-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathparallel.tex
563 lines (429 loc) · 18.8 KB
/
parallel.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
\chapter{Parallel lines}\label{chap:angle-sum}
{
\begin{wrapfigure}{o}{19mm}
\vskip-4mm
\centering
\includegraphics{mppics/pic-72}
\end{wrapfigure}
Recall that in consequence of Axiom~\ref{def:birkhoff-axioms:1},
any two distinct lines $\ell$ and $m$ have either one point in common or none; see \ref{lem:line-line}.
In the first case they are \index{intersecting lines}\emph{intersecting} (briefly $\ell\nparallel m$);
in the second case, $\ell$ and $m$ are said to be \index{parallel!lines}\emph{parallel} (briefly, \index{36@\hskip.4mm$\parallel$\hskip.4mm, \hskip.4mm$\nparallel$\hskip.4mm}$\ell\parallel m$);
in addition, a line is always regarded as parallel to itself.
}
To emphasize that two lines in a picture are parallel we will mark them with arrows of the same type.
\begin{thm}[\abs]{Proposition}\label{prop:perp-perp} Let $\ell$, $m$, and $n$ be three lines.
Assume that $n\perp m$ and $m\perp \ell$.
Then $\ell\parallel n$.
\end{thm}
\parit{Proof.}
Assume the contrary;
that is, $\ell\nparallel n$.
Then there is a point, say $Z$, of intersection of $\ell$ and~$n$.
Then by Theorem~\ref{perp:ex+un},
$\ell=n$.
Since any line is parallel to itself, we have that $\ell\parallel n$ --- a contradiction.
\qeds
\begin{thm}{Theorem}\label{thm:parallel}
For any point $P$ and any line $\ell$,
there is a unique line $m$
that passes thru $P$ and is parallel to~$\ell$.
\end{thm}
The above theorem has two parts, existence and uniqueness.
In the proof of uniqueness, we will use the method of similar triangles.
\parit{Proof; existence.}
Apply Theorem~\ref{perp:ex+un} two times,
first to construct the line $n$ thru $P$ that is perpendicular to $\ell$,
and second to construct the line $n$ thru $P$ that is perpendicular to~$m$.
Then apply Proposition~\ref{prop:perp-perp}.
\parit{Uniqueness.}
If $P\in\ell$, then $m=\ell$ by the definition of parallel lines.
Now, assume $P\notin\ell$.
Let us construct the lines $n\ni P$ and $m\ni P$ as in the proof of existence; so $n\perp \ell$, $m\perp n$, and $m\parallel \ell$.
Assume there is another line $s\ni P$ parallel to~$\ell$.
Choose a point $Q\in s$ that lies with $\ell$ on the same side from~$m$.
Let $R$ be the footpoint of $Q$ on~$n$.
\begin{figure}[!ht]
\centering
\includegraphics{mppics/pic-74}
\end{figure}
Let $D$ be the point of intersection of $n$ and~$\ell$.
According to Proposition~\ref{prop:perp-perp} $(QR)\parallel m$.
Therefore, $Q$, $R$, and $\ell$ lie on the same side of~$m$.
In particular, $R\in [P D)$.
Choose $Z\in [P Q)$ such that
$$\frac{PZ}{PQ}=\frac{PD}{PR};$$
it exists by Proposition~\ref{prop:point-on-half-line}.
By SAS similarity condition (or equivalently by Axiom~\ref{def:birkhoff-axioms:4})
we have that $\triangle RPQ\sim \triangle DPZ$;
therefore $(Z D)\perp(P D)$.
It follows that $Z$ lies on $\ell$ and $s$ --- a contradiction.\qeds
\begin{thm}{Corollary}\label{cor:parallel-1}
Assume $\ell$, $m$, and $n$ are lines
such that $\ell\parallel m$ and $m\parallel n$.
Then $\ell\parallel n$.
\end{thm}
\parit{Proof.}
Assume the contrary; that is, $\ell\nparallel n$.
Then there is a point $P\in \ell\cap n$.
By Theorem~\ref{thm:parallel},
$n=\ell$ --- a contradiction.
