.
Then the set of all points in $\spc{L}$
with rank $\ge \kay$ is open.
\end{thm}
\parit{Proof.} Given an array of points $\bm{a}=(a^0,\dots,a^\kay)$ in $\spc{L}$, consider
the set $\Omega_{\bm{a}}$ of all points $p\in \spc{L}$ such that array $\bm{a}$
is $\kappa$-strutting for a point $p$.
Clearly $\Omega_{\bm{a}}$ is open.
According to Proposition~\ref{prop:stutt}, the set of points in $\spc{L}$
with rank $\ge \kay$ can be presented as
\[\bigcup_{\bm{a}}\Omega_{\bm{a}},\]
where the union is taken over all $\kay$-arrays $\bm{a}$ of points in $\spc{L}$.
Hence the result.
\qeds
\section{Right-inverse theorem}\label{sec:right-inverse-1}
Suppose that $\bm{a}=(a^1,\dots,a^\kay)$ is a point array in a metric space $\spc{L}$.
Recall that the map $\distfun{\bm{a}}{}{}\:\spc{L}\to\RR^n$ is defined by
\[\distfun{\bm{a}}{p}{}\df(\dist{a^1}{p}{},\dots,\dist{a^n}{p}{}).\]
\begin{thm}{Right-inverse theorem}
\label{thm:right-inverse-function}{\sloppy
Suppose $\spc{L}$ is a complete length $\Alex{\kappa}$ space,
$p,b\in\spc{L}$,
and $\bm{a}=(a^1,\dots,a^\kay)$ is a point array in $\spc{L}$.
}
Assume that $(b,a^1,a^2,\dots,a^\kay)$ is $\kappa$-strutting for $p$.
Then the distance map $\distfun{\bm{a}}{}{}\:\spc{L}\to\RR^\kay$ has a right inverse defined in a neighborhood of $\distfun{\bm{a}}{p}\in\RR^\kay$;
that is, there is a submap $\map\:\RR^\kay\subto\spc{L}$ such that $\Dom \map\z\ni \distfun{\bm{a}}{p}$ and
$\distfun{\bm{a}}{[\map(\bm{x})]}=\bm{x}$ for any $\bm{x}\in\Dom \map$.
Moreover,
\begin{subthm}{thm:right-inverse-function:Hoelder}
The map $\map$ can be chosen to be $C^{\frac{1}{2}}$-continuous (that is, Hölder continuous with exponent $\tfrac{1}{2}$) and such that
\[\map(\distfun{\bm{a}}{p})=p.\]
\end{subthm}
\begin{subthm}{thm:right-inverse-function:open-map}
The distance map $\distfun{\bm{a}}{}{}\:\spc{L}\to\RR^\kay$ is locally co-Lipschitz (in particular, open) in a neighborhood of $p$.
\end{subthm}
\end{thm}
Part \ref{SHORT.thm:right-inverse-function:open-map} of the theorem
is closely related to \cite[Theorem 5.4]{burago-gromov-perelman} by Yuriy Burago, Grigory Perelman, and Michael Gromov;
the proof we present here is different.
Yet another proof can be built on \cite[Proposition~4.3]{lytchak:open-map} by Alexander Lytchak.
%\parbf{Remark for AKP.} It seems that the set $\Im \map$ is $\kay$-rectifiable; that is, it lies in an image of a Lipschitz map from bounded domain of $\RR^\kay$ to $\spc{L}$. It seems I have a proof, but it is not yet clear we need it.??
\parit{Proof.}
Fix $\eps,r,\lambda>0$ such that the following conditions hold:
\begin{enumerate}[(i)]
\item Each distance function $\distfun{a^i}{}{}$ and $\distfun{b}{}{}$ is $\tfrac\lambda2$-concave in $\oBall(p,r)$.
\item For any $q\in \oBall(p,r)$, we have $\angk{\kappa}{q}{a^i}{a^j}>\tfrac\pi2+\eps$ for all $i\ne j$ and $\angk{\kappa}{q}{b}{a^i}\z>\tfrac\pi2+\eps$ for all $i$.
In addition, $\eps<\tfrac{1}{10}$.
\setcounter{tmpnum}{\value{enumi}}
\end{enumerate}
Choose $\delta=\tfrac1{10}\cdot\eps^2$.
Given $\bm{x}=(x^1,x^2,\dots,x^\kay)\in \RR^\kay$,
consider the function
$f_{\bm{x}}\:\spc{L}\to \RR$ defined by
\[f_{\bm{x}}=\min_{i}\{h_{\bm{x}}^i\}+\delta\cdot\distfun{b}{}{},\]
where $h_{\bm{x}}^i(q)=\min\{0,\dist{a^i}{q}{}-x^i\}$.
Note that for any $\bm{x}\in\RR^\kay$, the function $f_{\bm{x}}$ is $(1+\delta)$-Lipschitz and $\lambda$-concave in $\oBall(p,r)$.
Denote by $\alpha_{\bm{x}}(t)$ the $f_{\bm{x}}$-gradient curve (see Chapter~\ref{chap:grad}) that starts at $p$.
\begin{clm}{}\label{clm:|a alpha_x|=x}
If for some $\bm{x}\in\RR^\kay$ and $t_0\le\tfrac{r}{2}$ we have
$|\distfun{\bm{a}}{p}-\bm{x}|
\le
\tfrac{\delta^2}{10}\cdot t_0$, then
$
\distfun{\bm{a}}{[\alpha_{\bm{x}}(t_0)]}
=
\bm{x}$.
\end{clm}
First note that \ref{clm:|a alpha_x|=x} follows if for any $q\in \oBall(p,r)$, we have
\begin{enumerate}[(i)]
\setcounter{enumi}{\value{tmpnum}}
\item\label{111} $(\dd_q\distfun{a^i}{}{})(\nabla_q f_{\bm{x}})<-\tfrac{1}{10}\cdot\delta^2$ if $\dist{a^i}{q}{}>x^i$ and
\item\label{222} $(\dd_q\distfun{a^i}{}{})(\nabla_q f_{\bm{x}})>\tfrac{1}{10}\cdot\delta^2$ if
\[\dist{a^i}{q}{}-x^i=\min_j\{\dist{a^j}{q}{}\z-x^j\}<0.\]
\end{enumerate}
Indeed, since $t_0\le\tfrac{r}2$, then $\alpha_{\bm{x}}(t)\in\oBall(p,r)$ for all $t\in[0,t_0]$.
