-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdefs-CBA.tex
2679 lines (2157 loc) · 118 KB
/
defs-CBA.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%%%!TEX root = arXiv.tex
%%%%arXiv
\chapter{Fundamentals of curvature bounded above}
\chaptermark{Fundamentals of CBA}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Four-point comparison.} \label{sec:cba-def}
\index{$\CAT{}$}
\begin{thm}{Four-point comparison}\label{def:2+2}
A quadruple of points $p^1,p^2,x^1,x^2$ in a metric space
satisfies
\index{$\CAT{}$!$\CAT\kappa$ comparison}
\emph{$\CAT\kappa$ comparison}
if
\begin{subthm}{}
$\angk{\kappa}{p^1}{x^1}{x^2}
\le
\angk{\kappa}{p^1}{p^2}{x^1}+\angk{\kappa}{p^1}{p^2}{x^2}$, or
\end{subthm}
\begin{subthm}{}
$\angk{\kappa} {p^2}{x^1}{x^2}\le \angk{\kappa} {p^2}{p^1}{x^1} + \angk{\kappa} {p^2}{p^1}{x^2}$, or
\end{subthm}
\begin{subthm}{}
one of the six model angles
\begin{align*}
\angk{\kappa}{p^1}{x^1}{x^2},\quad&\angk{\kappa}{p^1}{p^2}{x^1},\quad\angk{\kappa}{p^1}{p^2}{x^2},
\\
\angk{\kappa}{p^2}{x^1}{x^2},\quad&\angk{\kappa}{p^2}{p^1}{x^1},\quad\angk{\kappa}{p^2}{p^1}{x^2}
\end{align*}
is undefined.
\end{subthm}
\end{thm}
\begin{wrapfigure}{r}{30 mm}
\vskip-0mm
\centering
\includegraphics{mppics/pic-905}
\end{wrapfigure}
Here is a more intuitive formulation.
\begin{thm}{Reformulation}\label{def:2+2-reformulated}
Let $\spc{X}$ be a metric space.
A quadruple $p^1,p^2,x^1,x^2\in \spc{X}$ satisfies
$\CAT\kappa$ comparison if one of the following holds:
\begin{subthm}{}
One of the triples
$(p^1,p^2,x^1)$
or
$(p^1, p^2, x^2)$
has perimeter $>2\cdot\varpi\kappa$.
\end{subthm}
\begin{subthm}{}
If $\trig{\tilde p^1}{\tilde p^2}{\tilde x^1}
=
\modtrig\kappa(p^1 p^2 x^1)$
and
$\trig{\tilde p}{\tilde p^2}{\tilde x^2}
\z=
\modtrig\kappa(p^1 p^2 x^2)$, then
\[\dist{\tilde x^1}{\tilde z}{}+\dist{\tilde z}{\tilde x^2}{}\ge \dist{x^1}{x^2}{},\]
for any $\tilde z\in[\tilde p^1\tilde p^2]$.
\end{subthm}
\end{thm}
\begin{thm}{Definition}
\label{def:ccat}
Let $\spc{U}$ be a metric space.
\begin{subthm}{}
$\spc{U}$ is
\index{$\CAT{}$!$\CAT{\kappa}$ space}
$\CAT{\kappa}$
if any quadruple in $\spc{X}$ satisfies $\CAT{\kappa}$ comparison.
\end{subthm}
\begin{subthm}{}
$\spc{U}$ is
\index{$\CAT{}$!locally $\CAT{\kappa}$ space}
\emph{locally $\CAT{\kappa}$}
if any point $q\in \spc{U}$ admits a neighborhood $\Omega\ni q$ such that any quadruple in $\Omega$ satisfies $\CAT\kappa$ comparison.
\end{subthm}
\begin{subthm}{}
$\spc{U}$ is a
\index{$\CAT{}$!$\CAT{}$ space}
$\CAT{}$ space if $\spc{U}$ is $\CAT{\kappa}$ for some $\kappa\in\RR$.
\end{subthm}
\end{thm}
%\begin{thm}{Definition}
%\label{def:ccat}
%A metric space $\spc{U}$
%is called $\CAT{\kappa}$ if every quadruple $p^1,p^2,x^1,x^2$ satisfies the $\CAT\kappa$ comparison (\ref{def:2+2}).
%We say that $\spc{U}$ is $\CAT{}$ if it is $\CAT{\kappa}$ for some $\kappa\in\RR$.
%\end{thm}
The condition $\spc{U}$ is $\CAT\kappa$ should be understood as ``$\spc{U}$ has global curvature $\le\kappa$''.
In Proposition~\ref{prop:inherit-bound}, it will be shown that this formulation makes sense;
in particular, if $\kappa\le\Kappa$, then any $\CAT\kappa$ space is $\CAT\Kappa$.
This terminology was introduced by Michael Gromov:
$\CAT{}$ stands for \'Elie Cartan, Alexandr Alexandrov, and Victor Toponogov.
Originally these spaces were called \index{$\mathfrak{R}_\kappa$ domain}\emph{$\mathfrak{R}_\kappa$ domains};
this is Alexandrov's terminology and is still in use.
\begin{thm}{Exercise}\label{ex:ccat-(3+1)}
Let $\spc{U}$ be a metric space.
Show that $\spc{U}$ is $\CAT\kappa$
if and only if every quadruple of points in $\spc{U}$ admits a labeling by $(p,x^1,x^2,x^3)$ such that the three angles
$\angk\kappa p{x^1}{x^2}$,
$\angk\kappa p{x^2}{x^3}$ and
$\angk\kappa p{x^1}{x^3}$
satisfy all three triangle inequalities or one of these angles is undefined.
\end{thm}
\begin{thm}{Exercise}\label{ex:sba-2+2-short}
Show that $\spc{U}$ is $\CAT\kappa$
if and only if for any quadruple of points
$p^1$, $p^2$, $x^1$, $x^2$ in $\spc{U}$ such that
$\dist{p^1}{p^2}{},\dist{x^1}{x^2}{}\le \varpi\kappa$,
there is a quadruple $q^1$, $q^2$, $y^1$, $y^2$ in $\Lob m\kappa$
such that
\begin{align*}
\dist{q^1}{q^2}{}&=\dist{p^1}{p^2}{},
&
\dist{y^1}{y^2}{}&=\dist{x^1}{x^2}{},
&
\dist{q^i}{y^j}{}&\le \dist{p^i}{x^j}{}
\end{align*}
for any $i$ and $j$.
\end{thm}
\begin{thm}{Advanced exercise}\label{ex:berg-nikolaev}
Let $\spc{U}$ be a complete length space such that for any quadruple $p,q,x,y\in\spc{L}$
the following inequality holds
\[\dist[2]{p}{q}{}+\dist[2]{x}{y}{}\le \dist[2]{p}{x}{}
+\dist[2]{p}{y}{}+\dist[2]{q}{x}{}+\dist[2]{q}{y}{}.
\eqlbl{eq:berg-nikolaev-CAT}\]
Prove that $\spc{U}$ is $\CAT0$.
Construct a 4-point metric space $\spc{X}$ that satisfies inequality \ref{eq:berg-nikolaev-CAT} for any relabeling of its points by $p,q,x,y$, and such that $\spc{X}$ is not $\CAT{0}$.
