-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patharea.tex
968 lines (772 loc) · 30.5 KB
/
area.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
\chapter{Area}
\label{chap:area}
We will define area as a function that satisfies certain conditions (Section~\ref{sec:def(area)}).
The so-called {}\emph{Lebesgue measure} provides an example of such a function.
In particular, the existence of the Lebesgue measure implies the existence of an area function.
This construction is included in any textbook on real analysis.
Based solely on the existence, we develop the concept of area with no cheating.
We choose this approach because any rigorous introduction to area is either tedious or comes with cheating.
We do not want to cheat while also respecting your time.
Sooner or later, you will need to learn about the Lebesgue measure if you haven't already.
\section{Solid triangles}
{
\begin{wrapfigure}{r}{27 mm}
\vskip-8mm
\centering
\includegraphics{mppics/pic-292}
\end{wrapfigure}
We say that a point $X$ lies \index{inside!a triangle}\emph{inside} a nondegenerate triangle $ABC$ if the following three conditions hold:
\begin{itemize}
\item $A$ and $X$ lie on the same side of the line~$(BC)$;
\item $B$ and $X$ lie on the same side of the line~$(CA)$;
\item $C$ and $X$ lie on the same side of the line~$(AB)$.
\end{itemize}
}
The set of all points inside $\triangle ABC$
and on its sides $[AB]$, $[BC]$, $[CA]$
will be called \index{triangle!solid triangle}\index{solid!triangle}\emph{solid triangle} $ABC$ and denoted by \index{25@$\solidtriangle$}$\solidtriangle ABC$.
\begin{thm}{Exercise}\label{ex:triangle-convex}
Show that any solid triangle is \index{convex set}\emph{convex};
that is, for any pair of points $X,Y\z\in\solidtriangle ABC$,
the line segment $[XY]$ lies in $\solidtriangle ABC$.
\end{thm}
%\begin{thm}{Exercise}\label{ex:solid-triangle-sum}
%Show that $X\in\solidtriangle ABC$ if and only if
%\[|\measuredangle AXB|+|\measuredangle BXC|+|\measuredangle CXA|=2\cdot\pi.\]
%\end{thm}
The notations $\triangle ABC$ and $\solidtriangle ABC$ look similar,
and they also have closely related but different meanings, which it is better not to confuse.
Recall that $\triangle ABC$ is an ordered triple of distinct points
(see Section~\ref{sec:cong-triangles}),
while $\solidtriangle ABC$ is an infinite set of points.
In particular, $\solidtriangle ABC=\solidtriangle BAC$ for any triangle $ABC$.
Indeed, any point that belongs to the set $\solidtriangle ABC$
also belongs to the set $\solidtriangle BAC$
and the other way around.
On the other hand,
$\triangle ABC\ne\triangle BAC$ simply because the ordered triple of points $(A,B,C)$ is distinct from the ordered triple $(B,A,C)$.
Note that $\solidtriangle ABC\cong\solidtriangle BAC$ even if $\triangle ABC\ncong\triangle BAC$, where congruence of the sets $\solidtriangle ABC$ and $\solidtriangle BAC$
is understood the following way:
\begin{thm}{Definition}\label{def:cong-sets}
Two sets $\mathcal{S}$ and $\mathcal{T}$ in the plane
are called \index{congruent!sets}\emph{congruent}
(briefly \index{32@$\cong$}$\mathcal{S}\cong \mathcal{T}$)
if
$\mathcal{T}=f(\mathcal{S})$ for some motion $f$ of the plane.
\end{thm}
If $\triangle ABC$ is not degenerate
and \[\solidtriangle ABC\cong \solidtriangle A'B'C',\]
then after relabeling the vertices of $\triangle ABC$
we will have
\[\triangle ABC\cong \triangle A'B'C'.\]
Indeed it is sufficient to show that
if $f$ is a motion that maps $\solidtriangle ABC$ to $\solidtriangle A'B'C'$,
then $f$ maps each vertex of $\triangle ABC$ to a vertex $\triangle A'B'C'$.
The latter follows from the characterization of vertices of solid triangles given in the following exercise:
\begin{thm}{Exercise}\label{ex:vertex}
Let $\triangle ABC$ be nondegenerate and $X\z\in \solidtriangle ABC$.
Show that $X$ is a vertex of $\triangle ABC$
if and only if there is a line $\ell$ that intersects $\solidtriangle ABC$
at the single point~$X$.
\end{thm}
\section{Polygonal sets}
An e\index{elementary set}\emph{elementary set} on the plane
is a set of one of the following three types:
\begin{itemize}
\item one-point set;
\item segment;
\item solid triangle.
\end{itemize}
\begin{wrapfigure}{r}{24 mm}
\vskip-12mm
\centering
\includegraphics{mppics/pic-294}
\end{wrapfigure}
A set in the plane is called \index{polygonal set}\emph{polygonal} if it can be presented as a union of a finite collection of elementary sets.
According to this definition, the empty set $\emptyset$
is a polygonal set.
Indeed, $\emptyset$ is a union of an empty collection of elementary sets.