\qeds
By the definition, we have that $\ell\parallel m$ if and only if $m\z\parallel \ell$.
Therefore, according to the above corollary, ``$\parallel$'' is an
\index{equivalence relation}\emph{equivalence relation}.
That is, for any lines $\ell$, $m$, and $n$ the following conditions hold:
\begin{enumerate}[(i)]
\item $\ell\parallel \ell$;
\item if $\ell\parallel m$, then $m\parallel \ell$;
\item if $\ell\parallel m$ and $m\parallel n$, then
$\ell\parallel n$.
\end{enumerate}
\begin{thm}{Exercise}\label{ex:perp-perp}
Let $k$, $\ell$, $m$, and $n$ be lines such that $k\perp \ell$, $\ell\perp m$, and $m\perp n$.
Show that $k\nparallel n$.
\end{thm}
\begin{thm}{Exercise}\label{ex:construction-parallel}
Perform a ruler-and-compass construction of a line thru a given point that is parallel to a given line.
\end{thm}
\section{Reflection across a point}
Recall that if $O$ is the midpoint of the line segment $[XX']$,
then we say that $X'$ is a \index{reflection across a point}\emph{reflection} of $X$ across a point $O$.
In addition, we assume that $O'=O$; that is, $O$ is a reflection of itself across itself.
The following statement is a refinement of Proposition~\ref{prop:point-reflection}.
\begin{thm}[\abs]{Proposition}\label{prop:point-reflection+}
A reflection across a point is a direct motion.
\end{thm}
\parit{Proof.}
Choose a point $O$.
By Proposition~\ref{prop:point-reflection}, the reflection across $O$ is a motion.
Note that any angle $\angle XOY$ is vertical to its reflection $\angle X'OY'$.
By \ref{prop:vert}, $\measuredangle XOY\z=\measuredangle X'OY'$.
Therefore, the reflection cannot be indirect.
By \ref{prop:direct-indirect}, any motion is either direct or indirect.
Therefore, the reflection across $O$ must be direct.
\qeds
\begin{thm}{Exercise}
Suppose $\angle AOB$ is right.
Show that the composition of reflections across the lines $(OA)$ and $(OB)$ is a reflection across $O$.
Use this statement and Corollary~\ref{cor:reflection+angle} to build another proof of~\ref{prop:point-reflection+}.
\end{thm}
{
\begin{wrapfigure}{r}{23mm}
\vskip-6mm
\centering
\includegraphics{mppics/pic-78}
\end{wrapfigure}
\begin{thm}{Theorem}\label{thm:parallel-point-reflection}
Let $\ell$ be a line, $Q\in \ell$, and $P$ an arbitrary point.
Suppose $O$ is the midpoint of $[PQ]$.
Then a line $m$ passing thru $P$ is parallel to $\ell$ if and only if $m$ is a reflection of $\ell$ across $O$.
\end{thm}
}
\parit{Proof; ``if'' part.}
Assume $m$ is a reflection of $\ell$ across $O$.
Suppose $\ell\nparallel m$; that is $\ell$ and $m$ intersect at a single point $Z$.
Denote by $Z'$ be the reflection of $Z$ across $O$.
\begin{figure}[!ht]
\centering
\includegraphics{mppics/pic-80}
\end{figure}
The point $Z'$ lies on both lines $\ell$ and $m$.
It follows that $Z'=Z$ or equivalently $Z=O$.
In this case, $O\in \ell$ and therefore the reflection of $\ell$ across $O$ is $\ell$ itself;
that is, $\ell=m$ and in particular $\ell\parallel m$ --- a contradiction.
\parit{``Only-if'' part.}
Let $\ell'$ be the reflection of $\ell$ across $O$.
According to the ``if'' part of the theorem, $\ell'\parallel \ell$.
Both lines $\ell'$ and $m$ pass thru $P$.
By uniqueness of parallel lines (\ref{thm:parallel}), if $m\parallel \ell$, then $\ell'=m$; whence the statement follows.
\qeds
\pagebreak%???