\end{thm}
The next proposition follows directly from Definition \ref{def:ccat} and the definitions of ultralimit and ultrapower;
see Section~\ref{ultralimits} for the related definitions.
Recall that $\o$ denotes a fixed selective ultrafilter on $\NN$.
\begin{thm}{Proposition}\label{prop:CAT-olim}
\label{prop:CAT^omega}
Let $\spc{U}_n$ be a $\CAT{\kappa_n}$ space for each $n\in\NN$.
Assume $\spc{U}_n\to \spc{U}_\o$ and $\kappa_n\to\kappa_\o$ as $n\to\o$.
Then $\spc{U}_\o$ is $\CAT{\kappa_\o}$.
Moreover, a metric space $\spc{U}$ is $\CAT\kappa$ if and only if so is its ultrapower~$\spc{U}^\o$.
\end{thm}
\section{Geodesics}
\begin{thm}{Uniqueness of geodesics}\label{thm:cat-unique}\label{thm:cat-complete}
In a complete length $\CAT\kappa$ space, pairs of points at distance $<\varpi\kappa$ are joined by unique geodesics, and these geodesics depend continuously on their endpoint pairs.
\end{thm}
\parit{Proof.}
Fix a complete length $\CAT\kappa$ space $\spc{U}$.
Fix two points $p^1,p^2\in \spc{U}$ such that
\[\dist{p^1}{p^2}{\spc{U}}<\varpi\kappa.\]
Choose a sequence of approximate midpoints $z_n$ between $p^1$ and $p^2$;
that is,
\[\dist{p^1}{z_n}{},\dist{p^2}{z_n}{}
\to\tfrac12\cdot\dist[{{}}]{p^1}{p^2}{}
\quad\text{as}\quad n\to\infty.
\eqlbl{eq:to|p1p2|/2}\]
By the law of cosines, $\angk{\kappa} {p^1}{z_n}{p^2}$ and $\angk{\kappa} {p^2}{z_n}{p^1}$ are arbitrarily small when $n$ is sufficiently large.
Let us apply $\CAT\kappa$ comparison (\ref{def:2+2}) to the quadruple $p^1$, $p^2$, $z_n$, $z_\kay$ with large $n$ and $\kay$.
We conclude that $\angk{\kappa} {p}{z_n}{z_\kay}$ is arbitrarily small when $n,\kay$ are sufficiently large and $p$ is either $p^1$ or $p^2$.
By \ref{eq:to|p1p2|/2} and the law of cosines, the sequence $z_n$ converges.
Since $\spc{U}$ is complete, the sequence $z_n$ converges to a midpoint between $p^1$ and $p^2$.
By Lemma~\ref{lem:mid>geod} we obtain the existence of a geodesic $[p^1p^2]$.
Now suppose $p^1_n\to p^1$, $p^2_n\to p^2$ as $n\to\infty$.
Let $z_n$ be the midpoint of a geodesic $[p^1_n p^2_n]$, and let $z$ be the midpoint of a geodesic $[p^1p^2]$.
It suffices to show that
\[\dist{z_n}{z}{}\to0
\quad \text{as}\quad
n\to\infty.
\eqlbl{eq:z_n->z}\]
By the triangle inequality, the $z_n$ are approximate midpoints between $p^1$ and $p^2$.
Apply the $\CAT\kappa$ comparison (\ref{def:2+2}) to the quadruple $p^1$, $p^2$, $z_n$,~$z$.
For $p=p^1$ or $p=p^2$, we see that $\angk{\kappa} {p}{z_n}{z}$ is arbitrarily small when $n$ is sufficiently large.
By the law of cosines, \ref{eq:z_n->z} follows.
\qeds
\begin{thm}{Exercise}\label{ex:CAT-mnfld=>ext.geod}
Let $\spc{U}$ be a complete length $\CAT{}$ space.
Assume $\spc{U}$ is a topological manifold.
Show that any geodesic in $\spc{U}$ can be extended
as a two-side infinite local geodesic.
Moreover the same holds for any locally geodesic locally $\CAT{}$ space $\spc{U}$ with nontrivial local homology groups at any point;
the latter holds in particular if $\spc{U}$ is a homological manifold.
\end{thm}
\begin{thm}{Exercise}\label{ex:complete-space-of-dir}
Assume $\spc{U}$ is a locally compact geodesic $\CAT{}$ space with extendable geodesics;
that is, any geodesic in $\spc{U}$ can be extended to a both-sided infinite local geodesic.
Show that the space of geodesic directions $\Sigma_p'$ is complete for any $p\in \spc{U}$.
\end{thm}
By the uniqueness of geodesics (\ref{thm:cat-unique}),
we have the following.
\begin{thm}{Corollary}\label{cor:cat-ccat}
Any complete length $\CAT\kappa$ space is $\varpi\kappa$-geodesic.
\end{thm}
\begin{thm}{Proposition}\label{cor:cat-completion}
The completion $\bar{\spc{U}}$ of any geodesic $\CAT{\kappa}$ space $\spc{U}$ is a complete length $\CAT\kappa$ space.
Moreover, $\spc{U}$ is a geodesic $\CAT\kappa$ space
if and only if there is a complete length $\CAT\kappa$ space $\bar{\spc{U}}$ that contains a $\varpi\kappa$-convex dense set isometric to $\spc{U}$.
\end{thm}
\parit{Proof.}
By Theorem \ref{thm:cat-complete},
in order to show that $\bar{\spc{U}}$ is $\CAT{\kappa}$,
it is sufficient to verify that the completion of a length space is a length space;
this is straightforward.
For the second part, note that the completion $\bar{\spc{U}}$
contains the original space $\spc{U}$ as a dense $\varpi\kappa$-convex subset, and the metric on $\spc{U}$ coincides with the induced length metric from $\bar{\spc{U}}$.
\qeds
Here is a corollary from Proposition~\ref{cor:cat-completion}
and Theorem~\ref{thm:cat-unique}.
\begin{thm}{Corollary}\label{cor:cat-unique}
Let $\spc{U}$ be a $\varpi\kappa$-geodesic $\CAT\kappa$ space.
Then pairs of points in $\spc{U}$ at distance less than $\varpi\kappa$ are joined by unique geodesics, and these geodesics depend continuously on their endpoint pairs.
Moreover for any pair of points $p,q\in \spc{U}$ and any value
\[\Lip>\sup\set{\frac{\sn\kappa r}{\sn\kappa \dist{p}{q}{}}}{0\le r\le \dist{p}{q}{}}\]
there are neighborhoods $\Omega_p\ni p$ and $\Omega_q\ni q$ such that the map
\[(x,y,t)\mapsto \geodpath_{[xy]}(t)\]
is $\Lip$-Lipschitz in $\Omega_p\times \Omega_q\times[0,1]$.
\end{thm}
\parit{Proof.}
By Proposition~\ref{cor:cat-completion}, any geodesic $\CAT{\kappa}$ space is isometric to a convex dense subset of a complete length $\CAT\kappa$ space.
It remains to apply~\ref{thm:cat-unique}.