A polygonal set is called \index{polygonal set!degenerate polygonal set}\index{degenerate!polygonal set}\emph{degenerate} if it can be presented as a union of a finite collection of one-point sets and segments.
If $X$ and $Y$ lie on opposite sides of the line $(AB)$,
then the polygonal set
$\solidtriangle AXB\cup \solidtriangle BYA$
is called \index{solid!quadrangle, parallelogram,\\ rectangle, square}\index{quadrangle!solid quadrangle}\emph{solid quadrangle} $AXBY$ and denoted by
\index{27@$\solidsquare$}$\solidsquare AXBY$.
In particular,
we can talk about \index{parallelogram!solid parallelogram}\emph{solid parallelograms}, \index{rectangle!solid rectangle}\emph{rectangles}, and \index{square!solid square}\emph{squares}.
\begin{wrapfigure}{o}{38 mm}
\centering
\includegraphics{mppics/pic-296}
\end{wrapfigure}
Typically a polygonal set admits many
presentations as a union of a finite collection of elementary sets.
For example, if $\square AXBY$ is a parallelogram, then
\[\solidsquare AXBY=\solidtriangle AXB\cup \solidtriangle AYB=\solidtriangle XAY\cup \solidtriangle XBY.\]
\begin{thm}{Exercise}\label{ex:solid-square}
Show that a solid square is not degenerate.
\end{thm}
\begin{thm}{Exercise}\label{ex:poly-circ}
Show that a circle is not a polygonal set.
\end{thm}
\begin{thm}{Claim}\label{clm:poly-ring}
For any two polygonal sets $\mathcal{P}$ and $\mathcal{Q}$,
the union $\mathcal{P}\cup\mathcal{Q}$,
as well as the intersection $\mathcal{P}\cap\mathcal{Q}$,
are also polygonal sets.
\end{thm}
A class of sets that is closed with respect to union and intersection is called a {}\emph{ring of sets}.
The claim above, therefore, states that polygonal sets in the plane form a ring of sets.
\parit{Informal proof.}
Let us present $\mathcal{P}$ and $\mathcal{Q}$
as a union of a finite collection of elementary sets $\mathcal{P}_1,\dots,\mathcal{P}_k$
and $\mathcal{Q}_1,\dots,\mathcal{Q}_n$ respectively.
{
\begin{wrapfigure}{o}{22 mm}
\centering
\includegraphics{mppics/pic-298}
\end{wrapfigure}
Note that
\[\mathcal{P}\cup\mathcal{Q}
=
\mathcal{P}_1
\cup
\dots
\cup
\mathcal{P}_k
\cup
\mathcal{Q}_1
\cup
\dots
\cup
\mathcal{Q}_n.\]
Therefore, $\mathcal{P}\cup\mathcal{Q}$ is polygonal.
Note that $\mathcal{P}\cap \mathcal{Q}$ is the union of $\mathcal{P}_i\cap \mathcal{Q}_j$ for all $i$ an~$j$.
Therefore, to show that $\mathcal{P}\cap \mathcal{Q}$ is polygonal,
it is sufficient to show that $\mathcal{P}_i\cap \mathcal{Q}_j$ is polygonal for any $i$ and $j$.
The diagram suggests a proof of the latter statement for solid triangles $\mathcal{P}_i$ and $\mathcal{Q}_j$.
The other cases are simpler; a formal proof can be built on Exercise~\ref{ex:triangle-convex}.
\qeds
\section{Definition of area}
\label{sec:def(area)}
\index{area}\emph{Area} is defined as a function $\mathcal{P}\mapsto \area\mathcal{P}$
that returns a nonnegative real number $\area\mathcal{P}$ for any polygonal set $\mathcal{P}$ and satisfies the following conditions:\label{page:area-def}
\textit{
\begin{enumerate}[(a)]
\item
$\area\mathcal{K}_1=1$
where $\mathcal{K}_1$ is a solid unit square;
\item\label{area-3} the conditions
\begin{align*}
\mathcal{P}\cong\mathcal{Q}
\quad
&\Rightarrow
\quad \area\mathcal{P}=\area\mathcal{Q};
\\
\mathcal{P}\subset\mathcal{Q}
\quad
&\Rightarrow
\quad
\area\mathcal{P}\le\area\mathcal{Q};
\\
\area\mathcal{P}+\area\mathcal{Q}
&=
\area(\mathcal{P}\cup\mathcal{Q})+\area(\mathcal{P}\cap\mathcal{Q})
\end{align*}
hold
for any two polygonal sets $\mathcal{P}$ and $\mathcal{Q}$.
\end{enumerate}
}
The first condition is called {}\emph{normalization}; essentially it says that a solid unit square is used as a unit to measure area.
The three conditions in \textit{(\ref{area-3})} are called {}\emph{invariance}, {}\emph{monotonicity}, and {}\emph{additivity}.
The Lebesgue measure is an example of an area function.
Namely, if one takes the area of $\mathcal{P}$ to be its Lebesgue measure,
then the function $\mathcal{P}\mapsto\area\mathcal{P}$ satisfies the above conditions.
The construction of the Lebesgue measure can be found in any textbook on real analysis.