Consider the following real-to-real functions:
\[\begin{aligned}
\phi(t)
&\df
\max_{i}\{\dist{a^i}{\alpha_{\bm{x}}(t)}{}-x^i\},
\\
\psi(t)
&\df
\min_{i}\{\dist{a^i}{\alpha_{\bm{x}}(t)}{}-x^i\}.
\end{aligned}\eqlbl{eq:xy-def}\]
Then from (\ref{111}),
we have $\phi^+<-\tfrac{1}{10}\cdot\delta^2$
if $\phi>0$ and $t\in[0,t_0]$.
Similarly,
from (\ref{222}),
we have $\psi^+>\tfrac{1}{10}\cdot\delta^2$
if $\psi<0$ and $t\in[0,t_0]$.
Since $|\distfun{\bm{a}}{p}\z-\bm{x}|
\le
\tfrac{\delta^2}{10}\cdot t_0$, it follows that $\phi(0)\le \tfrac{\delta^2}{10}\cdot t_0$ and $\psi(0)\ge -\tfrac{\delta^2}{10}\cdot t_0$.
Thus $\phi(t_0)\le 0$ and $\psi(t_0)\ge 0$.
On the other hand, from \ref{eq:xy-def} we have $\phi(t_0)\ge \psi(t_0)$.
That is, $\phi(t_0)=\psi(t_0)=0$; hence \ref{clm:|a alpha_x|=x} follows.
Thus, to prove \ref{clm:|a alpha_x|=x}, it remains to prove (\ref{111}) and (\ref{222}).
First let us prove it assuming that $\spc{L}$ is geodesic.
Note that
\[(\dd_q\distfun{b}{}{})(\dir{q}{a^i})
\ge-\cos\angk{\kappa}{q}{b}{a^j}>\tfrac\eps2
\eqlbl{inq-b}\]
for all $i$, and
\[(\dd_q\distfun{a^j}{}{})(\dir{q}{a^i})
\ge
-\cos\angk{\kappa}{q}{a^i}{a^j}
>\tfrac\eps2\eqlbl{inq-a^j}\]
for all $j\ne i$.
Further, \ref{inq-a^j} implies
\[(\dd_q h_{\bm{x}}^j)(\dir{q}{a^i})\ge 0.\eqlbl{inq-h}\]
for all $i\ne j$.
The assumption in (\ref{111}) implies
\[\dd_q f_{\bm{x}}
\ge
\min_{j\ne i} \{\dd_q h_{\bm{x}}^j\}+\delta\cdot(\dd_q\distfun{b}{}{}).\]
Thus
\begin{align*}
-(\dd_q\distfun{a^i}{}{})(\nabla_q f_{\bm{x}})
&\ge
\<\dir q{a^i},\nabla_q f_{\bm{x}}\>
\ge
\\
&\ge
(\dd_qf_{\bm{x}})(\dir q{a^i})
\ge
\\
&\ge
\min_{i\ne j}\{(\dd_qh_{\bm{x}}^i)(\dir q{a^i})\}+\delta\cdot(\dd_q\distfun{b}{}{})(\dir q{a^i}).
\end{align*}
Therefore (\ref{111}) follows from \ref{inq-b} and \ref{inq-h}.
The assumption in (\ref{222}) implies that $f_{\bm{x}}(q)
=
h_{\bm{x}}^i(q)+\delta\cdot\distfun{b}{}{}$ and
\[\dd_q f_{\bm{x}}\le \dd_q \distfun{a^i}{}{}+\delta\cdot(\dd_p\distfun{b}{}{}).\]
Therefore,
\begin{align*}
(\dd_q \distfun{a^i}{}{})(\nabla_q f_{\bm{x}})
&\ge
\dd_qf_{\bm{x}}(\nabla_q f_{\bm{x}}) - \delta\cdot(\dd_p\distfun{b}{}{})(\nabla_q f_{\bm{x}})
\ge
\\
&\ge
\left[(\dd_qf_{\bm{x}})(\dir qb)\right]^2
-
\delta\cdot (1+\delta)
\ge
\\
&\ge
\left[\min_i\{-\cos\angk\kappa qb{a^i}\}-\delta\right]^2-
\delta\cdot (1+\delta).
\end{align*}
Thus (\ref{222}) follows from \ref{inq-b}, since $\eps<\tfrac{1}{10}$ and $\delta=\tfrac1{10}\cdot\eps^2$.
Therefore \ref{clm:|a alpha_x|=x} holds if $\spc{L}$ is geodesic.
If $\spc{L}$ is not geodesic,
perform the above estimate in $\spc{L}^\o$, the ultrapower of $\spc{L}$.
(Recall that according to \ref{obs:ultralimit-is-geodesic}, $\spc{L}^\o$ is geodesic.)
This completes the proof of \ref{clm:|a alpha_x|=x}.
\claimqeds
Set $t_0(\bm{x})=\tfrac{10}{\delta^2}\cdot|\distfun{\bm{a}}{p}-\bm{x}|$,
giving equality in \ref{clm:|a alpha_x|=x}.
Define the submap $\map$ by
\[\map\:{\bm{x}}\mapsto \alpha_{\bm{x}}\circ t_0(\bm{x}),\quad
\Dom\map=\oBall(\distfun{\bm{a}}{p},\tfrac{\delta^2\cdot r}{20} )\subset\RR^\kay.\]
It follows from \ref{clm:|a alpha_x|=x} that
$\distfun{\bm{a}}{[\map(\bm{x})]}=\bm{x}$ for any $\bm{x}\in\Dom\map$.
Clearly $t_0(p)=0$; thus $\map(\distfun{\bm{a}}{p})=p$.
Further, by construction of $f_{\bm{x}}$,
\[|f_{\bm{x}}(q)-f_{\bm{y}}(q)|\le |\bm{x}-\bm{y}|,\]
for any $q\in \spc{L}$.
Therefore, according to Lemma~\ref{lem:fg-dist-est}, $\map$ is $C^{\frac{1}{2}}$-continuous.
This gives \ref{SHORT.thm:right-inverse-function:Hoelder}.
Further, note that
\[\dist{p}{\map(\bm{x})}{}
\le (1+\delta)\cdot t_0(\bm{x})
\le\tfrac{11}{\delta^2}\cdot|\distfun{\bm{a}}{p}-\bm{x}|
\eqlbl{co-lip}\]
holds.
The above construction can be repeated for any $p'\in \oBall(p,\tfrac{r}{4})$, $\delta'=\delta$, and $r'=\tfrac{r}{2}$.