\section{Transversal property}
{
\begin{wrapfigure}{r}{25mm}
\centering
\vskip-10mm
\includegraphics{mppics/pic-82}
\end{wrapfigure}
If the line $t$ intersects each line $\ell$ and $m$ at one point, then we say that $t$ is a \index{transversal}\emph{transversal} to $\ell$ and~$m$.
For example, in the picture, line $(CB)$ is a transversal
to $(AB)$ and~$(CD)$.
}
\begin{thm}{Transversal property}\label{thm:parallel-2}
$(AB)\parallel(C D)$ if and only if
$$2\cdot(\measuredangle A B C+\measuredangle B C D)\equiv 0.
\eqlbl{A B C + B C D}$$
Equivalently,
$$\measuredangle A B C+\measuredangle B C D
\equiv
0
\quad
\text{or}
\quad
\measuredangle A B C+\measuredangle B C D
\equiv
\pi.$$
Moreover, if $(AB)\ne(C D)$, then in the first case,
$A$ and $D$ lie on opposite sides of $(BC)$;
in the second case,
$A$ and $D$ lie on the same sides of~$(BC)$.
\end{thm}
\parit{Proof; ``only-if'' part.}
Denote by $O$ the midpoint of $[BC]$.
Assume $(AB)\parallel(C D)$.
According to Theorem~\ref{thm:parallel-point-reflection},
$(CD)$ is a reflection of $(AB)$ across $O$.
\begin{wrapfigure}{r}{31mm}
\vskip-4mm
\centering
\includegraphics{mppics/pic-84}
\end{wrapfigure}
Let $A'$ be the reflection of $A$ across $O$.
Then $A'\in (CD)$ and by Proposition~\ref{prop:point-reflection+} we have that
\[\measuredangle ABO=\measuredangle A'CO.\eqlbl{A B O = A' C O}\]
Note that
\[\measuredangle ABO\equiv\measuredangle ABC,
\qquad
\measuredangle A'CO\equiv-\measuredangle BCA'.\eqlbl{eq:A B O= A B C}
\]
Since $A'$, $C$, and $D$ lie on one line, Exercise~\ref{ex:ABCO-line} implies that
\[2\cdot \measuredangle BCD\equiv 2\cdot \measuredangle BCA'.\eqlbl{eq:2BCD= 2BCA'}\]
Finally, \ref{A B O = A' C O}, \ref{eq:A B O= A B C}, and \ref{eq:2BCD= 2BCA'} imply \ref{A B C + B C D}.
\qeds
\parit{``If''-part.}
By Theorem~\ref{thm:parallel} there is a unique line $(CD)$ thru $C$ that is parallel to $(AB)$.
From the ``only-if'' part we know that \ref{A B C + B C D} holds.
On the other hand, there is a \textit{unique} line $(CD)$ such that \ref{A B C + B C D} holds.
Indeed, suppose there are two such lines $(CD)$ and $(CD')$, then
$$2\cdot(\measuredangle A B C+\measuredangle B C D)\equiv 2\cdot(\measuredangle A B C+\measuredangle B C D')\equiv0.
$$
Therefore
$2\cdot\measuredangle B C D\equiv 2\cdot\measuredangle B C D'$
and by Exercise~\ref{ex:ABCO-line}, $D'\in (CD)$, or equivalently the line $(CD)$ coincides with $(CD')$.
Therefore if \ref{A B C + B C D} holds, then $(CD)\parallel (AB)$.
\parit{Last statement.}
If $(AB)\ne(C D)$ and $A$ and $D$ lie on the opposite sides of $(BC)$, then $\angle ABC$ and $\angle BCD$ have opposite signs.
Therefore
\[-\pi\z<\measuredangle A B C+\measuredangle B C D<\pi.\]
Applying \ref{A B C + B C D}, we get $\measuredangle A B C+\measuredangle B C D=0$.
Similarly, if $A$ and $D$ lie on the same side of $(BC)$,
then $\angle ABC$ and $\angle BCD$ have the same sign.
Therefore
\[0<|\measuredangle A B C+\measuredangle B C D|<2\cdot\pi,\]
and \ref{A B C + B C D} implies that $\measuredangle A B C+\measuredangle B C D\z\equiv\pi$.