\qeds
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{More comparisons}\label{sec:cat-angles}
Here we give a few reformulations of Definition~\ref{def:ccat}.
\begin{wrapfigure}{r}{25 mm}
\vskip-0mm
\centering
\includegraphics{mppics/pic-910}
\end{wrapfigure}
\begin{thm}{Theorem}
\label{thm:defs_of_cat}
If $\spc{U}$ is a $\CAT\kappa$ space, then
the following conditions hold for all triples $p,x,y\in \spc{U}$ of perimeter $<2\cdot\varpi\kappa$:
\begin{subthm}{cat-2-sum} (adjacent angle comparison\index{comparison!adjacent angle comparison}) For any geodesic $[x y]$ and $z\in \mathopen{]}x y\mathclose{[}$, we have
\[\angk\kappa z p x
+\angk\kappa z p y\ge \pi.\]
\end{subthm}
\begin{subthm}{cat-monoton}
(point-on-side comparison\index{comparison!point-on-side comparison})
For any geodesic $[x y]$ and $z\in \mathopen{]}x y\mathclose{[}$, we have
\[\angk\kappa x p y\ge\angk\kappa x p z,\]
or equivalently,
\[\dist{\tilde p}{\tilde z}{}\ge \dist{p}{z}{},\]
where $\trig{\tilde p}{\tilde x}{\tilde y}=\modtrig\kappa(p x y)$, $\tilde z\in\mathopen{]} \tilde x\tilde y\mathclose{[}$, $\dist{\tilde x}{\tilde z}{}=\dist{x}{z}{}$.
\end{subthm}
\begin{subthm}{cat-hinge}(hinge comparison\index{comparison!hinge comparison})
For any hinge $\hinge x p y$, the angle
$\mangle\hinge x p y$ exists and
\[\mangle\hinge x p y\le\angk\kappa x p y,\]
or equivalently,
\[\side\kappa \hinge x p y\le\dist{p}{y}{}.\]
\end{subthm}
%SBA: a ``hinge'' in English is a ``movable mechanism''. It must MOVE. BBI uses it correctly: if you look up ``hinge'' in BBI index, it sends you to monotonicity.
Moreover, if $\spc{U}$ is $\varpi\kappa$-geodesic, then the converse holds in each case.
\end{thm}
\parbf{Remark.}
\label{22remark}
In the following proof, the part \ref{SHORT.cat-hinge}$\Rightarrow$\ref{SHORT.cat-2-sum})
only requires that the $\CAT\kappa$ comparison (\ref{def:2+2}) hold for any quadruple, and does not require the existence of geodesics at distance $<\varpi\kappa$.
The same is true of the parts \ref{SHORT.cat-2-sum}$\Leftrightarrow$\ref{SHORT.cat-monoton} and
\ref{SHORT.cat-monoton}$\Rightarrow$\ref{SHORT.cat-hinge}.
Thus the conditions \ref{SHORT.cat-2-sum}, \ref{SHORT.cat-monoton}) and \ref{SHORT.cat-hinge} are valid for any metric space (not necessarily a length space) that satisfies $\CAT\kappa$ comparison (\ref{def:2+2}).
The converse does not hold; for example, all these conditions are
vacuously true in a
totally disconnected space, while
$\CAT\kappa$ comparison is not.
\parit{Proof; \ref{SHORT.cat-2-sum}}.
Since the perimeter of $p,x,y$ is $<2\cdot \varpi\kappa$, so is the perimeter of any subtriple of $p,z,x,y$ by the triangle inequality.
By Alexandrov's lemma (\ref{lem:alex}),
\[\angk\kappa p z x +\angk\kappa p z y < \angk{\kappa} p x y \quad \text{or}\quad \angk\kappa z p x +\angk\kappa z p y =\pi.\]
In the former case, the $\CAT\kappa$ comparison (\ref{def:2+2}) applied to the quadruple $p, z, x, y$ implies
\[\angk\kappa z p x +\angk\kappa z p y \ge \angk{\kappa} z x y =\pi.\]
\parit{\ref{SHORT.cat-2-sum}$\Leftrightarrow$\ref{SHORT.cat-monoton}.}
Follows from Alexandrov's lemma (\ref{lem:alex}).
\parit{\ref{SHORT.cat-monoton}$\Rightarrow$\ref{SHORT.cat-hinge}.}
By \ref{SHORT.cat-monoton}, for $\bar p\in\mathopen{]}x p]$ and $\bar y\in\mathopen{]}x y]$ the function $(\dist{x}{\bar p}{},\dist{x}{\bar y}{})\mapsto\angk\kappa x{\bar p}{\bar y}$ is nondecreasing in each argument.
In particular,
$\mangle\hinge x p y\z=\inf\angk\kappa x{\bar p}{\bar y}$.
Thus $\mangle\hinge x p y$ exists and is
at most $\angk\kappa x p y$.
\parit{Converse.} Assume $\spc{U}$ is $\varpi\kappa$-geodesic.
Let us first show that in this case \ref{SHORT.cat-hinge}$\Rightarrow$\ref{SHORT.cat-2-sum}.
\begin{wrapfigure}{r}{30 mm}
\vskip-4mm
\centering
\includegraphics{mppics/pic-915}
\end{wrapfigure}
Indeed, by \ref{SHORT.cat-hinge} and the triangle inequality for angles (\ref{claim:angle-3angle-inq}),
\[\angk\kappa z p x
+\angk\kappa z p y \ge \mangle\hinge z p x
+\mangle\hinge z p y \ge \pi.\]
It remains to prove the converse for \ref{SHORT.cat-monoton}.
Given a quadruple $p^1,p^2,x^1,x^2$ whose subtriples have perimeter $<2\cdot\varpi\kappa$, we must verify the $\CAT\kappa$ comparison (\ref{def:2+2}).
In $\Lob2\kappa$, construct the model triangles $\trig{\tilde p^1}{\tilde p^2}{\tilde x^1} = \modtrig\kappa(p^1 p^2 x^1 )$
and $\trig{\tilde p^1}{\tilde p^2}{\tilde x^2}\z= \modtrig\kappa(p^1 p^2 x^2)$, lying on either side of a common segment $[\tilde p^1 \tilde p^2]$.
We may suppose
\[\angk{\kappa} {p^1}{p^2}{x^1}+\angk{\kappa} {p^1}{p^2}{x^2}
\le
\pi
\quad \text{and}\quad
\angk{\kappa}{p^2}{p^1}{x^1}+\angk{\kappa} {p^2}{p^1}{x^2}
\le
\pi,\]
since otherwise $\CAT\kappa$ comparison holds trivially.
Then $[\tilde p^1 \tilde p^2]$ and $[\tilde x^1 \tilde x^2]$ intersect, say at $\tilde q$.
By assumption, there is a geodesic $[p^1 p^2]$.
Choose $q\in[p^1 p^2]$ corresponding to $\tilde q$;
that is, $\dist{p^1}{q}{}=\dist{\tilde p^1}{\tilde q}{}$.
Then
\[\dist{x^1}{x^2}{} \le \dist{x^1}{q}{} + \dist{q}{x^2}{} \le \dist{\tilde x^1}{\tilde q}{} + \dist{\tilde q}{\tilde x^2}{} = \dist{\tilde x^1}{\tilde x^2}{},\]
where the second inequality follows from \ref{SHORT.cat-monoton}.