The inequality \ref{co-lip} for the resulting map $\map'$ implies that for any $p',q \in \oBall(p,\tfrac{r}{4})$
there is $q'\in\spc{L}$ such that $\map'(q)=\map'(q')$ and
\[\dist{p'}{q'}{}
\le
\tfrac{11}{\delta^2}\cdot|\distfun{\bm{a}}{p'}-\bm{x}|.\]
That is, the distance map $\distfun{\bm{a}}{}{}$ is locally $\tfrac{11}{\delta^2}$-co-Lipschitz in $\oBall(p,\tfrac{r}{4})$.
\qeds
\section{Dimension theorem}\label{sec:dim>m}
The following theorem is the main result of this section.
\begin{thm}{Theorem}\label{thm:dim-infty}
Let $\spc{L}$ be a complete length $\Alex{\kappa}$ space
Suppose $q\in \spc{L}$,
$R>0$,
and $m\in \ZZ_{\ge0}$.
Then the following statements are equivalent.
\begin{subthmA}{LinDim} $\LinDim\spc{L}\ge m$.
\end{subthmA}
\begin{subthmA}{thm:dim-infty:rank}
There is a point $p\in\spc{L}$ that admits a $\kappa$-strutting array $(b,a^1,\dots,a^m)\in\spc{L}^{m+1}$.
\end{subthmA}
\begin{subthmA}{LinDim+} Let $\Euk^m$ be the set
of all points $p\in \spc{L}$ such that there is a distance-preserving embedding $\EE^m\hookrightarrow \T_p$
that preserves the cone structure
(see Section \ref{sec: tangent space}).
Then $\Euk^m$ contains a dense G-delta set in $\spc{L}$.
\end{subthmA}
\begin{subthmA}{TopDim}
There is a $C^{\frac{1}{2}}$-embedding
\[\cBall[1]_{\EE^m}\hookrightarrow \oBall(q,R);\]
that is, a bi-Hölder embedding with exponent $\tfrac{1}{2}$.
\end{subthmA}
\begin{subthmA}{pack}
\[\pack_\eps \oBall(q,R)>\frac{\Const}{\eps^m}\]
for fixed $\Const>0$ and any $\eps>0$.
\end{subthmA}
\medskip
In particular:
\begin{enumerate}[(i)]
\item If $\LinDim\spc{L}=\infty$, then all the statements \ref{SHORT.LinDim+}, \ref{SHORT.TopDim}, and \ref{SHORT.pack} are satisfied for all $m\in\ZZ_{\ge0}$.
\item
If the statement \ref{SHORT.TopDim} or \ref{SHORT.pack} is satisfied for some choice of $q\in \spc{L}$ and $R>0$, then it also is satisfied for any other choice of $q$ and $R$.
\end{enumerate}
\end{thm}
For finite-dimensional spaces, Theorem~\ref{thm:dim-finite} gives a stronger version
of the theorem above.
The above theorem, with the exception of statement~\ref{SHORT.TopDim}, was proved by Conrad Plaut \cite{plaut:dimension}.
At that time, it was not known whether
\[\LinDim\spc{L}=\infty\quad \Rightarrow\quad \TopDim\spc{L}=\infty\]
for any complete length $\Alex\kappa$ space $\spc{L}$.
The latter implication was proved by Grigory Perelman and the third author \cite{perelman-petrunin:qg};
it was done by combining an idea of Conrad Plaut with the technique of gradient flow.
Part \ref{SHORT.TopDim} is somewhat stronger.
To prove Theorem \ref{thm:dim-infty} we will need the following three propositions.
\begin{thm}{Proposition}\label{E=T}
Let $p$ be a point in a a complete length $\Alex{\kappa}$ space
$\spc{L}$.
Assume there is a distance-preserving embedding $\iota\:\EE^{m}\hookrightarrow \T_p\spc{L}$
that preserves the cone structure.
% ??V: what reference is meant to be here?
Then either
\begin{subthm}{}
$\Im\iota=\T_p\spc{L}$, or
\end{subthm}
\begin{subthm}{} there is a point $p'$ arbitrarily close to $p$ such that there is a distance-preserving embedding $\iota'\:\EE^{m+1}\hookrightarrow \T_{p'}\spc{L}$
that preserves the cone structure.
\end{subthm}
\end{thm}
\parit{Proof.}
Assume $\iota(\EE^{m})$ is a proper subset of $\T_p\spc{L}$.
Equivalently, there is a direction $\xi \in \Sigma_p\setminus\iota(\mathbb{S}^{m-1})$,
where $\mathbb{S}^{m-1}\subset \EE^m$ is the unit sphere.
Fix $\eps>0$ so that $\mangle(\xi,\sigma)>\eps$ for any $\sigma\in \iota(\mathbb{S}^{m-1})$.
Choose a maximal $\eps$-packing in $\iota(\mathbb{S}^{m-1})$;
that is, an array $(\zeta^1,\zeta^2,\dots,\zeta^n)$ of directions in $\iota(\mathbb{S}^{m-1})$ such that $n=\pack_\eps \mathbb{S}^{m-1}$ and $\mangle(\zeta^i,\zeta^j)>\eps$ for any $i\ne j$.
Choose an array $(x,z^1,z^2,\dots,z^n)$ of points in $\spc{L}$ such that
$\dir p x\approx\xi$, $\dir p{z^i}\approx\zeta^i$;
here we write ``$\approx$'' for ``sufficiently close''.
We can choose this array so that
$\angk{\kappa}p x{z^i}>\eps$ for all $i$
and $\angk{\kappa}p{z^i}{z^j}>\eps$ for all $i\ne j$.
Applying Corollary \ref{cor:euclid-subcone}, there is a point $p'$ arbitrarily close to $p$
such that all directions $\dir{p'}x$, $\dir{p'}{z^1}$, $\dir{p'}{z^2},\dots,\dir{p'}{z^n}$
belong to an isometric copy of $\mathbb{S}^{\kay-1}$ in $\Sigma_{p'}$.
In addition, we may assume that $\angk{\kappa}{p'}x{z^i}>\eps$ and $\angk{\kappa}{p'}{z^i}{z^j}>\eps$.
From the hinge comparison (\ref{angle}),
$\mangle(\dir{p'}x,\dir{p'}{z^i})>\eps$
and $\mangle(\dir{p'}{z^i},\dir{p'}{z^j})>\eps$;
that is,
\[\pack_\eps \mathbb{S}^{\kay-1}\ge n+1>\pack_\eps \mathbb{S}^{m-1}.\]
Hence $\kay>m$.