\qeds
\begin{thm}{Exercise}\label{ex:smililar+parallel}
Let $\triangle ABC$ be a nondegenerate triangle, and $P$ lies between $A$ and $B$.
Suppose that a line $\ell$ passes thru $P$ and is parallel to $(AC)$.
Show that $\ell$ crosses the side $[BC]$ at another point, say $Q$, and
\[\triangle ABC\sim\triangle PBQ.\]
In particular,
\[\frac{PB}{AB}=\frac{QB}{CB}.\]
\end{thm}
\begin{thm}{Exercise}\label{ex:trisection}
Trisect a given segment with a ruler and a compass.
\end{thm}
\section{Angles of triangles}
\begin{thm}{Theorem}\label{thm:3sum}
In any $\triangle A B C$, we have
$$\measuredangle A B C+ \measuredangle B C A + \measuredangle C A B \equiv \pi.$$
\end{thm}
\parit{Proof.}
If $\triangle A B C$ is degenerate, then the equality follows from Corollary~\ref{cor:degenerate=pi}.
Now, assume that $\triangle A B C$ is nondegenerate.
\begin{wrapfigure}{o}{23mm}
\centering
\includegraphics{mppics/pic-86}
\end{wrapfigure}
Let $X$ be the reflection of $C$ across the midpoint $M$ of $[AB]$.
By Proposition~\ref{prop:point-reflection+}
$\measuredangle BAX\z=\measuredangle ABC$.
Note that $(AX)$ is a reflection of $(CB)$ across $M$;
therefore by Theorem~\ref{thm:parallel-point-reflection}, $(AX)\z\parallel (CB)$.
Since $[BM]$ and $[MX]$ do not intersect $(CA)$,
the points $B$, $M$, and $X$ lie on the same side of $(CA)$.
Applying the transversal property for the transversal $(CA)$ to $(AX)$ and $(CB)$, we get that
\[\measuredangle BCA+\measuredangle CAX\equiv \pi.\eqlbl{eq:ABC+CAB}\]
Since $\measuredangle BAX=\measuredangle ABC$,
we have
\[\measuredangle CAX\equiv\measuredangle CAB+\measuredangle ABC.\]
The latter identity and \ref{eq:ABC+CAB} imply the theorem.\qeds
\begin{thm}{Exercise}\label{ex:|3sum|}
Show that
$$|\measuredangle A B C|+ |\measuredangle B C A| + |\measuredangle C A B| = \pi$$
for any $\triangle ABC$.
\end{thm}
{
\begin{wrapfigure}{r}{30mm}
\vskip-0mm
\centering
\includegraphics{mppics/pic-88}
\vskip4mm
\includegraphics{mppics/pic-90}
%\vskip4mm
%\includegraphics{mppics/pic-92}
\end{wrapfigure}
\begin{thm}{Exercise}\label{ex:pent}
Let $\triangle ABC$ be a nondegenerate triangle.
Assume there is a point $D\in [BC]$
such that
\[\measuredangle BAD\equiv \measuredangle DAC,
\quad
BA=AD=DC.\]
Find the angles of $\triangle ABC$.
\end{thm}
\begin{thm}{Exercise}\label{ex:right-isos}
Let $\triangle ABC$ be an isosceles nondegenerate triangle with the base~$[AC]$.
Suppose $D$ is a reflection of $A$ across $B$.
Show that $\angle ACD$ is right.
\end{thm}
%\begin{thm}{Exercise}\label{ex:pi/4-isos}
%Let $\triangle ABC$ be an isosceles nondegenerate triangle with base~$[AC]$.
%Assume that a circle is passing thru $A$, centered at a point on $[AB]$, and tangent to $(BC)$ at the point~$X$.
%Show that $\measuredangle CAX\z=\pm\tfrac\pi4$.