By monotonicity of the function $a\mapsto\tangle\mc\kappa\{a;b,c\}$ (\ref{increase}),
\begin{align*}
\angk{\kappa} {p^1}{x^1}{x^2} \le \mangle\hinge{ \tilde p^1}{ \tilde x^1}{ \tilde x^2}
= \angk{\kappa} {p^1}{p^2}{x^1} + \angk{\kappa} {p^1}{p^2}{x^2}.
\end{align*}
\qedsf
Let us display a corollary of the proof of \ref{thm:defs_of_cat},
namely, monotonicity of the model angle with respect to adjacent sidelengths.
\begin{thm}{Angle-sidelength monotonicity}\label{cor:monoton-cba}
Suppose $\spc{U}$ is a $\varpi\kappa$-geodesic $\CAT\kappa$ space, and
$p,x,y\in \spc{U}$ have perimeter $<2\cdot \varpi\kappa$.
Then for $\bar y\in\mathopen{]}x y]$, the function
\[\dist{x}{\bar y}{}\mapsto \angk\kappa x p{\bar y}\]
is nondecreasing.
In particular, if $\bar p\in \mathopen{]}x p]$, then
\begin{subthm}{two-mono-cba}the function
\[(\dist{x}{\bar y}{},\dist{x}{\bar p}{})\mapsto \angk\kappa x {\bar p}{\bar y}\] is nondecreasing in each argument;
\end{subthm}
\begin{subthm}{cor:monoton-cba:angle=inf}
$\mangle\hinge{x}{p}{y}
=
\inf\set{\angk\kappa x {\bar p}{\bar y}}{
\bar p\in\mathopen{]}x p],\
\bar y\in\mathopen{]}x y]}.$
\end{subthm}
\end{thm}
\begin{thm}{Exercise}\label{mink+CAT=euclid}
Let $\spc{U}$ be $\RR^m$ with the metric defined by a norm.
Show that $\spc{U}$ is a complete length $\CAT{}$ space if and only if $\spc{U}\iso\EE^m$.
\end{thm}
\begin{thm}{Exercise}\label{ex:convexity-CAT0}
Assume $\spc{U}$ is a geodesic $\CAT0$ space.
Show that for any two geodesic paths
$\gamma,\sigma\:[0,1]\to \spc{U}$
the function
\[t\mapsto\dist{\gamma(t)}{\sigma(t)}{}\]
is convex.
\end{thm}
\begin{thm}{Proposition}
\label{prop:inherit-bound}
Assume $\kappa<\Kappa$.
Then any complete length $\CAT\kappa$ space is $\CAT\Kappa$.
Moreover a space $\spc{U}$ is $\CAT\kappa$ if $\spc{U}$ is $\CAT\Kappa$ for all $\Kappa>\kappa$.
\end{thm}
\parit{Proof.}
The first statement follows from Corollary \ref{cor:cat-ccat}, the adjacent-angles comparison (\ref{cat-2-sum}) and the monotonicity of the function $\kappa\mapsto\angk\kappa x y z$ (\ref{k-decrease}).
The second statement follows since the function $\kappa\mapsto\angk\kappa x y z$ is continuous.
\qeds
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Thin triangles} \label{sec:thin-triangle}
In this section we define thin triangles
and use them to characterize $\CAT{}$ spaces.
Inheritance for thin triangles with respect to decomposition
is the main result of this section.
It will lead to two fundamental constructions:
Alexandrov's patchwork globalization (\ref{thm:alex-patch})
and Reshetnyak gluing (\ref{thm:gluing}).
\begin{thm}{Definition of $\bm\kappa$-thin triangles}\label{def:k-thin}
Let $\trig{x^1}{x^2}{x^3}$ be a triangle of perimeter $<2\cdot \varpi\kappa$ in a metric space
and
$\trig{\tilde x^1}{\tilde x^2}{\tilde x^3}\z=\modtrig\kappa({x^1}{x^2}{x^3})$.
Consider the \emph{natural map} $\trig{\tilde x^1}{\tilde x^2}{\tilde x^3}\to \trig{x^1}{x^2}{x^3}$
that sends a point $\tilde z\in[\tilde x^i\tilde x^j]$ to the corresponding point $z\in[x^ix^j]$
(that is, such that $\dist{\tilde x^i}{\tilde z}{}=\dist{x^i}{z}{}$ and therefore $\dist{\tilde x^j}{\tilde z}{}=\dist{x^j}{z}{}$).
We say the triangle $\trig{x^1}{x^2}{x^3}$ is \index{thin triangle}\emph{$\kappa$-thin} if the natural map $\trig{\tilde x^1}{\tilde x^2}{\tilde x^3}\to \trig{x^1}{x^2}{x^3}$ is short.
\end{thm}
\begin{thm}{Exercise}\label{ex:equality-for-thin}
Let $\spc{U}$ be a $\varpi\kappa$-geodesic $\CAT\kappa$ space.
Let $\trig xyz$ be a triangle in $\spc{U}$,
and let $\trig{\tilde x}{\tilde y}{\tilde z}$ be its model triangle in $\Lob{2}{\kappa}$.
Prove that the natural map $f\:\trig{\tilde x}{\tilde y}{\tilde z}\to \trig xyz$
is distance-preserving if and only if one of the following conditions hold:
\begin{subthm}{ex:equality-for-thin:angle}
$\mangle\hinge x y z= \angk\kappa x y z$,
\end{subthm}
\begin{subthm}{ex:equality-for-thin:vertex-base}
$\dist{x}{w}{}=\dist{\tilde x}{\tilde w}{}$ for some $\tilde w\in]\tilde y\tilde z[$ and
$w= f(\tilde w)$,
\end{subthm}
\begin{subthm}{ex:equality-for-thin:side-side}
$\dist{v}{w}{}=\dist{\tilde v}{\tilde w}{}$ for some
$\tilde v\in \mathopen{]}\tilde x \tilde y\mathclose{[}$,
$\tilde w\in\mathopen{]}\tilde x \tilde z\mathclose{[}$
and $v=f(\tilde v)$, $w=f(\tilde w)$.
\end{subthm}
\end{thm}
{\sloppy
\begin{thm}{Proposition}\label{prop:k-thin}
Let $\spc{U}$ be a $\varpi\kappa$-geodesic space.
Then $\spc{U}$ is $\CAT\kappa$
if and only if every triangle of perimeter $<2\cdot \varpi\kappa$ in $\spc{U}$ is $\kappa$-thin.
\end{thm}
}
\parit{Proof.}
The if part follows from the point-on-side comparison (\ref{cat-monoton}).
The only-if part follows from angle-sidelength monotonicity (\ref{two-mono-cba}).
\qeds
\begin{thm}{Corollary}\label{cor:loc-geod-are-min}
Suppose $\spc{U}$ is a $\varpi\kappa$-geodesic $\CAT\kappa$ space.
Then any local geodesic in $\spc{U}$ of length $<\varpi\kappa$ is length-minimizing.
\end{thm}
\parit{Proof.}
Suppose $\gamma\:[0,\ell]\to\spc{U}$ is a local geodesic that is not minimizing, with $\ell<\varpi\kappa$.
Choose $a$ to be the maximal value
such that $\gamma$ is minimizing on $[0,a]$.
Further choose $b>a$ so that $\gamma$ is minimizing on~$[a,b]$.