\qeds
\begin{thm}{Proposition}\label{pack-homogeneus}
Let $\spc{L}$ be a complete length $\Alex{\kappa}$ space. Then
for any two points $p,\bar p\in \spc{L}$ and any $R,\bar R>0$, there is a constant $\delta\z=\delta(\kappa,R,\bar R,\dist{p}{\bar p}{})>0$ such that
\[\pack_{\delta\cdot\eps}\oBall(\bar p,\bar R)\ge \pack_{\eps}\oBall(p,R).\]
\end{thm}
\parit{Proof.} According to \ref{cor:CAT>k-sence}, we can assume that $\kappa\le 0$.
Let $n=\pack_{\eps}\oBall(p,R)$, and let ${\{x^1,\dots, x^n}\}$ be a maximal $\eps$-packing in $\oBall(p,R)$;
that is, $\dist{x^i}{x^j}{}>\eps$ for all $i\ne j$.
Without loss of generality, we may assume the $x^i$ are in $\Str(\bar p)$.
Thus, for each $i$ there is a unique geodesic $[\bar p x^i]$ (see \ref{thm:almost.geod}).
Choose a factor $1>s>0$ so that $\bar R>s\cdot(\dist{p}{\bar p}{}+R)$.
For each $i$, take $\bar x^i\in[\bar p x^i]$ so that
$\dist{\bar p}{\bar x^i}{}=s\cdot(\dist{p}{x^i}{})$.
From \ref{cor:monoton:2-sides},
\[\angkk\kappa {\bar p}{\bar x^i}{\bar x^j}{}\ge\angk\kappa {\bar p}{x^i}{x^j}.\]
\begin{wrapfigure}{o}{50 mm}
\vskip-0mm
\centering
\includegraphics{mppics/pic-1405}
\vskip0mm
\end{wrapfigure}
The cosine law gives a constant $\delta\z=\delta(\kappa,R,\bar R,\dist{p}{\bar p}{})\z>0$ such that
\[\dist{\bar x^i}{\bar x^j}{}>\delta\cdot(\dist{x^i}{x^j}{})>\delta\cdot\eps\]
for all $i\ne j$.
Hence the statement follows.
\qeds
\begin{thm}{Proposition}\label{E-comeagre}
Let $\spc{L}$ be a complete length $\Alex{\kappa}$ space,
$r\z<\varpi\kappa$
and $p\in \spc{L}$.
Assume that
\[\pack_{\eps} \oBall(p,r)
>\pack_{\eps}\cBall[r]_{\Lob{m}{\kappa}}
\eqlbl{eq:pack>pack}\]
for $\eps>0$.
Then there is a G-delta set $A\subset \spc{L}$
that is dense in a neighborhood of $p$ and
such that $\dim\Lin_q>m$ for any $q\in A$.
\end{thm}
\parit{Proof.}
Choose a maximal $\eps$-packing in $\oBall(p,r)$,
that is, an array $(x^1,x^2,\dots, x^n)$ of points in $\oBall(p,r)$ such that $n=\pack_\eps \oBall(p,r)$ and $\dist{x^i}{x^j}{}>\eps$ for any $i\ne j$.
Choose a neighborhood $\Omega\ni p$
such that $\dist{q}{x^i}{}<r$ for any $q\in \Omega$ and all $i$.
Let
\[A= \Omega\cap\Str(x^1,x^2,\dots,x^n).\]
According to Theorem \ref{thm:almost.geod}, $A$ is a G-delta set that is dense in $\Omega$.
Assume $\kay=\dim\Lin_q\le m$ for $q\in A$.
Consider an array $(v^1,v^2,\dots,v^n)$ of vectors in $\Lin_q$,
where $v^i=\ddir{q}{x^i}$.
Clearly
\[|v^i|=\dist{q}{x^i}{}<r,\]
and from the hinge comparison (\ref{angle})
we have
\[\side\kappa \hinge \0{v^i}{v^j}\ge \dist{x^i}{x^j}{}>\eps.\]
Note that the ball $\oBall(\0,r)_{\Lin_q}$ equipped with the metric $\rho(v,w)\z=\side\kappa \hinge \0{v}{w}$ is isometric to
$\cBall[r]_{\Lob{\kay}{\kappa}}$.
Thus
\[
\pack_\eps\cBall[r]_{\Lob{\kay}{\kappa}}
\ge
\pack_\eps \oBall(p,r),
\]
which contradicts $\kay\le m$ and \ref{eq:pack>pack}.
\qeds
The proof of Theorem \ref{thm:dim-infty} is essentially done in \ref{E=T}, \ref{pack-homogeneus}, \ref{E-comeagre}, \ref{thm:inverse-function},
\ref{thm:right-inverse-function};
now we assemble the proof from these parts.
\parit{Proof of \ref{thm:dim-infty}.}
We will prove the implications
\[\textrm{\ref{SHORT.LinDim+}
$\Rightarrow$
\ref{SHORT.LinDim}
$\Rightarrow$
\ref{SHORT.thm:dim-infty:rank}
$\Rightarrow$
\ref{SHORT.pack}
$\Rightarrow$
\ref{SHORT.LinDim+}
$\Rightarrow$
\ref{SHORT.TopDim}
$\Rightarrow$
\ref{SHORT.pack}.}\]
The implication \ref{SHORT.LinDim+}$\Rightarrow$\ref{SHORT.LinDim} is trivial.
\parit{\ref{SHORT.LinDim}$\Rightarrow$\ref{SHORT.thm:dim-infty:rank}.}
Choose a point $p\in\spc{L}$ such that $\dim\Lin_p\ge m$.
Clearly one can choose an array $(\xi^0,\xi^1,\dots,\xi^m)$ of directions in $\Lin_p$ such that $\mangle(\xi^i,\xi^j)\z>\tfrac\pi2$ for all $i\ne j$.
Choose an array $(x^0,x^1,\dots,x^m)$ of points in $\spc{L}$ such that each $\dir{p}{x^i}$ is sufficiently close to $\xi^i$;
in particular, we have $\mangle\hinge{p}{x^i}{x^j}>\tfrac\pi2$.
Choose points $a^i\in\mathopen{]}p x^i\mathclose{]}$ sufficiently close to $p$.
