Anish Joni December 12, 2018
orders_df %>%
group_by(order_day) %>%
count() %>%
ggplot(aes(order_day, n)) +
geom_bar(stat = "identity") +
scale_color_viridis_c() +
theme_fivethirtyeight()
orders_df %>%
mutate(order_day = wday(order_datetime, label = T))
## # A tibble: 1,000 x 7
## store_id store_name order_datetime destination delivery_time
## <int> <chr> <dttm> <chr> <dttm>
## 1 109 KFC 2018-08-23 00:00:00 Neighbourh~ 2018-08-23 00:21:10
## 2 107 McDonald's 2018-10-26 00:00:00 Neighbourh~ 2018-10-26 00:42:29
## 3 129 Dipndip 2018-10-10 00:00:00 Neighbourh~ 2018-10-10 00:56:05
## 4 82 Didi Burg~ 2018-08-21 00:00:00 Neighbourh~ 2018-08-21 00:34:53
## 5 44 KFC 2018-11-25 00:00:00 Neighbourh~ 2018-11-25 00:30:43
## 6 65 McDonald's 2018-11-25 00:00:00 Neighbourh~ 2018-11-25 00:36:53
## 7 88 KFC 2018-08-16 00:00:00 Neighbourh~ 2018-08-16 00:54:03
## 8 135 Doce 2018-11-11 00:00:00 Neighbourh~ 2018-11-11 00:25:26
## 9 48 Broccoli ~ 2018-09-27 00:00:00 Neighbourh~ 2018-09-27 00:55:13
## 10 50 Didi Burg~ 2018-10-07 00:00:00 Neighbourh~ 2018-10-07 00:23:59
## # ... with 990 more rows, and 2 more variables: travel_time <time>,
## # order_day <ord>