-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconverge.tex
607 lines (499 loc) · 24.9 KB
/
converge.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
%%!TEX root = the-converge.tex
\chapter{Space of spaces}
In this chapter we discuss the
Gromov--Hausdorff convergence of metric spaces.
%It seems that
To the best of our knowledge, Hausdorff convergence of subsets of a fixed metric space was first introduced by Felix Hausdorff \cite{hausdorff},
and a couple of years later an equivalent definition was given by Wilhelm Blaschke \cite{blaschke}.
A further refinement of this definition was introduced by Zdeněk Frolík \cite{frolik}
and then rediscovered by Robert Wijsman \cite{wijsman}.
However this refinement was a step in the direction of the so-called {}\emph{closed convergence} introduced by Hausdorff in the original book.
For that reason we call it Hausdorff convergence
instead of
\emph{Hausdorff--Blashcke--Frol\'{\i}k--Wijsman convergence}.
Gromov--Hausdorff convergence was first introduced by David Edwards \cite{edwards}
and rediscovered later by Michael Gromov \cite{gromov-polynomial-growth}.
It was an essential tool in Gromov's proof that any group of polynomial growth has a nilpotent subgroup of finite index.
Other versions of convergence of metric spaces
were considered earlier, but each time
the definition was limited to very specific types of problems.
The definition of Gromov--Hausdorff convergence of metric spaces uses
the notion of Hausdorff convergence.
Gromov--Hausdorff convergence means that a sequence of metric spaces admits a sequence of distance-preserving embeddings into a common ambient metric space so that their images converge in the Hausdorff sense.
Our definition of Gromov--Hausdorff convergence and Gromov--Hausdorff distance differ somewhat from the standard definition.
\section{Convergence of subsets}
Let $\spc{X}$ be a metric space and $A\subset \spc{X}$.
Recall that the distance from $A$ to a point $x$ in $\spc{X}$
is given by
$$\distfun Ax\df\inf\set{\dist{a}{x}{}}{a\in A}.$$
By this definition, we have $\distfun{\emptyset}x=\infty$ for any $x$.
\begin{thm}{Definition of Hausdorff convergence}\label{def:hausdorff-coverge}
Given a sequence of closed sets $A_n$ in a metric space $\spc{X}$,
a closed set $A_\infty\subset \spc{X}$ is called the Hausdorff limit of $A_n$,
briefly $A_n\Hto A_\infty$, if
$$\distfun{A_n}x\to\distfun{A_\infty}x\quad \text{as}\quad n\to\infty$$
for any fixed $x\in \spc{X}$.
In this case the, sequence of closed sets $A_n$ is said to be {}\emph{converging} or \index{Hausdorff convergence}\emph{converging in the sense of Hausdorff}.
\end{thm}
\begin{thm}{Selection theorem}
Let $A_n$ be a sequence of closed sets in a proper metric space $\spc{X}$.
Then $A_n$ has a converging subsequence in the sense of Hausdorff.
\end{thm}
\parit{Proof.}
Since $\spc{X}$ is proper,
we can choose a countable dense set $\{x_1,x_2, \dots\}$ in $\spc{X}$.
If the sequence $a_n=\distfun{A_n}x_\kay$ is unbounded for some $\kay$,
then we can pass to a subsequence of $A_n$ such that
$\distfun{A_n}x_\kay\to \infty$ as $n\to\infty$ for \emph{any}~$\kay$.
The obtained sequence converges to the empty set.
Now suppose that $a_n=\distfun{A_n}x_\kay$ is bounded for each $\kay$.
In this case, passing to a subsequence of $A_n$,
we can assume that $\distfun{A_n}x_\kay$ converges as $n\to\infty$ for any fixed $\kay$.
Note that for each $n$, the function $\distfun{A_n}\:\spc{X}\to\RR$ is 1-Lipschitz and nonnegative.
Therefore the sequence $\distfun{A_n}$ converges pointwise to a 1-Lipschitz nonnegative function $f\:\spc{X}\to\RR$.
Set $A_\infty=f^{-1}(0)$.
Since $f$ is 1-Lipschitz,
$\distfun{A_\infty}y\ge f(y)$ for any $y\in \spc{X}$.
It remains to show that $\distfun{A_\infty}y\le f(y)$ for any $y$.
Assume the contrary,
that is, $f(z)<R<\distfun{A_\infty}z$ for $z\in \spc{X}$ and $R>0$.
Then for any sufficiently large $n$ there is a point $z_n\in A_n$ such that
$\dist{x}{z_n}{}\le R$.