This can be done so that each $\angk\kappa p{a^i}{a^j}$ is arbitrarily close to $\mangle\hinge p{a^i}{a^j}$,
in particular $\angk\kappa p{a^i}{a^j}>\tfrac{\pi}{2}$.
Finally, set $b=a^0$.
\parit{\ref{SHORT.thm:dim-infty:rank}$\Rightarrow$\ref{SHORT.pack}.}
Let $p\in \spc{L}$ be a point that admits a $\kappa$-strutting array $(b,a^1,\dots, a^m)$
of points in $\spc{L}$.
The right-inverse theorem (\ref{thm:right-inverse-function:open-map})
implies that the distance map $\distfun{\bm{a}}{}{}\:\spc{L}\to\RR^m$,
\[\distfun{\bm{a}}{}{}\:x\mapsto(\dist{a^1}{x}{},\dist{a^2}{x}{},\dots,\dist{a^n}{x}{}),\]
is open in a neighborhood of $p$.
Since the distance map $\distfun{\bm{a}}{}{}$ is Lipschitz,
for any $r>0$, there is $\Const>0$ such that
\[\pack_\eps \oBall(p,r)>\frac{\Const}{\eps^m}\]
for any $\eps>0$.
Applying \ref{pack-homogeneus}, we get a similar inequality for any other ball in $\spc{L}$;
that is, for any $q\in\spc{L}$ and $R>0$, there is $\Const'>0$ such that
\[\pack_\eps \oBall(q,R)>\frac{\Const'}{\eps^m}.\]
\parit{\ref{SHORT.pack}$\Rightarrow$\ref{SHORT.LinDim+}.}
Note that for any $q'\in\spc{L}$ and $R'>\dist{q}{q'}{}+R$, we have
\begin{align*}
\pack_\eps\oBall(q',R')
&\ge
\pack_\eps\oBall(q,R)
\ge
\\
&\ge
\frac{\Const}{\eps^m}
>
\\
&>
\pack_\eps\cBall[R']_{\Lob{m-1}{\kappa}}
\end{align*}
for all sufficiently small $\eps>0$.
Applying \ref{E-comeagre},
$\Euk^m$
contains a G-delta set that is dense in a neighborhood of any point $q'\in\spc{L}$.
\parit{\ref{SHORT.LinDim+}$\Rightarrow$\ref{SHORT.TopDim}.}
Since $\Euk^m$ contains a dense G-delta set in $\spc{L}$, we can choose $p\in \oBall(q,R)$ with a distance-preserving cone embedding $\iota\:\EE^m\hookrightarrow \T_p$.
Repeating the construction in \ref{SHORT.LinDim}$\Rightarrow$\ref{SHORT.thm:dim-infty:rank},
we get a $\kappa$-strutting array $(p,a^1,\dots, a^m)$ for $p$.
Applying the right-inverse theorem (\ref{thm:right-inverse-function}),
we obtain a $C^{\frac{1}{2}}$-submap
\[\map\:\RR^m\subto \oBall(q,R)\]
that is a right inverse for $\distfun{\bm{a}}{}{}\:\spc{L}\to\RR^m$ and such that $\map(\distfun{\bm{a}}{p})=p$.
In particular, $\map$ is a $C^{\frac{1}{2}}$-embedding of $\Dom\map$.
\parit{\ref{SHORT.TopDim}$\Rightarrow$\ref{SHORT.pack}.}
This proof is valid for general metric spaces;
it is based on general relations between topological dimension, Hausdorff measure and $\pack_\eps$.
Let $W\subset\oBall(q,R)$ be the image of $\map$.
Since $\TopDim W\z=m$,
Szpilrajn's theorem (\ref{thm:szpilrajn}) implies that
\[\HausMes_m W>0.\]
Given $\eps>0$, consider a maximal $\eps$-packing of $W$,
that is, an array $(x^1,x^2,\dots,x^n)$ of points in $W$ such that $n=\pack_\eps W$ and $\dist{x^i}{x^j}{}>\eps$ for all $i\ne j$.
Note that $W$ is covered by balls $\oBall(x^i,2\cdot\eps)$.
By the definition of Hausdorff measure,
\[\pack_\eps W
\ge
\frac{\Const}{\eps^m}\cdot\HausMes_m W\]
for a fixed constant $\Const>0$ and all small $\eps>0$.
Hence \ref{SHORT.pack} follows.
\qedsf
\section{Inverse function theorem}
\begin{thm}{Inverse function theorem}\label{thm:inverse-function}
Let $\spc{L}$ be an $m$-dimensional complete length $\Alex\kappa$ space
and $p,b,a^1,a^2,\dots,a^m\in\spc{L}$.
Assume that the point array $\bm{a}=(b,a^1,\dots,a^m)$ is $\kappa$-strutting for~$p$.
Then
there are $R>0$ and $\eps>0$ such that:
\begin{subthm}{thm:inverse-function:strut}
For all $i\ne j$ and any $q\in\oBall(p,R)$ we have
\[\angk\kappa{q}{a^i}{a^j}>\tfrac{\pi}{2}+\eps
\quad\text{and}\quad
\angk\kappa{q}{b}{a^i}>\tfrac{\pi}{2}.\]
\end{subthm}
\begin{subthm}{thm:inverse-function:chart}
The restriction of the distance map
\[\distfun{\bm{a}}{}{}\:x\mapsto(\dist{a^1}{x}{},\dots,\dist{a^m}{x}{})\]
to the ball $\oBall(p,R)$
is an open $[\eps,\sqrt{m}]$-bi-Lipschitz embedding $\oBall(p,R)\hookrightarrow\RR^m$.
\end{subthm}
\begin{subthm}{thm:inverse-function:R}
The value $R$ depends only on $\kappa$, $\dist{p}{a^i}{}$, $\dist{a^i}{a^j}{}$, and $\dist{b}{a^i}{}$
for all $i$ and $j$.
\end{subthm}
\end{thm}
\begin{thm}{Definition}\label{def:dist-chart}
Suppose $\spc{L}$ is an $m$-dimensional complete length $\Alex\kappa$ space.
If a point array $(b,a^1,a^2,\dots,a^m)$
and the value $R$ satisfy the conditions in Theorem~\ref{thm:inverse-function},
then the restriction
$\bm{x}=\distfun{\bm{a}}{}{}|_{\oBall(p,R)}$
is called a \index{distance chart}\emph{distance chart},
the restrictions $x^i=\distfun{a^i}{}{}|_{\oBall(p,R)}$ are called \index{distance chart!coordinates of a distance chart}\emph{coordinates},
and the restriction $y=\distfun{b}{}{}|_{\oBall(p,R)}$ is called \index{distance chart!strut of a distance chart} the \emph{strut} of the distance chart.