Since triangle $\trig{\gamma(0)}{\gamma(a)}{\gamma(b)}$ is $\kappa$-thin, we have
\[\dist{\gamma(a-\eps)}{\gamma(a+\eps)}{}<2\cdot\eps\]
for all small $\eps>0$,
a contradiction.
\qeds
Now let us formulate the main result of this section.
The inheritance lemma states that in any metric space, a triangle is $\kappa$-thin if it decomposes into $\kappa$-thin triangles.
In contrast, $\kappa$-thickness of triangles (\ref{ex:fat-triangle}) is not inherited in this way.
\begin{wrapfigure}{r}{25 mm}
\vskip-0mm
\centering
\includegraphics{mppics/pic-920}
\end{wrapfigure}
\begin{thm}{Inheritance lemma}
\label{lem:inherit-angle}
In a metric space, consider a triangle $\trig p x y$ that \index{decomposed triangle}\emph{decomposes}
into two triangles $\trig p x z$ and $\trig p y z$;
that is, $\trig p x z$ and $\trig p y z$ have common side $[p z]$, and the sides $[x z]$ and $[z y]$ together form the side $[x y]$ of $\trig p x y$.
If the triangle $\trig p x y$ has perimeter $<2\cdot\varpi\kappa$
and both triangles $\trig p x z$ and $\trig p y z$ are $\kappa$-thin, then triangle $\trig p x y$ is $\kappa$-thin.
\end{thm}
The following model-space lemma is extracted from Lemma 2 in \cite{reshetnyak:major}.
\begin{thm}{Lemma}\label{lem:quadrangle}
Let $\trig{\tilde p}{\tilde x}{\tilde y}$ be a triangle in $\Lob2{\kappa}$, and let $\tilde z\in[\tilde x\tilde y]$.
Consider the solid triangle $\tilde D=\Conv\trig{\tilde p}{\tilde x}{\tilde y}$.
Construct points $\dot p, \dot x, \dot z, \dot y\in \Lob2{\kappa}$ such that
\begin{align*}
\dist{\dot p}{\dot x}{}&=\dist{\tilde p}{\tilde x}{},
&
\dist{\dot p}{\dot y}{}&=\dist{\tilde p}{\tilde y}{},
&
\dist{\dot p}{\dot z}{}&\le \dist{\tilde p}{\tilde z}{},
\\
\dist{\dot x}{\dot z}{}&=\dist{\tilde x}{\tilde z}{},
&
\dist{\dot y}{\dot z}{}&=\dist{\tilde y}{\tilde z}{},
\end{align*}
where points $\dot x$ and $\dot y$ lie on either side of $[\dot p\dot z]$.
Set
\[\dot D=\Conv\trig {\dot p}{\dot x}{\dot z}\cup \Conv\trig {\dot p} {\dot y} {\dot z}.\]
Then there is a short map $F\:\tilde D\to \dot D$ that maps $\tilde p$, $\tilde x$, $\tilde y$ and $\tilde z$ to $\dot p$, $\dot x$, $\dot y$, and $\dot z$, respectively.
\end{thm}
{
\begin{wrapfigure}{r}{41 mm}
\vskip-10mm
\centering
\includegraphics{mppics/pic-925}
\end{wrapfigure}
\parit{Proof.}
By Alexandrov's lemma (\ref{lem:alex}),
there are nonoverlapping triangles
$\trig{\tilde p}{\tilde x}{\tilde z_y}\iso\trig {\dot p}{\dot x}{\dot z}$
and
$\trig{\tilde p}{\tilde y}{\tilde z_x}\iso\trig {\dot p}{\dot y}{\dot z}$
inside triangle $\trig{\tilde p}{\tilde x}{\tilde y}$.
Connect points in each pair
$(\tilde z,\tilde z_x)$,
$(\tilde z_x,\tilde z_y)$
and $(\tilde z_y,\tilde z)$
with arcs of circles centered at
$\tilde y$, $\tilde p$, and $\tilde x$, respectively.
Define $F$ as follows.
}
\begin{itemize}
\item Map $\Conv\trig{\tilde p}{\tilde x}{\tilde z_y}$ isometrically onto $\Conv\trig {\dot p}{\dot x}{\dot y}$;
similarly map $\Conv \trig{\tilde p}{\tilde y}{\tilde z_x}$ onto $\Conv \trig {\dot p}{\dot y}{\dot z}$.
\item If $w$ is in one of the three circular sectors, say at distance $r$ from the center of the circle, let $F(w)$ be the point on
$[\dot p \dot z]$,
$[\dot x \dot z]$,
or $[\dot y \dot z]$ whose distance from the left-hand endpoint of the segment is $r$.
\item Finally, if $w$ lies in the remaining curvilinear triangle $\tilde z \tilde z_x \tilde z_y$,
set $F(w) = \dot z$.
\end{itemize}
By construction, $F$ meets the conditions of the lemma.
\qeds
\parit{Proof of \ref{lem:inherit-angle}.}
Construct model triangles $\trig{\dot p}{\dot x}{\dot z}\z=\modtrig\kappa(p x z)$
and $\trig {\dot p} {\dot y} {\dot z}\z=\modtrig\kappa(p y z)$ so that $\dot x$ and $\dot y$ lie on opposite sides of $[\dot p\dot z]$.
\begin{wrapfigure}{r}{30 mm}
\vskip-0mm
\centering
\includegraphics{mppics/pic-930}
\vskip8mm
\end{wrapfigure}
Suppose
\[\angk\kappa{z}{p}{x}+\angk\kappa{z}{p}{y}
<
\pi.\]
Then for some point $\dot w\in[\dot p\dot z]$, we have \[\dist{\dot x}{\dot w}{}+\dist{\dot w}{\dot y}{}
<
\dist{\dot x}{\dot z}{}+\dist{\dot z}{\dot y}{}=\dist{x}{y}{}.\]
Let $w\in[p z]$ correspond to $\dot w$; that is, $\dist{z}{w}{}=\dist{\dot z}{\dot w}{}$.
Since $\trig p x z$ and $\trig p y z$ are $\kappa$-thin, we have
\[\dist{x}{w}{}+\dist{w}{y}{}<\dist{x}{y}{},\]
contradicting the triangle inequality.
Thus
\[\angk\kappa{z}{p}{x}+\angk\kappa{z}{p}{y}
\ge
\pi.\]
By Alexandrov's lemma (\ref{lem:alex}), this is equivalent to
\[\angk\kappa x p z\le\angk\kappa x p y.
\eqlbl{eq:for|pz|}\]
Let $\trig{\tilde p}{\tilde x}{\tilde y}=\modtrig\kappa(p x y)$
and $\tilde z\in[\tilde x\tilde y]$ correspond to $z$; that is, $\dist{x}{z}{}=\dist{\tilde x}{\tilde z}{}$.
Inequality~\ref{eq:for|pz|} is equivalent to $\dist{ p}{ z}{}\le \dist{\tilde p}{\tilde z}{}$.
Hence Lemma~\ref{lem:quadrangle} applies. Therefore
there is a short map $F$ that sends
$\trig{\tilde p}{\tilde x}{\tilde y}$ to $\dot D=\Conv\trig {\dot p}{\dot x}{\dot z}\cup \Conv\trig {\dot p} {\dot y} {\dot z}$
in such a way that
$\tilde p\mapsto \dot p$,
$\tilde x\mapsto \dot x$,
$\tilde z\mapsto \dot z$
and
$\tilde y\mapsto \dot y$.