Since $\spc{X}$ is proper, we can pass to a partial limit $z_\infty$ of $z_n$ as $n\to\infty$.
Clearly $f(z_\infty)=0$, that is, $z_\infty\in A_\infty$.
On the other hand,
\[\distfun{A_\infty}y\le\dist{z_\infty}{y}{}\le R<\distfun{A_\infty}y,\]
a contradiction.
\qeds
\section{Convergence of spaces}
\begin{thm}{Definition}\label{def:comp-metr}
Let $\set{\spc{X}_\alpha}{\alpha\in\IndexSet}$ be a set of metric spaces.
A metric space $\bm{X}$
is called a \index{common space}\emph{common space} of $\set{\spc{X}_\alpha}{\alpha\in\IndexSet}$ if its underlying set is formed by the disjoint union
$$\bigsqcup_{\alpha\in\IndexSet} \spc{X}_\alpha$$
and each inclusion $\iota_\alpha\:\spc{X}_\alpha\hookrightarrow\bm{X}$
is distance-preserving.
\end{thm}
\begin{thm}{Definition}\label{def:GH}
Let $\bm{X}$ be a common space for proper metric spaces
$\spc{X}_1,\spc{X}_2,\dots$, and $\spc{X}_\infty$.
Assume that $\spc{X}_n$ forms an open set in $\bm{X}$ for each $n<\infty$ and
$\spc{X}_n\Hto \spc{X}_\infty$ in $\bm{X}$ as $n\to\infty$.
Then the topology $\GH$ of $\bm{X}$ is called a \index{Gromov--Hausdorff convergence}\emph{Gromov--Hausdorff convergence}
and we write $\spc{X}_n\GHto \spc{X}_\infty$ or $\spc{X}_n\xto{\GH} \spc{X}_\infty$;
the latter notation is used if we need to consider the specific Gromov--Hausdorff convergence $\GH$.
The space $\spc{X}_\infty$ is called the {}\emph{limit space} of the sequence $\spc{X}_n$ along $\GH$.
\end{thm}
When we write $\spc{X}_n\GHto \spc{X}_\infty$, we mean that we made a choice of a Gromov--Hausdorff convergence.
Note that for a fixed sequence $\spc{X}_n$ of metric spaces, one may construct different Gromov--Hausdorff convergences, say $\spc{X}_n\xto{\GH} \spc{X}_\infty$ and $\spc{X}_n\xto{\GH'} \spc{X}_\infty'$, and their limit spaces $\spc{X}_\infty$ and $\spc{X}_\infty'$ need not be isometric to each other.
For example, for the constant sequence $\spc{X}_n\iso\RR_{\ge0}$,
one may take $\spc{X}_\infty\iso\RR_{\ge0}$.
In this case, a point in the disjoint space $\bm{X}$ can be regarded as a pair $(x,n)\in \RR_{\ge0}\times (\ZZ_>\cup \{\infty\})$
and the metric on $\bm{X}$ can be defined by
$$\dist{(x,n)}{(y,m)}{\bm{X}}\df|\tfrac1n+\tfrac1m|+|x-y|,$$
where we assume that $0=\tfrac1\infty$.
On the other hand, one can take $\spc{X}_\infty'\iso\RR$,
and consider the metric
\begin{align*}
\dist{(x,n)}{(y,m)}{\bm{X}'}
&=|\tfrac1n-\tfrac1m|+|(x-n)-(y-m)|,
\\
\dist{(x,n)}{(y,\infty)}{\bm{X}'}
&=\tfrac1n+|(x-n)-y|,
\\
\dist{(x,\infty)}{(y,\infty)}{\bm{X}'}
&=|x-y|,
\end{align*}
where $n, m<\infty$.
\begin{thm}{Induced convergences}
Suppose $\spc{X}_n\xto{\GH}\spc{X}_\infty$
as in Definition \ref{def:GH},
and $\iota_n\:\spc{X}_n\hookrightarrow\bm{X}$, $\iota_\infty\:\spc{X}_\infty\hookrightarrow\bm{X}$ are the corresponding inclusions.
\begin{subthm}{}
A sequence of points $x_n\in\spc{X}_n$ converges to $x_\infty\in\spc{X}_\infty$ (briefly, $x_n\to x_\infty$ or $x_n\xto{\GH} x_\infty$)
if $\dist{x_n}{x_\infty}{\bm{X}}\to 0$.