\end{thm}
\begin{thm}{Lemma}\label{lem:pack(S^m)+}
Let $p$ be a point in an $m$-dimensional complete length $\Alex\kappa$ space $\spc{L}$.
Assume for the directions $\xi,\zeta^1,\zeta^2,\dots,\zeta^\kay\in\Sigma_p$ the following conditions hold:
\begin{subthm}{}
$\mangle(\xi,\zeta^i)>\tfrac\pi2-\eps$ for all $i$;
\end{subthm}
\begin{subthm}{}
$\mangle(\zeta^i,\zeta^j)>\tfrac\pi2+\eps$ for all $i\ne j$.
\end{subthm}
Then $\kay\le m$.
\end{thm}
\parit{Proof.}
Without loss of generality, we can assume that all $\xi,\zeta^1,\zeta^2,\dots,\zeta^\kay$ are geodesic directions;
let $\xi=\dir{p}{x}$ and $\zeta^i=\dir{p}{z^i}$ for all $i$.
Fix a small $r>0$, and
let $\bar x\in \mathopen{]}px]$ and $\bar z^i\in\mathopen{]}p z^i]$ be points
such that
\[\dist{p}{\bar x}{}=\dist{p}{\bar z^1}{}=\dots=\dist{p}{\bar z^\kay}{}=r.\]
From the definition of angle,
if $r$ is sufficiently small we have
\begin{itemize}
\item $\angk\kappa{p}{\bar x}{\bar z^i}>\tfrac\pi2-\eps$ for all $i$,
and $\angk\kappa{p}{\bar z^i}{\bar z^j}>\tfrac\pi2+\eps$ for all $i\ne j$.
\end{itemize}
Choose a point $p'\in\Str(\bar x,\bar z^1,\bar z^2,\dots,\bar z^\kay)$ sufficiently close to $p$ that the above conditions still hold for $p'$; that is,
\begin{clm}{}
$\angk\kappa{p'}{\bar x}{\bar z^i}>\tfrac\pi2-\eps$ for all $i$, and $\angk\kappa{p'}{\bar z^i}{\bar z^j}>\tfrac\pi2+\eps$ for all $i\ne j$.
\end{clm}
Set $\acute\xi=\dir{p'}{\bar x}$ and $\acute\zeta^i=\dir{p'}{\bar z^i}$ for each $i$.
By the hinge comparison (\ref{angle}),
\begin{clm}{}
$\mangle(\acute\xi,\acute\zeta^i)>\tfrac\pi2-\eps$ for all $i$, and $\mangle(\acute\zeta^i,\acute\zeta^j)>\tfrac\pi2+\eps$ for all $i\ne j$.
\end{clm}
According to Corollary~\ref{cor:euclid-subcone}, all directions $\acute\xi,\acute\zeta^1,\acute\zeta^2,\dots,\acute\zeta^\kay$ lie in an isometric copy of the standard $n$-sphere in $\Sigma_{p'}$. Clearly $n\le m-1$.
Thus it remains to prove the following claim, which is a partial case of the lemma.
\begin{clm}{}
If $\xi,\zeta^1,\zeta^2,\dots,\zeta^\kay\in\mathbb{S}^{m-1}$,
$\dist{\xi}{\zeta^i}{}>\tfrac\pi2-\eps$ for all $i$, and
$\dist{\zeta^i}{\zeta^j}{}>\tfrac\pi2+\eps$ for all $i\ne j$,
then $\kay\le m$.
\end{clm}
For each $i$,
let
$\bar\zeta^i$
be the closest point to $\zeta^i$
in
$\Xi=\mathbb{S}^{m-1}\setminus \oBall(\xi,\tfrac\pi2)
\iso
\mathbb{S}^{m-1}_+$
(if $\zeta\in\Xi$, then $\bar\zeta^i=\zeta^i$).
By straightforward calculations, we have
\[\dist{\bar\zeta^i}{\bar\zeta^j}{}\ge \dist{\zeta^i}{\zeta^j}{}-\eps>\tfrac\pi2.\]
Thus it is sufficient to show the following claim.
\begin{clm}{}
$\pack_{\frac\pi2}\mathbb{S}^{m-1}_+= m.$
\end{clm}
Clearly, $\pack_{\frac\pi2}\mathbb{S}^{m-1}_+\ge m$.
The opposite inequality is proved by induction on $m$.
The base case $m=1$ is obvious.
Assume $(\bar\zeta^1,\bar\zeta^2,\dots,\bar\zeta^{\kay})$ is an array of points in $\mathbb{S}^{m-1}_+$ with $\dist{\bar\zeta^i}{\bar\zeta^j}{}>\tfrac\pi2$.
Without loss of generality, we can also assume that $\bar\zeta^\kay\in\partial \mathbb{S}^{m-1}_+$.
For each $i<\kay$,
let $\check\zeta^i
=\dir{\bar\zeta^\kay}{\bar\zeta^i}\in\Sigma_{\bar\zeta^\kay}\mathbb{S}^{m-1}_+\iso\mathbb{S}^{m-2}_+$.
By the hinge comparison (\ref{angle}), $\mangle(\check\zeta^i,\check\zeta^j)>\tfrac\pi2$
for all $i<j<\kay$.
Thus from the induction hypothesis we have $\kay-1\le {m-1}$.
\qeds
\parit{Proof of \ref{thm:inverse-function}; \ref{SHORT.thm:inverse-function:strut}.}
Fix $\eps>0$ such that
$\angk\kappa p{a^i}{a^j}\z>\tfrac\pi2+\eps$ and $\angk\kappa p{b}{a^i}\z>\tfrac\pi2+\eps$ for all $i\ne j$.
Choose $R>0$ sufficiently small that
$\angk\kappa q{a^i}{a^j}>\tfrac\pi2+\eps$ and $\angk\kappa q{b}{a^i}>\tfrac\pi2+\eps$ for all $i\ne j$ and any $q\in\oBall(p,R)$.
Clearly, \ref{SHORT.thm:inverse-function:strut} holds for $\oBall(p,R)$.