We do not discuss it here.
If the reader is not familiar with the Lebesgue measure, then the existence of area function can be taken as granted;
it might be added to axioms altho it follows from the axioms \ref{def:birkhoff-axioms:0}--\ref{def:birkhoff-axioms:4}.
\section{Vanishing area and subdivisions}
\begin{thm}{Proposition}\label{prop:area-segment}
For any two points $A$ and $B$, we have
\[\area[AB]=0\quad\text{and}\quad\area\{A\}=0.\]
\end{thm}
\parit{Proof.}
Fix a line segment~$[AB]$.
Consider a sold square $\solidsquare ABCD$.
For any positive integer $n$,
there are $n$ disjoint segments $[A_1B_1],\z\dots,[A_nB_n]$
in $\solidsquare ABCD$,
such that each $[A_iB_i]$ is congruent to $[AB]$ in the sense of the Definition~\ref{def:cong-sets}.
\begin{wrapfigure}[10]{o}{37 mm}
\vskip-2mm
\centering
\includegraphics{mppics/pic-300}
\vskip0mm
\end{wrapfigure}
Applying the invariance, additivity, and monotonicity of the area function,
we get
\begin{align*}
n\cdot \area[AB]
&=\area\left([A_1B_1]\cup\dots\cup[A_nB_n]\right)\le
\\
&\le \area(\solidsquare ABCD)
\end{align*}
In other words,
\[\area[AB]\le \tfrac1n\cdot\area(\solidsquare ABCD)\]
for any positive integer~$n$.
It follows that $\area[AB]\le 0$.
Since area cannot be negative, we get
\[\area[AB]= 0.\]
For any one-point set $\{A\}$
we have that $\{A\}\subset [AB]$.
Therefore,
\[0\le \area\{A\}\le \area[AB]=0.\]
Hence $\area\{A\}=0$.
\qeds
\begin{thm}{Corollary}\label{cor:degenerate}
Any degenerate polygonal set has vanishing area.
\end{thm}
\parit{Proof.}
Let $\mathcal P$ be a degenerate set,
say
\[\mathcal{P}=[A_1B_1]\cup\dots\cup[A_nB_n]\cup\{C_1,\dots,C_k\}.\]
Since area is nonnegative by definition, applying additivity several times, we get that
\begin{align*}
\area\mathcal{P}\le
& \area[A_1B_1]+\dots+\area[A_nB_n]+
\\
&+\area\{C_1\}+\dots+\area\{C_k\}.
\end{align*}
By Proposition~\ref{prop:area-segment}, the right-hand side vanishes.
On the other hand,
$\area\mathcal{P}\ge 0$,
hence the result.
\qeds
We say that a polygonal set $\mathcal{P}$ is \index{subdivision of polygonal set}\emph{subdivided}
into two polygonal sets $\mathcal{Q}_1,\dots,\mathcal{Q}_n$
if $\mathcal{P}=\mathcal{Q}_1\cup\dots\cup \mathcal{Q}_n$
and the intersection $\mathcal{Q}_i\cap\mathcal{Q}_j$ is degenerate for any pair $i$ and $j$.
(Recall that according to Claim~\ref{clm:poly-ring},
the intersections $\mathcal{Q}_i\cap\mathcal{Q}_j$ are polygonal.)
\begin{thm}{Proposition}\label{prop:subdivision}
Assume that a polygonal set $\mathcal{P}$ is subdivided into polygonal sets $\mathcal{Q}_1,\dots,\mathcal{Q}_n$.
Then
\[\area\mathcal{P}=\area\mathcal{Q}_1+\dots+\area\mathcal{Q}_n.\]
\end{thm}
\begin{wrapfigure}{o}{26 mm}
\vskip-4mm
\centering
\includegraphics{mppics/pic-302}
\end{wrapfigure}
\parit{Proof.}
Assume $n=2$; by the additivity of area,
\[\area\mathcal{P}=\area\mathcal{Q}_1+\area\mathcal{Q}_2-\area(\mathcal{Q}_1\cap\mathcal{Q}_2).\]
Since $\mathcal{Q}_1\cap\mathcal{Q}_2$ is degenerate,
by Corollary~\ref{cor:degenerate},
\[\area(\mathcal{Q}_1\cap\mathcal{Q}_2)=0.\]
Applying this formula a few times we get the general case.
Indeed, if $\mathcal{P}$ is subdivided into $\mathcal{Q}_1,\dots,\mathcal{Q}_n$, then
\begin{align*}
\area\mathcal{P}&=\area\mathcal{Q}_1+\area(\mathcal{Q}_2\cup\dots\cup\mathcal{Q}_n)=
\\
&=\area\mathcal{Q}_1+\area \mathcal{Q}_2+\area( \mathcal{Q}_3\cup\dots\cup\mathcal{Q}_n)=
\\
&\ \ \ \vdots
\\
&=\area\mathcal{Q}_1+\area \mathcal{Q}_2+\dots+\area\mathcal{Q}_n.