\end{subthm}
\begin{subthm}{}
A sequence of closed sets
$\mathfrak{C}_n\subset \spc{X}_n$
converges to a closed set
$\mathfrak{C}_\infty\subset \spc{X}_\infty$ (briefly, $\mathfrak{C}_n\to \mathfrak{C}_\infty$ or $\mathfrak{C}_n\xto{\GH} \mathfrak{C}_\infty$)
if $\mathfrak{C}_n\Hto\mathfrak{C}_\infty$ as subsets of $\bm{X}$.
\end{subthm}
\begin{subthm}{}
A sequence of open sets $\Omega_n\subset \spc{X}_n$
converges to an open set $\Omega_\infty\subset \spc{X}_\infty$
(briefly, $\Omega_n\to \Omega_\infty$
or $\Omega_n\xto{\GH} \Omega_\infty$)
if the complements $\spc{X}_n\setminus \Omega_n$ converge to the complement $\spc{X}_\infty\setminus \Omega_\infty$ as closed sets.
\end{subthm}
\begin{subthm}{} Let $\spc{X}_n\xto{\GH} \spc{X}_\infty$ and $\spc{Y}_n\xto{\theta} \spc{Y}_\infty$.
A sequence of submaps (where a submap is a map defined on a subset; see Section~\ref{sec:submaps}) $\map_n\:\spc{X}_n\subto \spc{Y}_n$ converges to a submap $\map_\infty\:\spc{X}_\infty\subto \spc{Y}_\infty$ if the following conditions hold
\begin{itemize}
\item $\Dom\map_n\to \Dom\map_\infty$ as a sequence of open sets.
\item for any $x_\infty\in \Dom \map_\infty$ and any sequence $x_n\in \spc{X}_n$ such that $x_n\to x_\infty$, we have
\[\spc{Y}_n\ni \map _n(x_n)\xto\theta \map_\infty(x_\infty)\in\spc{Y}_\infty\]
as $n\to\infty$.
\end{itemize}
\end{subthm}
\begin{subthm}{} Given a sequence of measures $\mu_n$ on $\spc{X}_n$,
%denote by $\iota_n\#\mu_n$ the pushforward measures on $\bm{X}$.
%V: I would suggest using the notation ${\iota_n}_\#\mu_n$, i.e. making $\#$ a subindex. That's a much more standard notation for pushforward.
%A: in this case we get double index --- I do not like it. We may remove pushforward completely.
%S; I removed the notation
we say that $\mu_n$ weakly converges to a measure $\mu_\infty$ on $\spc{X}_\infty$
(briefly, $\mu_n\xto{}
\mu_\infty$ or $\mu_n\xto{\GH}
\mu_\infty$)
if the push-forward measures of $\mu_n$
%$\iota_n\#\mu_n$
weakly converge to the push-forward measure of $\mu_\infty$.
In other words,
if for any continuous function $\phi\:\bm{X}\to\RR$ with a compact support, we have
\[\int\limits_{\spc{X}_n}
\phi\circ\iota_n
\cdot
\mu_n
\to
\int\limits_{\spc{X}_\infty}
\phi\circ\iota_\infty
\cdot\mu_\infty\]
as $n\to\infty$.
\end{subthm}
\end{thm}
\parbf{Liftings.}
Given a Gromov--Hausdorff convergence
$\spc{X}_n\GHto \spc{X}_\infty$
and a point $p_\infty\in\spc{X}_\infty$, any sequence of points $p_n\in\spc{X}_n$ such that $p_n\GHto p_\infty$ will be called a \index{Gromov--Hausdorff convergence!lifting of a point}\emph{lifting} of $p_\infty$.
The point $p_n\in \spc{X}_n$ will be called a {}\emph{lifting} of $p_\infty$ to $\spc{X}_n$.
We will also say that $\distfun{p_n}{}{}\:\spc{X}_n\to \RR$
is a \index{Gromov--Hausdorff convergence!lifting of a distance function}\emph{lifting}
of the distance function $\distfun{p_\infty}{}{}\:\spc{X_\infty}\to \RR$.
Clearly $\distfun{p_n}{}{}\GHto\distfun{p_\infty}{}{}$.
Note that liftings are not uniquely defined.
Similarly, we may refer to liftings of a point array
$\bm{p}_\infty\z =(p_\infty^1,p_\infty^2,\dots,p_\infty^\kay)$
and of the corresponding distance map
$\distfun{\bm{p}_\infty}{}{}\:\spc{X}_\infty\to\RR^\kay$,
$$\distfun{\bm{p}_\infty}{}{}\:x\mapsto(\dist{p_\infty^1}{x}{},\dist{p_\infty^2}{x}{},\dots,\dist{p_\infty^k}{x}{}).$$
\section{Gromov's selection theorem}
\begin{thm}{Gromov's selection theorem}\label{thm:gromov-selection}
Let $\spc{X}_n$ be a sequence of proper metric spaces
with marked points $x_n\in \spc{X}_n$.