\parit{\ref{SHORT.thm:inverse-function:chart}.}
Note that the distance map $\distfun{\bm{a}}{}{}$ is Lipschitz
and its restriction $\distfun{\bm{a}}{}{}|_{\oBall(p,R)}$ is open;
the latter follows from the right-inverse theorem (\ref{thm:right-inverse-function:open-map}).
Thus to prove \ref{SHORT.thm:inverse-function:chart}, it is sufficient to show that
\[
\max_{i}\left\{\,\bigl|\dist{a^i}{x}{}-\dist{a^i}{y}{}\bigr|\,\right\}
>
\tfrac\eps2\cdot\dist[{{}}]{x}{y}{}
\eqlbl{expend}
\]
for any $x,y\in {\oBall(p,R)}$.
According to Lemma~\ref{lem:pack(S^m)+},
\[
\mangle\hinge{x}y{b}
\le
\tfrac\pi2-\eps
\quad\text{or}\quad
\mangle\hinge{x}y{a^i}
\le
\tfrac\pi2-\eps
\quad \text{for some}\quad i.
\]
In the latter case,
since $\dist{x}{y}{}<2\cdot R$ and $R$ is small,
the hinge comparison (\ref{angle}) implies
\[
\dist{a^i}{x}{}-\dist{a^i}{y}{}>\tfrac\eps2\cdot\dist[{{}}]{x}{y}{}
\quad \text{for some}\quad i.
\eqlbl{eq:y-x}\]
If $\mangle\hinge{x}y{b}
\le
\tfrac\pi2-\eps$, then
switching $x$ and $y$, we get
\[
\dist{a^j}{y}{}-\dist{a^j}{x}{}
>
\tfrac\eps2\cdot\dist[{{}}]{x}{y}{}
\quad \text{for some}\quad j.
\eqlbl{eq:x-y}\]
Then \ref{eq:y-x} and \ref{eq:x-y} imply \ref{expend}.
Finally, part \ref{SHORT.thm:inverse-function:R}
follows since the angle $\angk\kappa q{a^i}{a^j}$
depends continuously on $\kappa$, $\dist{q}{a^i}{}$, $\dist{q}{a^j}{}$, and $\dist{a^i}{a^j}{}$.
\qeds
\section{Finite-dimensional spaces}\label{sec:dim=m}
The next theorem is a refinement of \ref{thm:dim-infty} for the finite-dimensional case;
it was essentially proved by Yuriy Burago, Grigory Perelman, and Michael Gromov \cite{burago-gromov-perelman}.
\begin{thm}{Theorem}\label{thm:dim-finite}
Suppose $\spc{L}$ is a complete length $\Alex{\kappa}$ space,
$m$ is a nonnegative integer,
$0<R\le \varpi\kappa$, and
$q\in \spc{L}$.
Then the following statements are equivalent:
\begin{subthm}{LinDim-f} $\LinDim\spc{L}= m$.
\end{subthm}
\begin{subthm}{thm:dim-finite:rank}
$m$ is the maximal integer such that there is a point $p\in\spc{L}$ that admits a $\kappa$-strutting array $(b,a^1,\dots,a^m)$.
\end{subthm}
\begin{subthm}{LinDim+-f} $\T_p\iso \EE^m$ for any point $p$ in a dense G-delta set of $\spc{L}$.
\end{subthm}
\begin{subthm}{TopDim-f} There is an open bi-Lipschitz embedding
\[\cBall[1]_{\EE^m}\hookrightarrow \oBall(q,R)\subset \spc{L}.\]
\end{subthm}
\begin{subthm}{pack-f} For any $\eps>0$,
\[\pack_\eps\cBall[R]_{\Lob{m}{\kappa}} \ge\pack_\eps \oBall(q,R).\]
Moreover, there is $\Const=\Const(q,R)>0$ such that
\[\pack_\eps \oBall(q,R)>\frac\Const{\eps^m}.\]
\end{subthm}
\end{thm}
Using theorems \ref{thm:dim-infty} and \ref{thm:dim-finite},
one can show that linear dimension is equal to many different types of dimension, such
as {}\emph{small} and \index{inductive dimension}\emph{big inductive dimension}
and {}\emph{upper} and \index{box counting dimensions}\emph{lower box-counting dimension}
(also known as \index{Minkowski dimension}\emph{Minkowski dimension}),
\index{homological dimension}\emph{homological dimension} and so on.
The next two corollaries follow from \ref{SHORT.pack-f}.
\begin{thm}{Corollary}\label{cor:dim>proper}
Any finite-dimensional complete length $\Alex{}$ space is proper and geodesic.
\end{thm}
\begin{thm}{Corollary} Let $(\spc{L}_n)$ be a sequence of length $\Alex\kappa$ spaces and $\spc{L}_n\to \spc{L}_\o$ as $n\to\o$.
Assume $\LinDim L_n\le m$ for all $n$.
Then $\LinDim L_\o\le m$.
\end{thm}
\begin{thm}{Corollary}\label{dim=dim}
Let $\spc{L}$ be a complete length $\Alex{\kappa}$ space.
Then for any open $\Omega\subset \spc{L}$, we have
\[
\LinDim \spc{L}=
\LinDim\Omega =
\TopDim\Omega=
\HausDim\Omega,
\]
where $\TopDim$ and $\HausDim$ denote topological (\ref{def:TopDim}) and Hausdorff dimension (\ref{def:HausDim}), respectively.
In particular, $\spc{L}$ is dimension-homogeneous; that is, all open sets have the same linear dimension.
\end{thm}
\parit{Proof of \ref{dim=dim}.}
The equality
\[\LinDim \spc{L}= \LinDim\Omega\]
follows from \ref{LinDim}$\&$\ref{SHORT.LinDim+}.
If $\LinDim \spc{L}=\infty$, then
applying \ref{TopDim} for $\oBall(q,R)\subset \Omega$, we find that there is a compact subset $K\subset \Omega$ having an arbitrarily large $\TopDim K$. Therefore
\[\TopDim\Omega=\infty.\]
By Szpilrajn's theorem (\ref{thm:szpilrajn}),
$\HausDim K\ge \TopDim K$.
Thus we also have
\[\HausDim\Omega=\infty.\]
If $\LinDim \spc{L}=m<\infty$, then the first inequality in \ref{pack-f}
implies that \[\HausDim \oBall(q,R)\le m.\]
According to Corollary~\ref{cor:dim>proper},
$\spc{L}$ is proper and in particular has countable base.
Thus applying Szpilrajn's theorem again, we have
\[\TopDim\Omega\le \HausDim \Omega\le m.\]
Finally, \ref{TopDim-f} implies that $m\le\TopDim\Omega$.