By assumption, the natural maps $\trig {\dot p} {\dot x} {\dot z}\to\trig p x z$ and $\trig {\dot p} {\dot y} {\dot z}\to\trig p y z$ are short.
By composition, the natural map from $\trig{\tilde p}{\tilde x}{\tilde y}$ to $\trig p y z$ is short, as claimed.
\qeds
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Function comparison} \label{sec:func-comp}
\index{comparison!function comparison}
In this section we give analytic and geometric ways of viewing the point-on-side comparison (\ref{cat-monoton}) as a convexity condition.
First we obtain a corresponding differential inequality for the distance function in $\spc{U}$;
see Section~\ref{sec:conv-fun} for the definition.
\begin{thm}{Theorem}\label{thm:function-comp}
Suppose $\spc{U}$ is a $\varpi\kappa$-geodesic space.
Then the following are equivalent:
\begin{subthm}{function-comp-cat}
$\spc{U}$ is $\CAT\kappa$,
\end{subthm}
\begin{subthm}{function-comp}
for any $p\in \spc{U}$, the function $f=\md\kappa\circ\distfun{p}{}{}$ satisfies
\[f''+\kappa \cdot f\ge 1\]
in $\oBall(p,\varpi\kappa)$.
\end{subthm}\end{thm}
\begin{thm}{Corollary}
A geodesic space $\spc{U}$ is $\CAT{0}$ if and only if for any $p\in \spc{U}$, the function $\distfun[2]{p}{}{}\:\spc{U}\to\RR$ is $2$-convex.
\end{thm}
\parit{Proof of \ref{thm:function-comp}.}
Fix a sufficiently short geodesic $[x y]$ in $\oBall(p,\varpi\kappa)$.
We can assume that the model triangle $\trig{\tilde p}{\tilde x}{\tilde y}\z=\modtrig\kappa(p x y)$ is defined.
Let \begin{align*}
\tilde r(t)&=\dist{\tilde p}{\geod_{[\tilde x\tilde y]}(t)}{},
&
r(t)&=\dist{p}{\geod_{[xy]}(t)}{}. \end{align*}
Let $\tilde f=\md\kappa\circ\tilde r$ and $f=\md\kappa\circ r$.
By \ref{md-diff-eq}, we have $\tilde f''\z=1-\kappa\cdot \tilde f$.
Clearly $\tilde f(t)$ and $f(t)$ agree at $t=0$ and $t=\dist{x}{y}{}$.
The point-on-side comparison (\ref{cat-monoton}) is the condition $r(t)\le\tilde r(t)$ for all $t\in[0,\dist{x}{y}{}]$.
Since $\md\kappa$ is increasing on $[0,\varpi\kappa)$, then $r\le \tilde r$ and $f\le \tilde f$ are equivalent.
Thus the claim follows by Jensen's inequality (\ref{y''-mono}).
\qeds
\begin{thm}{Corollary}\label{cor:convex-balls}
Suppose $\spc{U}$ is a $\varpi\kappa$-geodesic $\CAT\kappa$ space.
Then any ball (closed or open) of radius $R<\tfrac{\varpi\kappa}2$ in $\spc{U}$ is convex.
Moreover, any open ball of radius $\tfrac{\varpi\kappa}2$ is convex
and any closed ball of radius $\tfrac{\varpi\kappa}2$ is $\varpi\kappa$-convex.
\end{thm}
\parit{Proof.}
Suppose $p\in\spc{U}$, $ R\le\varpi\kappa/2$, and two points
$x$ and $y$ lie in $\cBall[p, R]$ or $\oBall(p, R)$.
By the triangle inequality, if $\dist{x}{y}{}<\varpi\kappa$, then any
geodesic $[x y]$ lies in $\oBall(p, \varpi\kappa)$.
By the function comparison (\ref{thm:function-comp}),
the geodesic $[x y]$ lies in $\cBall[p,R]$ or $\oBall(p,R)$, respectively.
Thus any ball (closed or open) of radius $R<\tfrac{\varpi\kappa}2$ is $\varpi\kappa$-convex.
This implies convexity unless there is a pair of points in the ball at distance at least $\varpi\kappa$.
By the triangle inequality, the latter is possible only for the closed ball of radius $\tfrac{\varpi\kappa}2$.
\qeds
Recall that Busemann functions are defined in Proposition \ref{prop:busemann}.
The following exercise is analogous to Exercise~\ref{ex:busemann-CBB}.
\begin{thm}{Exercise}\label{ex:busemann-CBA}{\sloppy
Let $\spc{U}$ be a complete length $\CAT\kappa$ space
and $\bus_\gamma\:\spc{U}\to \RR$ be the Busemann function for a half-line $\gamma\:[0,\infty)\to \spc{L}$.
}
\begin{subthm}{}
If $\kappa=0$, then the Busemann function $\bus_\gamma$ is convex.
\end{subthm}
\begin{subthm}{}
If $\kappa=-1$, then the function $f=\exp\circ\bus_\gamma$ satisfies
\[f''- f\ge 0.\]
\end{subthm}
\end{thm}
\section{Development}\label{sec:development-CBA}
Geometrically, the development construction (\ref{def:devel}) translates distance comparison into a local convexity statement for subsets of $\Lob2\kappa$.
Recall that a curve in $\Lob2\kappa$ is \emph{(locally) concave} with respect to $p$ if (locally) its supergraph with respect to $p$ is a convex subset of $\Lob2\kappa$; see Definition~\ref{def:convex-devel}.
\begin{thm}{Development criterion\index{comparison!development comparison}}\label{thm:concave-devel}
For a $\varpi\kappa$-geodesic space $\spc{U}$,
the following statements hold:
\begin{subthm}{locally-concave-dev}
For any $p\in \spc{U}$ and any geodesic $\gamma\:[0,T]\to\oBall(p,\varpi\kappa)$, suppose the $\kappa$-development $\tilde \gamma$ in $\Lob2\kappa$ of $\gamma$ with respect to $p$ is locally concave.
Then $\spc{U}$ is $\CAT\kappa$.
\end{subthm}
\begin{subthm}{concave-dev}
If $\spc{U}$ is $\CAT\kappa$, then for any geodesic $\gamma\:[0,T]\to\spc{U}$ and $p\in \spc{U}$
such that the triangle $\trig{p}{\gamma(0)}{\gamma(T)}$ has perimeter $<2\cdot\varpi\kappa$,
the $\kappa$-development $\tilde \gamma$ in $\Lob2\kappa$ of $\gamma$ with respect to $p$ is concave.
\end{subthm}
\end{thm}
\parit{Proof; \ref{SHORT.locally-concave-dev}.}
Let $\gamma=\geod_{[x y]}$ and $T=\dist{x}{y}{}$.
Let $\tilde \gamma\:[0,T]\to\Lob2\kappa$ be the concave $\kappa$-development based at $\tilde p$ of $\gamma$ with respect to $p$.
Let us show that the function
\[t\mapsto \angk\kappa x p{\gamma(t)}
\eqlbl{eq:ang-nondecreasing}\]
is nondecreasing.