Assume that for any $R>0$, $ \eps>0$, there is $N=N(R,\eps)\in\ZZ_{>0}$
such that for each $n$
the ball $\cBall[x_n,R]\subset \spc{X}_n$ admits a finite $\eps$-net with at most $N$ points.
Then a subsequence of $\spc{X}_n$ admits a Gromov--Hausdorff convergence
such that the sequence of marked points $x_n\in\spc{X}_n$
%(sub)converges.
converges.
\end{thm}
\parit{Proof.}
By the main assumption, there is a sequence of integers $M_1\z<M_2<\dots$
such that in each space $\spc{X}_n$
there is a sequence of points $z_{i,n}\in\spc{X}_n$ for which
\[\dist{z_{i,n}}{x_n}{\spc{X}_n}\le \kay+1\quad \text{if}\quad i\le M_\kay\]
and $\{z_{1,n},\dots,z_{M_\kay,n}\}$ is a $\tfrac1\kay$-net in $\cBall[x_n,\kay]_{\spc{X}_n}$.
Passing to a subsequence, we may assume that the sequence \[\ell_n=\dist{z_{i,n}}{z_{j,n}}{\spc{X}_n}\]
converges for any $i$ and $j$.
Let us consider a countable set of points $\spc{W}=\{w_1,w_2,\dots\}$
equipped with the pseudometric defined by
\[\dist{w_i}{w_j}{\spc{W}}
=
\lim_{n\to\infty}\dist{z_{i,n}}{z_{j,n}}{\spc{X}_n}.\]
Let $\hat{\spc{W}}$ be the metric space corresponding to $\spc{W}$.
Denote by
$\spc{X}_\infty$ the completion of $\hat{\spc{W}}$.
It remains to construct a metric on the disjoint union of \[\bm{X}=\spc{X}_\infty\sqcup\spc{X}_1\sqcup\spc{X}_2\sqcup\dots\]
satisfying definitions \ref{def:comp-metr} and \ref{def:GH}.
Such a metric can be defined as follows.
Fix a sequence $\eps_\kay\to0+$
and let $N_\kay$ be the minimal integer such that
\[\dist{w_i}{w_j}{\spc{W}}
\lege
\dist{z_{i,n}}{z_{j,n}}{\spc{X}_n}\pm\eps_\kay
\]
if $i,j\le N_\kay$ and $n\ge N_\kay$.
Let us equip $\bm{X}$ with the maximal metric such that all the inclusions $\iota_n\:\spc{X}_n\to\bm X$ and $\iota_\infty\:\spc{X}_\infty\to\bm X$ are isometric and
$
\dist{z_{i,n}}{w_i}{}\le \eps_\kay
$
for $i\le N_\kay$ and $n\ge N_\kay$.
It is easy to verify that such a metric on $\bm X$ satisfies \ref{def:comp-metr} and \ref{def:GH}.
\qeds
\section{Convergence of compact spaces.}
\begin{thm}{Definition}
Let $\spc{X}$ and $\spc{Y}$ be metric spaces.
A map $f\:\spc{X}\to\spc{Y}$
is called an \index{isometry!$\eps$-isometry}\emph{$\eps$-isometry}
if the following two conditions hold:
\begin{subthm}{}
$\Im f$ is an $\eps$-net in $\spc{Y}$.
\end{subthm}
\begin{subthm}{}
$\bigl|\dist{f(x)}{f(x')}{\spc{Y}}-\dist{x}{x'}{\spc{X}}\bigr|\le \eps$ for any $x,x'\in\spc{X}$.
\end{subthm}
\end{thm}
\begin{thm}{Lemma}\label{lem:almost-isom}
Let $\spc{X}_1,\spc{X}_2,\dots$, let $\spc{X}_\infty$ be metric spaces, and let $\eps_n\to\0+$ as $n\to\infty$.
Suppose that either
\begin{subthm}{lem:almost-isom-a}
for each $n$ there is an $\eps_n$-isometry $f_n\:\spc{X}_n\to\spc{X}_\infty$, or
\end{subthm}
\begin{subthm}{lem:almost-isom-b}
for each $n$ there is an $\eps_n$-isometry $h_n\:\spc{X}_\infty\to\spc{X}_n$.
\end{subthm}
Then there is a Gromov--Hausdorff convergence $\spc{X}_n\GHto \spc{X}_\infty$.