\end{align*}
\qedsf
\parbf{Remark.}
Two polygonal sets $\mathcal{P}$ and $\mathcal{P}'$ are called \index{equidecomposable sets}\emph{equidecomposable} if they admit subdivisions into polygonal sets $\mathcal{Q}_1,\dots,\mathcal{Q}_n$ and $\mathcal{Q}'_1,\dots,\mathcal{Q}'_n$ such that
$\mathcal{Q}_i\cong\mathcal{Q}'_i$ for each $i$.
According to the proposition, if $\mathcal{P}$ and $\mathcal{P}$ are equidecomposable, then $\area \mathcal{P}=\area\mathcal{P}'$.
A converse to this statement also holds;
namely, \textit{if two nondegenerate polygonal sets have equal area, then they are equidecomposable.}
The last statement was proved by William Wallace, Farkas Bolyai, and Paul Gerwien.
The analogous statement in three dimensions, known as {}\emph{Hilbert's third problem}, is false; it was proved by Max Dehn.
\section{Rectangles}
\begin{thm}{Theorem}\label{thm:area-rect}
The area of a rectangle is the product of its adjacent sides.
\end{thm}
\begin{thm}{Algebraic lemma}\label{lem:alg-area}
Assume that a function $s$
returns a nonnegative real number $s(a,b)$
for any pair of positive real numbers $(a,b)$
and it satisfies the following identities:
\[\begin{aligned}
s(1,1)&=1,
\\
s(a,b+c)&=s(a,b)+s(a,c),
\\
s(a+b,c)&=s(a,c)+s(b,c)
\end{aligned}
\eqlbl{3s}
\]
for any $a,b,c>0$.
Then
\[s(a,b)=a\cdot b\]
for any $a,b>0$.
\end{thm}
The proof is similar to the proof of Lemma~\ref{lem:R-auto}.
\parit{Proof.}
If $a>a'$ and $b>b'$ then
\[s(a,b)\ge s(a',b').\eqlbl{s(a,b)>s(a',b')}\]
Indeed, since $s$ returns nonnegative numbers, we get that
\begin{align*}
s(a,b)&=s(a',b)+s(a-a',b)\ge s(a',b)=
\\
&= s(a',b')+s(a',b-b')\ge s(a',b').
\end{align*}
Applying the second and third identity in \ref{3s} a few times we get that
\begin{align*}
m\cdot s(a,b)&=s(a,m\cdot b)=
\\&=s(m\cdot a,b)
\end{align*}
for any positive integer $m$. Therefore
\begin{align*}
s(\tfrac kl,\tfrac mn)
&=k \cdot s(\tfrac 1l,\tfrac mn)=
\\
&=k\cdot m \cdot s(\tfrac 1l,\tfrac 1n)=
\\
&=k\cdot m\cdot \tfrac 1l\cdot s(1, \tfrac 1n)=
\\
&=k\cdot m\cdot \tfrac 1l\cdot \tfrac 1n\cdot s(1,1)=
\\
&=\tfrac kl\cdot\tfrac mn
\end{align*}
for any positive integers $k$, $l$, $m$, and $n$.
That is, the needed identity holds for any pair of rational numbers $a=\tfrac kl$ and $b=\tfrac mn$.
Arguing by contradiction, assume $s(a,b)\ne a\cdot b$ for a pair of positive real numbers $(a,b)$;
so, $s(a,b)> a\cdot b$ or $s(a,b)\z< a\cdot b$.
Recall that \index{63@$\lfloor x \rfloor$, $\lceil x \rceil$}$\lfloor x \rfloor$ and $\lceil x \rceil$ denote \index{floor and ceiling}\emph{floor} and \emph{ceiling} of $x$;
that is, $\lfloor x \rfloor$ is the greatest integer such that $\lfloor x \rfloor\le x$,
and $\lceil x \rceil$ is the least integer such that $\lceil x \rceil\ge x$.
\raggedcolumns\setlength{\multicolsep}{.5mm}
\setlength{\columnseprule}{1pt}
\begin{multicols}{2}
If $s(a,b)> a\cdot b$,
we can choose a positive integer $n$ such that
\[s(a,b)> (a+\tfrac1n)\cdot (b+\tfrac1n).\eqlbl{s(a,b)>}\]
Set $k=\lfloor a\cdot n \rfloor+1$ and $m=\lfloor b\cdot n \rfloor+1$;
equivalently, $k$ and $m$ are positive integers such that
\begin{align*}
a< \tfrac kn&\le a+\tfrac1n,
\\
b<\tfrac mn&\le b+\tfrac1n.
\end{align*}
By \ref{s(a,b)>s(a',b')}, we get that
\begin{align*}
s(a,b)&\le s(\tfrac kn,\tfrac mn)=
\\
&=\tfrac kn\cdot\tfrac mn\le
\\
&\le (a+\tfrac1n)\cdot(b+\tfrac1n),
\end{align*}
which contradicts \ref{s(a,b)>}.
\columnbreak
If $s(a,b)< a\cdot b$, choose a positive integer $n$ such that $a>\tfrac1n$, $b>\tfrac1n$, and
\[s(a,b)< (a-\tfrac1n)\cdot (b-\tfrac1n).\eqlbl{s(a,b)<}\]
Set $k=\lceil a\cdot n \rceil-1$ and $m=\lceil b\cdot n \rceil-1$; that is,
\begin{align*}
a> \tfrac kn&\ge a-\tfrac1n,
\\
b>\tfrac mn&\ge b-\tfrac1n.