For a partition $0=t^0<t^1<\dots<t^n=T$, let
\[\tilde y^i=\tilde \gamma(t^i)\quad \text{and}\quad \tau^i=\dist{\tilde y^0}{\tilde y^1}{}+\dist{\tilde y^1}{\tilde y^2}{}+\dots+\dist{\tilde y^{i-1}}{\tilde y^i}{}.\]
Since $\tilde \gamma$ is locally concave,
for a sufficiently fine partition the polygonal line $\tilde y^0\tilde y^1\dots\tilde y^n$ is locally concave with respect to $\tilde p$.
Alexandrov's lemma (\ref{lem:alex}), applied inductively to pairs of triangles $\modtrig\kappa\{\tau^{i-1},\dist{p}{\tilde y^0}{},\dist{p}{\tilde y^{i-1}}{}\}$ and $\modtrig\kappa\{\dist{\tilde y^{i-1}}{\tilde y^i}{}, \dist{p}{\tilde y^{i-1}}{},\dist{p}{\tilde y^{i}}{}\}$, shows that the sequence $\tilde \mangle\mc\kappa\{\dist{\tilde p}{\tilde y^{i}}{};\dist{\tilde p}{\tilde y^0}{},\tau^i\}$ is nondecreasing.
Taking finer partitions and passing to the limit, we get
\[\max\nolimits_i\{|\tau^i-t^i|\}\to0.\]
Therefore \ref{eq:ang-nondecreasing} and
the point-on-side comparison (\ref{cat-monoton}) follows.
\parit{\ref{SHORT.concave-dev}.}
Consider a partition $0=t^0<t^1<\dots<t^n=T$, and
let $x^i\z=\gamma(t^i)$. Construct a chain of model triangles $\trig{\tilde p}{\tilde x^{i-1}}{\tilde x^i}=\modtrig\kappa(p x^{i-1}x^i)$ with the direction of $[\tilde p\tilde x^i]$ turning counterclockwise as $i$ grows.
By the angle comparison (\ref{cat-hinge}),
\[\mangle\hinge{\tilde x^i}{\tilde x^{i-1}}{\tilde p}+\mangle\hinge{\tilde x^i}{\tilde x^{i+1}}{\tilde p}\ge\pi.\eqlbl{eq1:concave-devel*}
\]
Since $\gamma$ is a geodesic,
\[\length \gamma = \sum_{i=1}^n\dist{x^{i-1}}{x^i}{}\le \dist{p}{x^0}{}+\dist{p}{x^n}{}.
\eqlbl{eq2:concave-devel*}
\]
By repeated application of Alexandrov's lemma (\ref{lem:alex}), and inequality~\ref{eq2:concave-devel*},
\[\sum_{i=1}^n\mangle\hinge{\tilde p}{\tilde x^{i-1}}{\tilde x^i}
\le
\angk\kappa p{x^0}{x^n}\le\pi.\]
Then by \ref{eq1:concave-devel*}, the polygonal line $\tilde p\tilde x^0\tilde x^1\dots \tilde x^n$ are concave with respect to~$\tilde p$.
Note that under finer partitions, the polygonal line $\tilde x^0\tilde x^1\dots \tilde x^n$ approach the development of $\gamma$ with respect to $p$.
Since the polygonal lines are convex, their lengths converge to the length of $\gamma$.
Hence the result.
\qeds
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Patchwork globalization}\label{sec:patchwork}
If $\spc{U}$ is a $\CAT\kappa$ space, then it is locally $\CAT\kappa$.
The converse does not hold even for complete length space.
For example, $\mathbb{S}^1$ is locally isometric to $\RR$, and so
is locally $\CAT0$, but it is easy to find a quadruple of points in $\mathbb{S}^1$ that violates $\CAT0$ comparison.
The following theorem was essentially proved by Alexandr Alexandrov \cite[Satz 9]{alexandrov:devel};
it gives a global condition on geodesics that is necessary and sufficient for a locally $\CAT\kappa$ space to be globally $\CAT\kappa$.
The proof uses thin-triangle decompositions
and the inheritance lemma (\ref{lem:inherit-angle}).
\begin{thm}{Patchwork globalization theorem}\label{thm:alex-patch}
For any complete length space~$\spc{U}$, the following two statements are equivalent:
\begin{subthm}{thm:alex-patch:ccat}
$\spc{U}$ is $\CAT\kappa$.
\end{subthm}
\begin{subthm}{thm:alex-patch:geo-uni}
$\spc{U}$ is locally $\CAT\kappa$; moreover, pairs of points in $\spc{U}$ at distance $<\varpi\kappa$ are joined by unique geodesics, and these geodesics depend continuously on their endpoint pairs.
\end{subthm}
\end{thm}
Note that the implication \ref{SHORT.thm:alex-patch:ccat}$\Rightarrow$\ref{SHORT.thm:alex-patch:geo-uni} follows from Theorem~\ref{thm:cat-unique}.
\begin{thm}{Corollary}\label{cor:k-for-k}
Let $\Omega$ be an open locally $\CAT\kappa$ subset in a complete length space $\spc{U}$.
Then for any point $p\in \Omega$ there is $R>0$ such that $\cBall[p,R]$ is a convex subset of $\spc{U}$
and $\cBall[p,R]$ is $\CAT\kappa$.
\end{thm}
\parit{Proof.}
Fix $R>0$ such that $\CAT\kappa$ comparison holds in $\oBall(p,R)$.
We may assume that $\oBall(p,R)\subset\Omega$ and $R<\varpi\Kappa$.
The same argument as in the proof of the theorem on uniqueness of geodesics (\ref{thm:cat-unique})
shows that any two points in $\cBall[p,\tfrac R2]$ can be joined by a unique geodesic that depends continuously on the endpoints.
The same argument as in the proof of Corollary \ref{cor:convex-balls} shows that $\cBall[p,\tfrac R2]$ is a convex set.
Then \ref{SHORT.thm:alex-patch:geo-uni}$\Rightarrow$\ref{SHORT.thm:alex-patch:ccat} of the patchwork globalization theorem implies that $\cBall[p,\tfrac R2]$ is $\CAT\kappa$.
\qeds
The proof of patchwork globalization uses the following construction:
\begin{thm}{Definition (Line-of-sight map)} \label{def:sight}
%Let $\spc{U}$ be a metric space in which pairs of points at distance $<\varpi\kappa$ are joined by unique geodesics and these geodesics depend continuously on their endpoint pairs.
Let $p$ be a point, and let $\alpha$ be a curve of finite length in a length space $\spc{U}$.
Let $\bar\alpha:[0,1]\to\spc{U}$ be the constant-speed parametrization of $\alpha$.
If $\gamma_t\:[0,1]\to\spc{U}$ is a geodesic path from $p$ to $\bar\alpha(t)$, we say that the map $[0,1]\times[0,1]\to\spc{U}$ defined by
\[(t,s)\mapsto\gamma_t(s)\]
is a \index{line-of-sight map}\emph{line-of-sight map} for $\alpha$ with respect to $p$.
\end{thm}
Note that a line-of-sight map is closely related to geodesic homotopy (Section~\ref{sec:Hadamard--Cartan}).
\parit{Proof of \ref{thm:alex-patch}.}
It only remains to prove \ref{SHORT.thm:alex-patch:geo-uni}$\Rightarrow$\ref{SHORT.thm:alex-patch:ccat}.