\end{thm}
\parit{Proof.}
To prove part \ref{SHORT.lem:almost-isom-a} let us construct a common space $\bm{X}$ for the spaces $\spc{X}_1,\spc{X}_2,\dots$, and $\spc{X}_\infty$
by taking the metric $\rho$ on the disjoint union $\spc{X}_\infty\sqcup\spc{X}_1\sqcup\spc{X}_2\sqcup\dots$ that is defined the following way:
\begin{align*}
\rho(x_n,y_n)&=\dist{x_n}{y_n}{\spc{X}_n},\quad \rho(x_\infty,y_\infty)=\dist{x_\infty}{y_\infty}{\spc{X}_\infty},
\\
\rho(x_n,x_\infty)&=\inf\set{\dist{x_n}{y_n}{\spc{X}_n}+\eps_n+\dist{x_\infty}{f(y_n)}{\spc{X}_\infty}}{{y_n}\in \spc{X}_n},
\\
\rho(x_n,x_m)&=\inf\set{\rho(x_n,y_\infty)+\rho(x_m,y_\infty)}{y_\infty\in\spc{X}_\infty},
\end{align*}
where we assume that $x_m\in \spc{X}_m$, $x_n\in \spc{X}_n$, and $x_\infty\in \spc{X}_\infty$.
It remains to observe that $\rho$ is indeed a metric and
$\spc{X}_n\Hto \spc{X}_\infty$ in~$\bm{X}$.
The proof of the second part is analogous; one only needs to change one line in the definition of $\rho$ to the following:
\[\rho(x_n,x_\infty)=\inf\set{\dist{x_n}{h(y_\infty)}{\spc{X}_n}+\eps_n+\dist{x_\infty}{y_\infty}{\spc{X}_\infty}}{{y_\infty}\in \spc{X}_\infty}.\]
\qedsf
\begin{thm}{Definition}\label{def: inequality-of-spaces}
Given two compact spaces $\spc{X}$ and $\spc{Y}$, we will write
\begin{itemize}
\item $\spc{X}\le \spc{Y}$ if there is a noncontracting map $\map\:\spc{X}\to \spc{Y}$.
\item $\spc{X}\le \spc{Y}+\eps$ if there is a map $\map\:\spc{X}\to \spc{Y}$ such that for any $x,x'\in \spc{X}$ we have
\[\dist{x}{x'}{}\le \dist{\map(x)}{\map(x')}{}+\eps.\]
\end{itemize}
\end{thm}
\begin{thm}{Lemma}\label{lem:>=-isometry}
Let $\spc{X}$ and $\spc{Y}$ be two metric spaces, and let $\spc{X}$ be compact.
Then
\[
\spc{X}\ge\spc{Y}\ge\spc{X}
\quad\Longleftrightarrow\quad
\spc{X}\iso\spc{Y}.
\]
\end{thm}
The following proof was suggested by Travis Morrison.
\parit{Proof.}
Let $f\: \spc{X} \to \spc{Y}$
and $g\: \spc{Y} \to \spc{X}$ be noncontracting mappings.
It is sufficient to prove that $h = g\circ f\:\spc{X}\to \spc{X}$ is an isometry.
Given any pair of points $x,y\in \spc{X}$,
let $x_n\z=h^{\circ n}(x)$ and $y_n\z=h^{\circ n}(y)$.
Since $\spc{X}$ is compact, one can choose an increasing sequence of integers $n_\kay$
such that both sequences $x_{n_i}$ and $y_{n_i}$
converge.
In particular, both of these sequences are
%converging in itself;
Cauchy,
that is,
\[
\dist{x_{n_i}}{x_{n_j}}{},\dist{y_{n_i}}{y_{n_j}}{}\to 0
\]
as $\min\{i,j\}\to\infty$.
Since $h$ is noncontracting, we have
\[
\dist{x}{x_{|n_i-n_j|}}{}\le \dist{x_{n_i}}{x_{n_j}}{}.
\]
It follows that
there is a sequence $m_i\to\infty$ such that
\[
x_{m_i}\to x\quad \text{and}\quad y_{m_i}\to y\quad \text{as}\quad i\to\infty.
\eqlbl{eq:x_l->x}
\]
Let $\ell_n=\dist{x_n}{y_n}{}$.
Since $h$ is noncontracting, the sequence $\ell_n$ is nondecreasing.
On the other hand,
from \ref{eq:x_l->x} it follows that $\ell_{m_i}\to\dist{x}{y}{}=\ell_0$ as $m_i\to\infty$;
that is, $\ell_n$ is a constant sequence.