\end{align*}
By \ref{s(a,b)>s(a',b')}, we get that
\begin{align*}
s(a,b)&\ge s(\tfrac kn,\tfrac mn)=
\\
&=\tfrac kn\cdot\tfrac mn\ge
\\
&\ge (a-\tfrac1n)\cdot(b-\tfrac1n),
\end{align*}
which contradicts \ref{s(a,b)<}.\qeds
\end{multicols}
\setlength{\columnseprule}{0pt}
\parit{Proof of Theorem~\ref{thm:area-rect}.}
Suppose that $\mathcal{R}_{a,b}$ denotes the solid rectangle with sides $a$ and~$b$.
Let
\[s(a,b)=\area \mathcal{R}_{a,b}.\]
By the definition of area,
$s(1,1)=\area(\mathcal{K})=1$.
That is, the first identity in the algebraic lemma holds.
\begin{wrapfigure}{o}{30 mm}
\vskip-0mm
\centering
\includegraphics{mppics/pic-304}
\end{wrapfigure}
The rectangle $\mathcal{R}_{a+b,c}$
can be subdivided into two rectangles $\mathcal{R}_{a,c}$
and~$\mathcal{R}_{b,c}$.
By Proposition~\ref{prop:subdivision},
\[
\area \mathcal{R}_{a+b,c}=\area \mathcal{R}_{a,c}+\area \mathcal{R}_{b,c}.
\]
That is, the second identity in the algebraic lemma holds.
The proof of the third identity is similar.
It remains to apply the algebraic lemma.
\qeds
\section{Parallelograms}
\begin{thm}{Proposition}\label{prop:area-parallelogram}
Let $\square ABCD$ be a parallelogram in the Euclidean plane.
Then
\[\area(\solidsquare ABCD)=a\cdot h,\]
where $a=AB$, and $h$ is the distance between the lines $(AB)$ and~$(CD)$.
\end{thm}
{
\begin{wrapfigure}{r}{41 mm}
\vskip-0mm
\centering
\includegraphics{mppics/pic-306}
\end{wrapfigure}
\parit{Proof.}
Let $A'$ and $B'$ denote the footpoints of $A$ and $B$
on the line~$(CD)$.
Note that $ABB'A'$ is a rectangle with sides $a$ and $h$.
By Proposition~\ref{thm:area-rect},
\[\area( \solidsquare ABB'A')=h\cdot a.
\eqlbl{eq:ABBA}\]
}
Without loss of generality, we may assume that $\solidsquare ABCA'$
contains $\solidsquare ABCD$ and $\solidsquare ABB'A'$.
In this case, $\solidsquare ABCA'$ admits two subdivisions:
\[\solidsquare ABCA'=\solidsquare ABCD\cup\solidtriangle AA'D=\solidsquare ABB'A'\cup\solidtriangle BB'C.\]
By Proposition~\ref{prop:subdivision},
\[\begin{aligned}
\area( \solidsquare ABCD)&+\area(\solidtriangle AA'D)=
\\
&=
\area(\solidsquare ABB'A')+ \area (\solidtriangle BB'C).
\end{aligned}
\eqlbl{eq:area-sum}\]
Note that
\[\triangle AA'D\cong \triangle BB'C.\eqlbl{eq:cong-area}\]
Indeed, since the quadrangles $ABB'A'$ and $ABCD$ are parallelograms,
by Lemma~\ref{lem:parallelogram},
we have that $AA'=BB'$, $AD=BC$, and $DC=AB\z=A'B'$.
It follows that $A'D=B'C$.
Applying the SSS congruence condition, we get \ref{eq:cong-area}.
In particular,
\[\area(\solidtriangle BB'C)=\area (\solidtriangle AA'D).
\eqlbl{eq:area-trinagles}\]
Subtracting \ref{eq:area-trinagles} from \ref{eq:area-sum},
we get that
\[\area (\solidsquare ABCD)=\area(\solidsquare ABB'D).\]
It remains to apply \ref{eq:ABBA}.
\qeds
{
\begin{wrapfigure}{r}{26 mm}
\vskip-5mm
\centering
\includegraphics{mppics/pic-308}
\end{wrapfigure}
\begin{thm}{Exercise}\label{ex:two-parallelograms}
Assume $\square ABCD$ and $\square AB'C'D'$ are two parallelograms such that $B'\in[BC]$ and $D\z\in [C'D']$.
Show that
\[\area(\solidsquare ABCD)=\area(\solidsquare AB'C'D').\]
\end{thm}
}
\section{Triangles}
\begin{thm}{Theorem}\label{thm:area-of-triangle}
Let $h_A$ be the altitude from $A$
in $\triangle ABC$ and $a=BC$.
Then
\[\area(\solidtriangle ABC)=\tfrac12\cdot a\cdot h_A.\]
\end{thm}
\parit{Proof.}
Draw the line $m$ thru $A$ that is parallel to $(BC)$
and line $n$ thru $C$ parallel to~$(AB)$.