%\end{thm}
}
\begin{thm}{Exercise}\label{ex:quadrangle}
Show that for any quadrangle $ABCD$, we have
$$\measuredangle ABC+\measuredangle BCD+\measuredangle CDA+\measuredangle DAB\equiv 0.$$
\end{thm}
\section{Parallelograms}
{
\begin{wrapfigure}{r}{26mm}
\vskip-10mm
\centering
\includegraphics{mppics/pic-94}
\end{wrapfigure}
A quadrangle $ABCD$ in the Euclidean plane is called \index{quadrangle!degenerate quadrangle}\index{degenerate!quadrangle}\emph{nondegenerate} if no three points from $A,B,C,D$ lie on one line.
}
A nondegenerate quadrangle is called a \index{parallelogram}\emph{parallelogram}
if its opposite sides are parallel.
\begin{thm}{Lemma}\label{lem:parallelogram}
Any parallelogram is \index{central symmetry}\emph{centrally symmetric} with respect to a midpoint of one of its diagonals;
that is, the reflection across the midpoint maps the parallelogram to itself.
In particular, if $\square A B C D$ is a parallelogram, then
\begin{enumerate}[(a)]
\item\label{lem:parallelogram:midpoint} its diagonals $[AC]$ and $[BD]$ intersect each other at their midpoints;
\item $\measuredangle A B C= \measuredangle C D A$;
\item $AB=CD$.
\end{enumerate}
\end{thm}
{
\begin{wrapfigure}{r}{33mm}
\centering
\includegraphics{mppics/pic-96}
\end{wrapfigure}
\parit{Proof.} Let $\square A B C D$ be a parallelogram.
Denote by $M$ the midpoint of $[AC]$.
Since $(AB)\parallel (CD)$, Theorem~\ref{thm:parallel-point-reflection} implies that $(CD)$ is a reflection of $(AB)$ across $M$.
In the same way, $(BC)$ is a reflection of $(DA)$ across $M$.
Since $\square A B C D$ is nondegenerate, it follows that $D$ is a reflection of $B$ across $M$; in other words, $M$ is the midpoint of $[BD]$.
The remaining statements follow since reflection across $M$ is a direct motion of the plane (see \ref{prop:point-reflection+}).
\qeds
}
\begin{thm}{Exercise}\label{ex:4parallels}
Assume that point $P$ is distinct from vertices of a parallelogram $ABCD$.
Let $a$, $b$, $c$ and $d$ be lines thru points $A$, $B$, $C$ and $D$ such that
$a\parallel (CP)$,
$b\parallel (DP)$,
$c\parallel (AP)$, and
$d\parallel (BP)$.
Show that the lines $a$, $b$, $c$ and $d$ intersect at one point.
\end{thm}
\begin{thm}{Exercise}\label{ex:romb}
Assume $ABCD$ is a quadrangle such that
\[AB=CD=BC=DA.\]
Show that $ABCD$ is a parallelogram.
\end{thm}
A quadrangle as in the exercise above is called a \index{rhombus}\emph{rhombus}.
A quadrangle $ABCD$ is called a \index{rectangle}\emph{rectangle} if the angles $ABC$, $BCD$, $CDA$, and $DAB$ are right.
According to the transversal property (\ref{thm:parallel-2}),
any rectangle is a parallelogram.
A rectangle with equal sides is called a \index{square}\emph{square}.
\begin{thm}{Exercise}\label{ex:rectangle}
Show that a parallelogram $ABCD$ is a rectangle
if and only if $AC=BD$.
\end{thm}
\begin{thm}{Exercise}\label{ex:romb2}
Show that a parallelogram $ABCD$ is a rhombus
if and only if $(AC)\perp (BD)$.
\end{thm}
Assume $\ell\parallel m$, and $X,Y\in m$.
Let $X'$ and $Y'$ denote the footpoints of $X$ and $Y$ on~$\ell$.
Note that $\square XYY'X'$ is a rectangle.
By Lemma~\ref{lem:parallelogram}, $XX'=YY'$.
That is, any point on $m$ lies at the same distance from $\ell$.
This distance is called the \index{distance!between parallel lines}\emph{distance between} $\ell$ and~$m$.
\section{Method of coordinates}
The following exercise is important;
it shows that our axiomatic definition agrees with the model described in Section~\ref{page:model}.
\begin{thm}{Exercise}\label{ex:coordinates}
Let $\ell$ and $m$ be perpendicular lines in the Euclidean plane.