In particular, $\ell_0=\ell_1$ for any $x$ and $y$ in $\spc{X}$,
so $h$ is a distance-preserving map.
Thus $h(\spc{X})$ is isometric to $\spc{X}$.
From \ref{eq:x_l->x}, $h(\spc{X})$ is everywhere dense.
Since $\spc{X}$ is compact, $h(\spc{X})=\spc{X}$.
\qeds
The \index{Gromov--Hausdorff distance}\emph{Gromov--Hausdorff distance} between isometry classes of compact metric spaces $\spc{X}$ and $\spc{Y}$, is defined by
\[\GHdist(\spc{X},\spc{Y})
\df
\inf\set{\eps>0}{\spc{X}\le \spc{Y}+\eps\ \text{and}\ \spc{Y}\le \spc{X}+\eps}.
\]
The Gromov--Hausdorff distance turns the set of all isometry classes of compact metric spaces into a metric space.
The following theorem shows that convergence in this space coincides with the Gromov--Hausdorff convergence defined above.
\begin{thm}{Theorem} Let $\spc{X}_1,\spc{X}_2,\dots$, and let $\spc{X}_\infty$ be compact metric spaces.
Then there is a convergence $\spc{X}_n\GHto \spc{X}_\infty$ if and only if
$\GHdist(\spc{X}_n,\spc{X}_\infty)\to 0$ as $n\to\infty$.
\end{thm}
\parit{Proof; if part.}
Suppose $a_n\:\spc{X}_\infty\to \spc{X}_n$
and $b_n\:\spc{X}_n\to \spc{X}_\infty$ are sequences of maps such that
\[\dist{a_n(x)}{a_n(y)}{\spc{X}_\infty}
\ge
\dist{x}{y}{\spc{X}_n}-\delta_n,\]
\[\dist{b_n(v)}{b_n(w)}{\spc{X}_n}
\ge
\dist{v}{w}{\spc{X}_\infty}-\delta_n\]
for any $x,y\in \spc{X}_n$, $v,w\in\spc{X}_\infty$, and a sequence $\delta_n\to0+$.
Fix $\eps>0$ and choose a maximal $\eps$-packing $\{x^1,x^2,\dots,x^\kay\}$ in $\spc{X}_\infty$ such that
$\sum_{i<j}\dist{x^i}{x^j}{}$ is maximal.
Note that
\[\dist{a_n\circ b_n(x^i)}{a_n\circ b_n(x^j)}{}\ge\dist{x^i}{x^j}{}-2\cdot\delta_n.\]
Since $\sum_{i<j}\dist{x^i}{x^j}{}$ is maximal,
\[\dist{a_n\circ b_n(x^i)}{a_n\circ b_n(x^j)}{}\to\dist{x^i}{x^j}{}\]
for all $i$ and $j$ as $n\to\infty$.
For all large $n$,
we have $2\cdot\delta_n<\dist{x^i}{x^j}{}-\eps$,
and so
\[\dist{b_n(x^i)}{b_n(x^j)}{\spc{X}_n}>\eps
\quad\text{and}\quad
\dist{a_n\circ b_n(x^i)}{a_n\circ b_n(x^j)}{\spc{X}_\infty}>\eps\]
for all $i\ne j$.
Therefore for each large $n$,
the set $\{a_n\circ b_n(x^i)\}$ is a maximal $\eps$-packing and hence an $\eps$-net in $\spc{X}_\infty$.
Since $\{a_n\circ b_n(x^i)\}$ is an $\eps$-net in $\spc{X}_\infty$, we have that
for any $y_n\in\spc{X}_n$ there is $x^i$ such that $\dist{a_n\circ b_n(x^i)}{a_n(y_n)}{}<\eps$.
Thus $\dist{b_n(x^i)}{y_n}{}<\eps+\delta_n$,
that is, $\{b_n(x^i)\}$ is a $(\eps+\delta_n)$-net in $\spc{X}_n$.
Given $y\in \spc{X}_n$, choose $x^i$ so that $\dist{b_n(x^i)}{y_n}{}<\eps+\delta_n$ and define $h_n(y)=a_n\circ b_n(x^i)$.
Observe that $h_n$ is a $3\cdot\eps$-isometry for all large $n$.
Since $\eps>0$ is arbitrary, there is a sequence of $\eps_n$-isometries $\spc{X}_n\to\spc{X}_\infty$ such that $\eps_n\to\0+$ as $n\to\infty$.
It remains to apply \ref{lem:almost-isom}.
\parit{Only-if part.}
Assume $\spc{X}_n\xto{\GH}\spc{X}_\infty$.