Note that the lines $m$ and $n$ are not parallel;
denote by $D$ their point of intersection.
By construction, $\square ABCD$ is a parallelogram.
Note that $\solidsquare ABCD$ admits a subdivision into $\solidtriangle ABC$ and $\solidtriangle CDA$.
Therefore,
\[\area(\solidsquare ABCD)
=
\area(\solidtriangle ABC)
+
\area(\solidtriangle CDA).\]
\begin{wrapfigure}{o}{28 mm}
\centering
\includegraphics{mppics/pic-310}
\end{wrapfigure}
Since $\square ABCD$ is a parallelogram, Lemma~\ref{lem:parallelogram} implies that
\[AB=CD
\quad
\text{and}
\quad
BC=DA.\]
Therefore, by the SSS congruence condition, we have
$\triangle ABC\z\cong\triangle CDA$.
In particular
\[\area(\solidtriangle ABC)
=
\area(\solidtriangle CDA).\]
From above and Proposition~\ref{prop:area-parallelogram}, we get that
\begin{align*}
\area(\solidtriangle ABC)
&=\tfrac12\cdot\area(\solidsquare ABCD)=
\\
&=\tfrac12\cdot h_A\cdot a.
\end{align*}
\qedsf
\begin{thm}{Exercise}\label{ex:three-trig}
Let $h_A$, $h_B$, and $h_C$ denote the altitudes of $\triangle ABC$ from vertices $A$, $B$, and $C$ respectively.
Note that from Theorem~\ref{thm:area-of-triangle},
it follows that
\[h_A\cdot BC=h_B\cdot CA=h_C\cdot AB.\]
Give a proof of this statement without using Theorem~\ref{thm:area-of-triangle}.
\end{thm}
\begin{thm}{Exercise}\label{ex:half-parallelogram}
Assume $M$ lies inside the parallelogram $ABCD$;
that is, $M$ belongs to the solid parallelogram $\solidsquare ABCD$ but does not lie on its sides.
Show that
\[\area(\solidtriangle ABM)+\area(\solidtriangle CDM)
=\tfrac12\cdot \area(\solidsquare ABCD).\]
\end{thm}
\begin{thm}{Exercise}\label{ex:area-diag}
Assume that diagonals
of a nondegenerate quadrangle $ABCD$
intersect at point $M$.
Show that
\[\area(\solidtriangle ABM)\cdot\area(\solidtriangle CDM)
=
\area(\solidtriangle BCM)\cdot\area(\solidtriangle DAM).\]
\end{thm}
\begin{thm}{Exercise}\label{ex:area-inradius}
Let $r$ be the inradius of $\triangle ABC$
and $p$ be its {}\emph{semiperimeter};
that is, $p=\tfrac12\cdot(AB+BC+CA)$.
Show that
\[\area(\solidtriangle ABC)=p\cdot r.\]
\end{thm}
\begin{thm}{Exercise}\label{ex:subdivision}
Show that any polygonal set admits a subdivision into a finite collection of solid triangles and a degenerate set.
Conclude that for any polygonal set, its area is uniquely defined.
\end{thm}
\section{Area method}
In this section, we give examples of proofs using the properties of the area function.
These proofs are not truly elementary --- the price for the existence of the area function is high.
{
\begin{wrapfigure}{r}{20 mm}
\vskip-2mm
\centering
\includegraphics{mppics/pic-312}
\end{wrapfigure}
We start with the proof of the \index{Pythagorean theorem}Pythagorean theorem.
In the Elements of Euclid, the Pythagorean theorem was formulated as equality \ref{eq:pyth+area} below,
and the proof used a similar technique.
\parit{Proof.}
We need to show that
\[a^2+b^2=c^2,\]
where $a$ and $b$ are legs and $c$ is the hypotenuse
of a right triangle.
Let $\mathcal{K}_{x}$ be the solid square with side~$x$.
Denote by $\mathcal{T}$ the right solid triangle with legs $a$ and $b$.
}
Let us construct two subdivisions of $\mathcal{K}_{a+b}$:
\begin{enumerate}[1.]
\item Subdivide $\mathcal{K}_{a+b}$ into two solid squares congruent to $\mathcal{K}_a$ and $\mathcal{K}_b$
and four solid triangles congruent to $\mathcal{T}$;
see the first diagram.
\item Subdivide $\mathcal{K}_{a+b}$ into one solid square congruent to $\mathcal{K}_c$
and four solid right triangles congruent to $\mathcal{T}$;
see the second diagram.
\end{enumerate}
Applying Proposition~\ref{prop:subdivision} a few times,
we get that
\begin{align*}
\area\mathcal{K}_{a+b}
&=
\area\mathcal{K}_{a}+\area\mathcal{K}_{b}+4\cdot\area\mathcal{T}=
\\
&=\area\mathcal{K}_{c}+4\cdot\area\mathcal{T}.
