-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy path1e. Alternative Event Study Estimators.R
242 lines (210 loc) · 8.56 KB
/
1e. Alternative Event Study Estimators.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
library(tidyverse)
library(RPostgres)
library(fixest)
library(e1071)
library(kableExtra)
library(ggthemes)
library(patchwork)
library(did)
library(furrr)
library(latex2exp)
library(bacondecomp)
library(ggforce)
library(fastDummies)
library(progressr)
# set plot theme
theme_set(theme_clean() + theme(plot.background = element_blank(),
legend.background = element_blank()))
# load in compustat data
comp <- read_rds(here::here("Data", "simulation_data.rds"))
# estimate the fixed effects regression of ROA on firm and year fixed effects
mod <- feols(roa ~ 1 | gvkey + fyear, cluster = "incorp", data = comp)
# get the moments for the residuals from the baseline model
resid_sd <- sd(mod$residuals)
resid_skew <- skewness(mod$residuals)
resid_kurtosis <- kurtosis(mod$residuals)
# get firm and years and state of incorporation
shell <- comp %>% select(gvkey, fyear)
# get the firm and year fes, as well as the standard deviation of ROA
firm_fes <- fixef(mod)$gvkey
n_firm_fes <- length(fixef(mod)$gvkey)
year_fes <- fixef(mod)$fyear
n_year_fes <- length(fixef(mod)$fyear)
sd_roa <- sd(comp$roa)
## Last Plot - show the alternative methods and how they work over time
run_sim_es <- function(i, p) {
p()
# pull firm FE from empirical distribution with replacement and
# randomly assign state of incorporation
sim_firm_fe <- tibble(
gvkey = unique(shell$gvkey),
firm_fe = sample(firm_fes, n_firm_fes, replace = TRUE),
incorp = sample(state.abb, n_firm_fes, replace = TRUE)
)
# pull year FE from the empirical distribution with replacement
sim_year_fe <- tibble(
fyear = unique(shell$fyear),
year_fe = sample(year_fes, n_year_fes, replace = TRUE)
)
# merge in the FE to the firm/year/state observations and add in residuals from the
# empirical distribution. ROA is the linear combination of the FEs and the residual
data <- shell %>%
left_join(sim_firm_fe, by = "gvkey") %>%
left_join(sim_year_fe, by = "fyear") %>%
mutate(resid = sample(mod$residuals, length(mod$residuals), replace = TRUE),
roa = firm_fe + year_fe + resid)
# randomly assign the state of incorporation into treatment groups
# put random states into a vector
random_states <- sample(state.abb, length(state.abb), replace = FALSE)
# now add in the treatment effect - Multiple Treatment Periods and Dynamic Treatment Effects
data6 <- data %>%
mutate(
# figure out treatment group based on random ordering of states of incorporation
group = case_when(
incorp %in% random_states[1:17] ~ 1989,
incorp %in% random_states[18:35] ~ 1998,
incorp %in% random_states[35:50] ~ 2007
),
# add in treatment effects - varying percent of standard deviation of ROA added per year
delta_base = case_when(
fyear >= group & group == 1989 ~ .05*sd_roa,
fyear >= group & group == 1998 ~ .03*sd_roa,
fyear >= group & group == 2007 ~ .01*sd_roa,
TRUE ~ 0
),
# true treatment effect is the cumulative sum of this - dynamic trend break treatment effect
delta = delta_base * (fyear - group + 1),
# new ROA is the sum of the old ROA and the treatment effect
treat_roa = roa + delta,
# make indicator variable for obs when treatment is turned on for the TWFE regs
treat = ifelse(fyear >= group, 1, 0),
# make a relative-to-treatment year variable
rel_year = fyear - group,
# get a first treat variable for CS
first_treat = group)