Let $[p x y]$ be a triangle of perimeter $<2\cdot\varpi\kappa$ in $\spc{U}$.
According to \ref{prop:k-thin} and \ref{prop:inherit-bound}, it is sufficient to show the triangle $\trig p x y$ is $\kappa$-thin.
Since pairs of points at distance $<\varpi\kappa$ are joined by unique geodesics and these geodesics depend continuously on their endpoint pairs, there is a unique and continuous line-of-sight map for $[x y]$ with respect to~$p$.
For a partition \[0\z=t^0\z<t^1\z<\z\dots\z<t^N=1,\]
let $x^{i,j}=\gamma_{t^i}(t^j)$.
\begin{figure}[!ht]
\vskip0mm
\centering
\includegraphics{mppics/pic-935}
\end{figure}
Since the line-of-sight map is continuous, we may assume each triangle $\trig{x^{i,j}}{x^{i,j+1}}{x^{i+1,j+1}}$ and $\trig{x^{i,j}}{x^{i+1,j}}{x^{i+1,j+1}}$ is $\kappa$-thin
(see Proposition~\ref{prop:k-thin}).
Now we show that the $\kappa$-thin property propagates to $\trig p x y$, by repeated application of the inheritance lemma (\ref{lem:inherit-angle}):
\begin{itemize}
\item
First, for fixed $i$,
sequentially applying the lemma shows that the triangles
$\trig{x}{x^{i,1}}{x^{i+1,2}}$,
$\trig{x}{x^{i,2}}{x^{i+1,2}}$,
$\trig{x}{x^{i,2}}{x^{i+1,3}}$,
and so on are $\kappa$-thin.
\end{itemize}
In particular, for each $i$, the long triangle $\trig{x}{x^{i,N}}{x^{i+1,N}}$ is $\kappa$-thin.
\begin{itemize}
\item
Applying the lemma again shows that the triangles $\trig{x}{x^{0,N}}{x^{2,N}}$, $\trig{x}{x^{0,N}}{x^{3,N}}$, and so on are $\kappa$-thin.
\end{itemize}
In particular, $\trig p x y=\trig{p}{x^{0,N}}{x^{N,N}}$ is $\kappa$-thin.
\qeds
The following exercise implies that if the space is proper, then one can drop the condition on continuous dependence of geodesics in the formulation of patchwork globalization.
\begin{thm}{Exercise}\label{ex:patchwork}
\begin{subthm}{ex:patchwork:proper}
Suppose pairs of points in a geodesic space $\spc{U}$ are joined by unique geodesics.
Show that if $\spc{U}$ is proper, then
these geodesics depend continuously on their endpoint pairs.
\end{subthm}
\begin{subthm}{ex:patchwork:complete}
Construct an example of a complete geodesic space $\spc{U}$ such that
pairs of points in $\spc{U}$ are joined by unique geodesics, but
these geodesics do not depend continuously on their endpoint pairs.
\end{subthm}
\end{thm}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Angles}
\label{sec:angles-cba}
Recall that $\o$ denotes a selective nonprincipal ultrafilter on $\NN$, see Section~\ref{ultralimits}.
\begin{thm}{Angle semicontinuity}\label{lem:ang.semicont}
Suppose $\spc{U}_1,\spc{U}_2,\dots$ is a sequence of $\varpi\kappa$-geodesic $\CAT\kappa$ spaces
and $\spc{U}_n\to \spc{U}_\o$ as $n\to\o$.
Assume that a sequence of hinges $\hinge{p_n}{x_n}{y_n}$ in $\spc{U}_n$ converges to a hinge $\hinge{p_\o}{x_\o}{y_\o}$ in $\spc{U}_\o$ as $n\to\o$.
Then
\[\mangle\hinge{p_\o}{x_\o}{y_\o}
\ge
\lim_{n\to\o} \mangle\hinge{p_n}{x_n}{y_n}.\]
\end{thm}
%\begin{wrapfigure}[6]{r}{23mm}
%\begin{lpic}[t(0mm),b(10mm),r(0mm),l(0mm)]{pics/ang.semicont(0.12)}
%\lbl[rt]{7,18;$p_n$}
%\lbl[r]{30,94;$\bar x_n$}
%\lbl[b]{116,160;$x_n$}
%\lbl[t]{59,2;$\bar y_n$}
%\lbl[t]{174,20;$y_n$}
%\end{lpic}
%\end{wrapfigure}
\parit{Proof.}
By the angle-sidelength monotonicity (\ref{cor:monoton-cba}),
\[\mangle\hinge{p_\o}{x_\o}{y_\o}
=
\inf\set{\angk\kappa{p_\o}{\bar x_\o}{\bar y_\o}}{\bar x_\o \in \mathopen{]}p_\o x_\o],\ \bar y_\o\in \mathopen{]}p_\o y_\o]}.\]
For fixed $\bar x_\o \in \mathopen{]}p_\o x_\o]$
and $\bar y_\o\in \mathopen{]}p_\o x_\o]$,
choose $\bar x_n\in \mathopen{]} p x_n ]$ and $\bar y_n\in \mathopen{]} p y_n ]$ so that $\bar x_n\to \bar x_\o$
and $\bar y_n\to \bar y_\o$ as $n\to\o$.
Clearly
\[\angk\kappa{p_n}{\bar x_n}{\bar y_n}
\to
\angk\kappa{p_\o}{\bar x_\o}{\bar y_\o}\]
as $n\to\o$.
By the angle comparison (\ref{cat-hinge}), $\mangle\hinge{p_n}{x_n}{y_n}\le \angk\kappa{p_n}{\bar x_n}{\bar y_n}$.
Hence the result.
\qeds
Now we verify that the first variation formula
holds in the $\CAT{}$ setting.
Compare it to the first variation inequality (\ref{lem:first-var}) which holds for general metric spaces and to the strong angle lemma (\ref{1st-var+}) for $\Alex{}$ spaces.
\begin{thm}{Strong angle lemma}
\label{lem:strong-angle-cba}
Let $\spc{U}$ be a $\varpi\kappa$-geodesic $\CAT\kappa$ space.
Then for any hinge $\hinge p q y$ in $\spc{U}$,
we have
\[\mangle\hinge p q y
=
\lim_{\bar y\to p}
\set{\angk\kappa p q{\bar y}}{\bar y\in\mathopen{]}py]}
\eqlbl{eq:cba-1st-var+***}\]
for any $\kappa\in\RR$ such that $\dist{p}{q}{}<\varpi\kappa$.
\end{thm}
\parit{Proof.}
By angle-sidelength monotonicity (\ref{cor:monoton-cba}), the right-hand side is defined and is bigger than or equal to the left-hand side.
By Lemma~\ref{lem:k-K-angle}, we may take $\kappa = 0$ in \ref{eq:cba-1st-var+***}.
By the cosine law and the first variation inequality (\ref{lem:first-var}),
the right-hand side is less than or equal to the left-hand side.
\qeds
\begin{thm}{First variation}\label{thm:1st-var-cba}
Let $\spc{U}$ be a $\varpi\kappa$-geodesic $\CAT\kappa$ space.
For any nontrivial geodesic $[py]$ in $\spc{U}$ and point $q\ne p$ such that $\dist{p}{q}{}<\varpi\kappa$, we have