Fix $\eps>0$, and choose a maximal $\eps$-packing $\{x^1,x^2,\dots,x^\kay\}$ in $\spc{X}_\infty$.
For each $x^i$,
choose a sequence $x^i_n\in\spc{X}_n$
such that $x^i_n\to x^i$.
Define a map $a_n\: \spc{X}_n\to\spc{X}_\infty$
%S: note addition of previous line
such that $a_n(x^i_n)=x_n$.
Note that for all large $n$, we have $\dist{x^i_n}{x^j_n}{}>\eps$.
For each point $z\in \spc{X}_\infty$, choose $x^i$ so that $\dist{z}{x^i}{}<\eps$.
Define a map $b_n\:\spc{X}_\infty\to\spc{X}_n$ by setting
$b_n(z)=x^i_n$.
Observe that
\[\dist{b_n(y)}{b_n(z)}{\spc{X}_n}+3\cdot\eps>\dist{y}{z}{\spc{X}_\infty}\]
for all large $n$.
In the same way we can construct a map $a_n\:\spc{X}_n\to\spc{X}_\infty$ such that
\[\dist{a_n(y)}{a_n(z)}{\spc{X}_\infty}+3\cdot\eps>\dist{y}{z}{\spc{X}_n}.\]
Hence $\GHdist(\spc{X}_n,\spc{X}_\infty)\to 0$ as $n\to \infty$.
\qeds
The following theorem states that the isometry class of a Gromov--Hausdorff limit is uniquely defined if it is compact.
\begin{thm}{Theorem}\label{thm:GH-compact}
Let $\spc{X}_1,\spc{X}_2,\dots$, and let $\spc{X}_\infty$ and $\bar{\spc{X}}_\infty$ be metric spaces
such that $\spc{X}_n\xto{\GH}\spc{X}_\infty$,
$\spc{X}_n\xto{\bar\GH}\bar{\spc{X}}_\infty$.
Assume that $\bar{\spc{X}}_\infty$ is compact.
Then $\spc{X}_\infty\iso \bar{\spc{X}}_\infty$.
\end{thm}
\parit{Proof.}
For each point $x_\infty\in\spc{X}_\infty$,
choose liftings $x_n\in\spc{X}_n$.
Choose a nonprincipal ultrafilter $\o$ on $\mathbb N$.
Define $\bar x_\infty\in \bar{\spc{X}}_\infty$ as the $\o$-limit of $x_n$ with respect to $\bar \tau$.
We claim that the map $x_\infty\to \bar x_\infty$ is an isometry.
Indeed, by the definition of Gromov--Hausdorff convergence,
\[\dist{\bar x_\infty}{\bar y_\infty}{\bar{\spc{X}}_\infty}
=
\lim_{n\to\o}\dist{x_n}{y_n}{\spc{X}_n}
=
\dist{x_\infty}{y_\infty}{\spc{X}_\infty}.
\]
Thus the map $x_\infty\to\bar x_\infty$ gives a distance-preserving map
$\map\:\spc{X}_\infty\hookrightarrow\bar{\spc{X}}_\infty$.
In particular,
$\spc{X}_\infty$ is compact.
Switching $\spc{X}_\infty$ and $\bar{\spc{X}}_\infty$ and applying the same argument,
we get an isometric embedding
$\bar{\spc{X}}_\infty\hookrightarrow\spc{X}_\infty$.
Now the result follows from Lemma~\ref{lem:>=-isometry}.
\qeds
\begin{thm}{Exercise}\label{ex:GH-SC}
\begin{subthm}{ex:GH-SC:circle}
Show that a sequence of compact simply connected length spaces cannot converge to a circle.
\end{subthm}
\begin{subthm}{ex:GH-SC:nonsc-limit}
Construct a sequence of compact simply connected length spaces that converges to a compact non-simply connected space.
\end{subthm}
\end{thm}
\begin{thm}{Exercise}\label{ex:sphere-to-ball}
\begin{subthm}{ex:sphere-to-ball:2}
Show that a sequence of length metrics on the 2-sphere cannot converge to the unit disk.
\end{subthm}
\begin{subthm}{ex:sphere-to-ball:3}
Construct a sequence of length metrics on the 3-sphere that converges to a unit 3-ball.
\end{subthm}
\end{thm}
\begin{thm}{Exercise}\label{ex:GH-proper-marked}
Let $\spc{X}_n$ be a sequence of metric spaces that admits
two Gromov--Hausdorff convergences
$\GH$ and $\GH'$.