\end{align*}
Therefore,
\[\area\mathcal{K}_{a}+\area\mathcal{K}_{b}=\area\mathcal{K}_{c}.\eqlbl{eq:pyth+area}\]
By Theorem~\ref{thm:area-rect}, we know that
\[\area\mathcal{K}_x=x^2,\]
for any $x>0$.
Hence the statement follows.\qeds
{
\begin{wrapfigure}{r}{19mm}
\vskip-0mm
\centering
\includegraphics{mppics/pic-314}
\end{wrapfigure}
\begin{thm}{Exercise}\label{ex:pyth-2}
Build another proof of the Pythagorean theorem
based on the diagram.
(In the notations above it shows a subdivision of $\mathcal{K}_c$ into $\mathcal{K}_{a-b}$ and four copies of~$\mathcal{T}$ if $a>b$.)
\end{thm}
}
\begin{thm}{Exercise}\label{ex:sum-3-dist}
Show that the sum of distances from a point to the sides of an equilateral triangle is the same for all points inside the triangle.
\end{thm}
\begin{thm}{Claim}\label{clm:area-ratio}
Assume that two triangles $ABC$ and $A'B'C'$ in the Euclidean plane
have equal altitudes dropped from $A$ and $A'$ respectively.
Then
\[\frac{\area(\solidtriangle A'B'C')}{\area(\solidtriangle ABC)}
=
\frac{B'C'}{BC}.\]
In particular, the same identity holds if $A=A'$ and the bases $[BC]$ and $[B'C']$ lie on one line.
\end{thm}
\parit{Proof.}
Let $h$ be the altitude.
By Theorem~\ref{thm:area-of-triangle},
\[\frac{\area(\solidtriangle A'B'C')}{\area(\solidtriangle ABC)}
=
\frac{\frac12 \cdot h\cdot B'C'}{\frac12 \cdot h\cdot BC}
=
\frac{B'C'}{BC}.\]
\qedsf
Now let us show how to use this claim to prove Lemma~\ref{lem:bisect-ratio}.
First, let us recall its statement:
\begin{thm*}{Lemma}
If $\triangle A B C$ is nondegenerate and its angle bisector at $A$ intersects $[BC]$ at point~$D$, then
$$\frac{AB}{AC}=\frac{DB}{DC}.$$
\end{thm*}
\begin{wrapfigure}{r}{30 mm}
\vskip-0mm
\centering
\includegraphics{mppics/pic-316}
\end{wrapfigure}
\parit{Proof.}
Applying Claim~\ref{clm:area-ratio}, we get that
\[\frac{\area(\solidtriangle ABD)}{\area(\solidtriangle ACD)}
=\frac{BD}{CD}.\]
By Proposition~\ref{prop:angle-bisect-dist} the triangles $ABD$ and $ACD$ have equal altitudes from~$D$.
Applying Claim~\ref{clm:area-ratio} again, we get that
\[\frac{\area(\solidtriangle ABD)}{\area(\solidtriangle ACD)}=\frac{AB}{AC}.\]
Hence the result follows.
\qeds
The second statement in the following exercise is a partial case of \index{Ceva's theorem}Ceva's theorem; see \ref{thm:ceva-affine}.
\begin{thm}{Exercise}\label{ex:ceva}
Let $ABC$ be a nondegenerate triangle.
Assume $A'$ lies between $B$ and $C$,
point $B'$ lies between $C$ and $A$,
point $C'$ lies between $A$ and $B$.
Suppose that line segments $[AA']$, $[BB']$, and $[CC']$ meet at a point $X$.
Show that
\vskip-3mm
{
\begin{wrapfigure}[6]{r}{40 mm}
\vskip4mm
\centering
\includegraphics{mppics/pic-318}
\end{wrapfigure}
\begin{align*}
\frac{\area(\solidtriangle ABX)}{\area(\solidtriangle BCX)}&=\frac{AB'}{B'C},
\\
\frac{\area(\solidtriangle BCX)}{\area(\solidtriangle CAX)}&=\frac{BC'}{C'A},
\\
\frac{\area(\solidtriangle CAX)}{\area(\solidtriangle ABX)}&=\frac{CA'}{A'B} .
\end{align*}
}
Conclude that
\[\frac{AB'\cdot CA'\cdot BC'}{B'C\cdot A'B\cdot C'A}=1.\]
\end{thm}
\begin{wrapfigure}[5]{r}{40 mm}
\vskip-6mm
\centering
\includegraphics{mppics/pic-319}
\end{wrapfigure}
\begin{thm}{Exercise}\label{ex:cross-ratio-area}
Suppose that points $L_1$, $L_2$, $L_3$, $L_4$ lie on a line $\ell$
and points $M_1$, $M_2$, $M_3$, $M_4$ lie on a line $m$.
Assume that the lines $(L_1M_1)$, $(L_2M_2)$, $(L_3M_3)$, and $(L_4M_4)$ pass thru point $O$ that does not lie on $\ell$ nor~$m$.
\begin{enumerate}[(a)]
\item\label{ex:cross-ratio-area:a} Apply Claim~\ref{clm:area-ratio} to show that
\[\frac{\area\solidtriangle OL_iL_j}{\area\solidtriangle OM_iM_j}=\frac{OL_i\cdot OL_j}{OM_i\cdot OM_j}\]
for any $i\ne j$.