Given a point $P$, let $P_\ell$ and $P_m$ denote the footpoints of $P$ on $\ell$ and $m$ respectively.
\begin{enumerate}[(a)]
\item Show that for any $X\in \ell$ and $Y\in m$ there is a unique point $P$ such that $P_\ell=X$ and $P_m=Y$.
\end{enumerate}
\begin{enumerate}[(a)]\addtocounter{enumi}{1}
\item
Show that
$PQ^2=P_\ell Q_\ell^2+P_mQ_m^2$
for any pair of points $P$ and~$Q$.
\end{enumerate}
\begin{enumerate}[(a)]\addtocounter{enumi}{2}
\item Conclude that the plane is isometric to $(\mathbb{R}^2,d_2)$; see \ref{ex:dist-square}.
\end{enumerate}
\end{thm}
\begin{wrapfigure}{r}{37mm}
\centering
\includegraphics{mppics/pic-98}
\end{wrapfigure}
Once this exercise is solved, we can apply
the method of coordinates
to solve any problem in Euclidean plane geometry.
This method is powerful and universal;
it will be developed further in Chapter~\ref{chap:complex}.
\begin{thm}{Exercise}\label{ex:abc}
Use Exercise~\ref{ex:coordinates}
to give an alternative proof of Theorem~\ref{thm:abc} in the Euclidean plane.
That is, prove that given the real numbers $a$, $b$, and $c$ such that
$$0<a\le b\le c\le a+b,$$
there is a triangle $ABC$
such that $a=BC$, $b=CA$, and $c=AB$.
\end{thm}
\begin{thm}{Exercise}\label{ex:line-coord}
Consider two distinct points $A=(x_A,y_A)$ and $B\z=(x_B,y_B)$ on the coordinate plane.
Show that the perpendicular bisector of $[AB]$ is described by the equation
\[2\cdot (x_B-x_A)\cdot x+2\cdot (y_B-y_A)\cdot y=x_B^2+y_B^2-x_A^2-y_A^2.\]
Conclude that line can be defined as a subset of the coordinate plane of the following type:
\begin{enumerate}[(a)]
\item Solutions of an equation $a\cdot x+b\cdot y=c$
for constants $a$, $b$, and $c$ such that $a\ne 0$ or $b\ne0$.
\item\label{ex:line-coord:parameter} The set of points $(a\cdot t+c,b\cdot t+d)$ for constants $a$, $b$, $c$, and $d$ such that $a\ne 0$ or $b\ne0$ and all $t\in \mathbb{R}$.
\end{enumerate}
\end{thm}
\section{Apollonian circle}\label{sec:Apollonian circle}
The exercises in this section illustrate the method of coordinates; they will not be used further in the sequel.
\begin{thm}{Exercise}\label{ex:circle-coord}
Show that for fixed real values $a$, $b$, and $c$ the equation
\[x^2+y^2+a\cdot x+b\cdot y+c=0\]
describes a circle, a point, or an empty set.
Show that if it is a circle, then $(-\tfrac a2,-\tfrac b2)$ is its center,
and $r\z=\tfrac12\cdot \sqrt{a^2+b^2-4\cdot c}$ is its radius.
\end{thm}
\begin{thm}{Exercise}\label{ex:apolonnius}
Use the previous exercise to show that given a positive real number $k\ne1$,
the locus of points $M$ such that $AM=k\cdot BM$
for distinct points $A$ and $B$
is a circle.
\end{thm}
\begin{figure}[!ht]
\centering
\includegraphics{mppics/pic-100}
\end{figure}
The circle in the exercise above is an example of the so-called \index{Apollonian circle}\emph{Apollonian circle with focuses $A$ and $B$}.
A few of these circles for different values of $k$ are shown in the picture;
for $k=1$, it becomes the perpendicular bisector of $[AB]$.
\begin{thm}{Exercise}\label{ex:apolonnius-construction}
Construct an Apollonian circle with given focuses $A$ and $B$ thru a given point $M$ using ruler and compass.
\end{thm}