Assume
$\spc{X}_n\xto{\GH}\spc{X}_\infty$ and $\spc{X}_n\xto{\GH'}\spc{X}_\infty'$.
Show that if $\spc{X}_\infty$ is proper and there is a sequence of points $x_n\in \spc{X}_n$
that converges in both
$\GH$ and $\GH'$, then $\spc{X}_\infty\iso\spc{X}_\infty'$.
\end{thm}
\sectionmark{Ultralimits revisited}
\section{Ultralimits revisited}
Recall that $\o$ denotes an ultrafilter of the set of natural numbers.
\begin{thm}{Theorem}\label{thm:ultra-GH}
Assume $\spc{X}_n$ is a sequence of complete metric spaces.
Let $\spc{X}_n\to \spc{X}_\o$ as $n\to\o$,
and let $\spc{Y}_n$
be a sequence of subspaces of the $\spc{X}_n$ such that $\spc{Y}_n\GHto\spc{Y}_\infty$.
Then there is a distance-preserving map
$\iota:\spc{Y}_\infty\to \spc{X}_\o$.
Moreover:
\begin{subthm}{thm:ultra-GH:a}
If $\spc{X}_n\GHto \spc{X}_\infty$
and $\spc{X}_\infty$ is compact, then
$\spc{X}_\infty$ is isometric to $\spc{X}_\o$.
\end{subthm}
\begin{subthm}{thm:ultra-GH:b}
If $\spc{X}_n\GHto \spc{X}_\infty$
and $\spc{X}_\infty$ is proper, then
$\spc{X}_\infty$ is isometric to a metric component of $\spc{X}_\o$.
\end{subthm}
\end{thm}
\parit{Proof.}
For each point $y_\infty\in \spc{Y}_\infty$
choose a lifting $y_n\in \spc{Y}_n$.
Pass to the $\o$-limit $y_\o\in \spc{X}_\o$ of $y_n$.
Clearly for any $y_\infty,z_\infty\in \spc{Y}_\infty$,
we have
\[\dist{y_\infty}{z_\infty}{\spc{Y}_\infty}=\dist{y_\o}{z_\o}{\spc{X}_\o};\]
that is, the map $y_\infty\mapsto y_\o$ gives a distance-preserving map $\iota:\spc{Y}_\infty\to \spc{X}_\o$.
\parit{\ref{SHORT.thm:ultra-GH:a}$+$\ref{SHORT.thm:ultra-GH:b}.}
Fix $x_\o\in \spc{X}_\o$.
Choose a sequence $x_n$ of points in $\spc{X}_n$,
such that $x_n\to x_\o$ as $n\to\o$.
Denote by $\bm{X}=\spc{X}_\infty\sqcup\spc{X}_1\sqcup\spc{X}_2\sqcup\dots$ the common space for the convergence $\spc{X}_n\GHto \spc{X}_\infty$,
as in the definition of Gromov--Hausdorff convergence.
Note that $x_n$ is a sequence of points in~$\bm{X}$.
If the $\o$-limit $x_\infty$ of $x_n$ in $\bm{X}$ exists,
it must lie in $\spc{X}_\infty$.
The point $x_\infty$, if defined, does not depend on the choice of $x_n$.
Indeed, if $y_n\in\spc{X}_n$ is another sequence such that $y_n\to x_\o$ as $n\to\o$, then
\[
\dist{y_\infty}{x_\infty}{}=\lim_{n\to\o}\dist{y_n}{x_n}{}=0;
\]
therefore, $x_\infty=y_\infty$.
This way we obtain a map $\nu\:x_\o\to x_\infty$, defined on $\Dom\nu \subset\spc{X}_\o$.
By construction of $\iota$,
we have $\iota\circ\nu(x_\o)=x_\o$ for any $x_\o\in \Dom\nu$.
Finally note that if $\spc{X}_\infty$ is compact, then $\nu$ is defined on all of $\spc{X}_\o$;
this proves \ref{SHORT.thm:ultra-GH:a}.
If $\spc{X}_\infty$ is proper, choose any point $z_\infty\in \spc{X}_\infty$
and set $z_\o=\iota(z_\infty)$.
For any point $x_\o\in \spc{X}_\o$ at finite distance from $z_\o$,
for the sequence $x_n$
as above we have that $\dist{z_n}{x_n}{}$ is bounded for $\o$-almost all $n$.
Since $\spc{X}_\infty$ is proper, $\nu(x_\o)$ is defined;
in other words, $\nu$ is defined on the metric component of~$z_\o$.
Hence \ref{SHORT.thm:ultra-GH:b} follows.
\qeds