\item\label{ex:cross-ratio-area:b} Use \textit{(\ref{ex:cross-ratio-area:a})} to prove that
\[\frac{L_1L_2\cdot L_3L_4}{L_2L_3\cdot L_4L_1}=\frac{M_1M_2\cdot M_3M_4}{M_2M_3\cdot M_4M_1};\]
that is, the quadruples $(L_1, L_2, L_3, L_4)$ and $(M_1, M_2, M_3, M_4)$ have the same cross-ratio.
\end{enumerate}
\end{thm}
\section{Neutral planes and spheres}
Area can be defined in the neutral planes and spheres.
In this definition,
the solid unit square $\mathcal{K}_1$ has to be
exchanged for a fixed nondegenerate polygonal set $\mathcal{U}$.
Such a change is necessary for a good reason ---
hyperbolic plane and sphere have no squares.
In this case, the set $\mathcal{U}$ serves as the unit measure for area;
changing $\mathcal{U}$ would require a conversion of area units.
\begin{wrapfigure}{o}{26 mm}
\vskip-0mm
\centering
\includegraphics{mppics/pic-320}
\end{wrapfigure}
According to the standard convention, the set $\mathcal{U}$
is chosen so that on small scales the area behaves like in the Euclidean plane.
For example, if $\mathcal{K}_a$ denotes the solid quadrangle $\solidsquare ABCD$
with right angles at $A$, $B$, and $C$ such that $AB=BC=a$,
then we may assume that
\[\tfrac{1}{a^2}\cdot\area \mathcal{K}_a\to 1
\quad
\text{as}
\quad
a\to0.\]
This convention works equally well for spheres and neutral planes, including the Euclidean plane.
In spherical geometry equivalently we may assume that if $r$ is the radius of the sphere,
then the area of the whole sphere is $4\cdot\pi\cdot r^2$.
Recall that the \index{defect}\emph{defect of triangle} $\triangle ABC$ is defined as
$$\defect(\triangle ABC)
\df
\pi-|\measuredangle ABC|-|\measuredangle BCA|-|\measuredangle CAB|.$$
It turns out that for any neutral plane or sphere,
there is a real number $k$
such that
$$k\cdot\area(\solidtriangle ABC)+\defect(\triangle ABC)=0
\eqlbl{eq:curv-defect}$$
for any $\triangle ABC$.
This number $k$ is called \index{curvature}\emph{curvature};
$k=0$ for the Euclidean plane,
$k=-1$ for the h-plane,
$k=1$ for the unit sphere,
and $k=\tfrac1{r^2}$ for the sphere of radius~$r$.
Since the angles of an ideal triangle vanish, any ideal triangle in the h-plane has area~$\pi$.
Similarly, in the unit sphere, the area of an equilateral triangle with right angles has an area of $\tfrac\pi2$;
since the whole sphere can be subdivided into eight such triangles, we get that the area of the unit sphere is $4\cdot\pi$.
The identity \ref{eq:curv-defect} can be used as an alternative way to introduce the area function; it works on spheres and all neutral planes, except for the Euclidean plane.
\section{Quadrable sets}
A set $\mathcal{S}$
in the plane is called \index{quadrable set}\emph{quadrable}
if, for any $\epsilon>0$, there are two polygonal sets
$\mathcal{P}$ and $\mathcal{Q}$
such that
\[\mathcal{P}
\subset
\mathcal{S}\subset\mathcal{Q}
\quad
\text{and}
\quad
\area\mathcal{Q}-\area\mathcal{P}
<
\epsilon.\]
If $\mathcal{S}$ is quadrable,
its area can be defined
as the necessarily unique real number $s=\area\mathcal{S}$
such that the inequality
\[\area\mathcal{Q}\le s\le \area\mathcal{P}
\]
holds for any polygonal sets $\mathcal{P}$ and $\mathcal{Q}$ such that $\mathcal{P}\subset\mathcal{S}\subset\mathcal{Q}$.
\begin{thm}{Exercise}\label{ex:circle-is-quadrable}
Let $\mathcal{D}$ be a \emph{unit disc};
that is, $\mathcal{D}$ is a set that contains
the unit circle $\Gamma$ and all the points inside~$\Gamma$.
Show that $\mathcal{D}$ is a quadrable set.
\end{thm}
Since $\mathcal{D}$ is quadrable, the expression $\area\mathcal{D}$ makes sense and the constant $\pi$ can be defined as $\pi\df\area\mathcal{D}$.
\medskip
It turns out that the class of quadrable sets is the largest class for which
the area function satisfying the conditions in Section~\ref{sec:def(area)} is \textit{uniquely} defined.
If you do not require uniqueness, then there are ways to extend the area function to all bounded sets.
(A set in the plane is called \index{bounded set}\emph{bounded} if it lies inside a circle.)
On the sphere and hyperbolic plane,
there is no similar construction.
If you wonder why,
read about the \index{doubling the ball}\emph{doubling the ball} --- a paradox of Felix Hausdorff, Stefan Banach, and Alfred Tarski.