\qeds
\parit{Proof of \ref{thm:dim-finite}.}
The equivalence \ref{SHORT.LinDim-f}$\Leftrightarrow$\ref{SHORT.thm:dim-finite:rank} follows from \ref{thm:dim-infty}.
\parit{\ref{SHORT.LinDim-f}$\Rightarrow$\ref{SHORT.LinDim+-f}.}
If $\LinDim\spc{L}=m$, then by Theorem~\ref{thm:dim-infty},
$\Euk^m$ contains a dense G-delta set in $\spc{L}$.
From \ref{E=T}, it follows that $\T_p$ is isometric to $\EE^m$ for any $p\in \Euk^m$.
\parit{\ref{SHORT.LinDim+-f}$\Rightarrow$\ref{SHORT.TopDim-f}.}
This is proved in exactly the same way as implication \ref{SHORT.LinDim+}$\Rightarrow$\ref{SHORT.TopDim} of theorem \ref{thm:dim-infty},
but applying the existence of a distance chart (\ref{thm:inverse-function})
instead of the right-inverse theorem (\ref{thm:right-inverse-function}).
\parit{\ref{SHORT.TopDim-f}$\Rightarrow$\ref{SHORT.pack-f}.}
From \ref{SHORT.TopDim-f}, it follows that there is a point $p\in\oBall(q,R)$ and $r>0$ such that
$\oBall(p,r)\subset \spc{L}$ is bi-Lipschitz homeomorphic to a bounded open set of $\EE^m$.
Thus there is $\Const>0$ such that
\[\pack_\eps \oBall(p,r)>\frac{\Const}{\eps^m}.\eqlbl{eq:thm:dim-finite*}\]
Applying \ref{pack-homogeneus} shows that inequality \ref{eq:thm:dim-finite*}, with different constants, holds for any other ball, in particular for $\oBall(q,R)$.
Applying \ref{E-comeagre} gives the first inequality in \ref{SHORT.pack-f}.
\parit{\ref{SHORT.pack-f}$\Rightarrow$\ref{SHORT.LinDim-f}.}
From Theorem \ref{thm:dim-infty}, we have $\LinDim\spc{L}\ge m$.
Applying Theorem \ref{thm:dim-infty} again, if $\LinDim\spc{L}\ge m+1$, then for some $\Const>0$ and any $\eps>0$,
\[\pack_\eps \oBall(q,R)\ge \frac{\Const}{\eps^{m+1}}.\]
But
\[\frac{\Const'}{\eps^m}\ge\pack_\eps \oBall(q,R)\]
for any $\eps>0$,
a contradiction.
\qeds
\begin{thm}{Exercise}\label{ex:compact-dimension-cbb}
Suppose $\spc{L}$ is a complete length $\Alex{}$ space and $\Sigma_p\spc{L}$ is compact for any $p\in\spc{L}$.
Prove that $\spc{L}$ is finite-dimensional.
\end{thm}
\section{One-dimensional spaces}
\begin{thm}{Theorem}\label{thm:dim=1.CBB}
Let $\spc{L}$ be a one-dimensional complete length $\Alex\kappa$ space.
Then $\spc{L}$ is isometric to a connected complete Riemannian one-dimensional manifold with possibly non-empty boundary.
\end{thm}
\parit{Proof.}
Clearly $\spc{L}$ is connected.
It remains to show the following:
\begin{clm}{}\label{clm:1-dim-all}
For any point $p\in\spc{L}$
there is $\eps>0$ such that $\oBall(p,\eps)$
is isometric to either $[0,\eps)$ or $(-\eps,\eps)$.
\end{clm}
First let us show:
\begin{clm}{}\label{clm:1-dim-mid}
If $p\in\mathopen{]}x y\mathclose{[}$ for $x$, $y\in\spc{L}$ and $\eps<\min\{\dist{p}{x}{},\dist{p}{y}{}\},$
then $\oBall(p,\eps)\subset\mathopen{]}x y\mathclose{[}$.
In particular,
$\oBall(p,\eps)\iso(-\eps,\eps)$.
\end{clm}
\begin{wrapfigure}{r}{33 mm}
\vskip-0mm
\centering
\includegraphics{mppics/pic-1410}
\vskip0mm
\end{wrapfigure}
Assume the contrary;
that is, there is
$$z\in \oBall(p,\eps)\setminus\mathopen{]}x y\mathclose{[}.$$
Consider a geodesic $[p z]$, and let $q\in[p z]\cap[x y]$ be the point that maximizes the distance $\dist{p}{q}{}$.
At $q$, we have three distinct directions:
to $x$, $y$, and $z$.
Moreover, $\mangle\hinge{q}{x}{y}=\pi$.
Thus, according to Proposition~\ref{E=T},
$\LinDim\spc{L}>1$, a contradiction.
\claimqeds
Now we assume no geodesic includes $p$ as a non endpoint.
Since $\LinDim\spc{L}\z=1$ there is a point $y\ne p$.
Fix a positive value $\eps<\dist{p}{y}{}$.
Let us show:
{
\begin{wrapfigure}{r}{33 mm}
\vskip0mm
\centering
\includegraphics{mppics/pic-1415}
\vskip0mm
\end{wrapfigure}
\begin{clm}{}\label{clm:1-dim-end}
$\oBall(p,\eps)\subset [p y]$;
in particular, $\oBall(p,\eps)\iso[0,\eps)$.
\end{clm}
Assume the contrary;
let $z\in \oBall(p,\eps)\setminus[p y]$.
Choose a point $w\in \mathopen{]} p y \mathclose{[}$ such that
\[\dist{p}{w}{}+\dist{p}{z}{}<\eps.\]
Consider geodesic $[w z]$, and let $q\in[p y]\cap[w z]$ be the point that maximizes the distance $\dist{w}{q}{}$.
Since no geodesic includes $p$ as a non endpoint, we have $p\ne q$.
As above, $\mangle\hinge{q}{p}{y}=\pi$
and $\dir{q}{z}$ is distinct from $\dir{q}{p}$ and $\dir{q}{p}$.
Thus, according to Proposition~\ref{E=T},
$\LinDim\spc{L}>1$, a contradiction.
\claimqeds
}
Clearly $\text{\ref{clm:1-dim-mid}}+\text{\ref{clm:1-dim-end}}\Rightarrow\text{\ref{clm:1-dim-all}}$;
hence the result.
\qeds