# true treatment effects
dt <- tibble(
sim = rep(i, 11),
t = -5:5,
# get the average of the imputed treatment effects for each relative time period. Drop 2007 cohort bc can't estimate.
true_te = map_dbl(-5:5, function(x) {data6 %>% filter(rel_year == x & first_treat < 2007) %>% pull(delta) %>% mean})
)
# get CS estimates
# first full the full set of attgts
CS_out <- att_gt(yname = "treat_roa",
data = data6,
gname = "first_treat",
idname = "gvkey",
tname = "fyear",
bstrap = F,
cband = F,
est_method = "reg",
control_group = "notyettreated",
print_details = F,
panel = TRUE,
allow_unbalanced_panel = TRUE)
# get cs estimates aggregated to event time
cs <- aggte(CS_out, type = "dynamic", min_e = -5, max_e = 5, bstrap = FALSE, cband = FALSE)
# add into the data
dt$cs <- cs$att.egt
# Stacked regressions
# first make the stacked datasets
# get the treatment cohorts
cohorts <- data6 %>%
# drop never treateds, and also 2007 when everyone is treated
filter(!(first_treat %in% c(0, 2007))) %>%
pull(first_treat) %>%
unique()
# make formula to create the sub-datasets
getdata <- function(j) {
#keep what we need
data6 %>%
# keep treated units and all units not treated within -5 to 5
filter(first_treat == j | first_treat == 0 | first_treat > j + 5) %>%
# keep just year -5 to 5
filter(fyear >= j - 5 & fyear <= j + 5) %>%
# create an indicator for the dataset
mutate(df = j)
}
# get data stacked
stacked_data <- map_df(cohorts, getdata) %>%
mutate(rel_year = if_else(df == group, rel_year, NA_real_)) %>%
fastDummies::dummy_cols("rel_year", ignore_na = TRUE) %>%
mutate(across(starts_with("rel_year_"), ~replace_na(., 0)))
# get stacked value
stacked <- feols(treat_roa ~ `rel_year_-5` + `rel_year_-4` + `rel_year_-3` +
`rel_year_-2` + rel_year_0 + rel_year_1 + rel_year_2 + rel_year_3 +
rel_year_4 + rel_year_5 | gvkey^df + fyear^df, data = stacked_data)$coefficients
# add in 0 for omitted -1
stacked <- c(stacked[1:4], 0, stacked[5:10])
# add in
dt$stacked <- stacked
# finally get the sun and abraham value
# need to make a dataset without observations more than 5 years after treatment
sa_data <- data6 %>%
filter(treat == 0 | rel_year <= 5) %>%
filter(fyear < 2007)
# tidy up sun abraham estimates
sun_ab <- feols(treat_roa ~ 1 + sunab(first_treat, fyear) | gvkey + fyear, sa_data)
sa <- tidy(sun_ab)[14:23, ] %>% pull(estimate)
sa <- c(sa[1:4], 0, sa[5:10])
dt$sa <- sa
# export results
dt
}
# parallelize and do 500 simulations
x <- 1:500
options(future.globals.maxSize= 891289600)
set.seed(28101695)
plan(multisession, workers = 6)
with_progress({
p <- progressor(steps = length(x))
out <- future_map_dfr(
.x = x,
.f = run_sim_es,
p = p,
.options = furrr_options(globals = c("mod", "shell", "firm_fes", "n_firm_fes",
"year_fes", "n_year_fes", "sd_roa"),
packages = c("tidyverse", "fixest", "e1071", "did", "fastDummies"),
seed = TRUE)
)})
## make plots
# function to make plot
make_es_plot <- function(name, title) {
out %>%
group_by(t) %>%
summarize(true_effect = mean(true_te),
est = mean({{name}}),
lower_ci = quantile({{name}}, probs = 0.025),
upper_ci = quantile({{name}}, 0.975)) %>%
# split the error bands by pre-post
mutate(band_groups = case_when(
t < -1 ~ "Pre",
t >= 0 ~ "Post",
t == -1 ~ ""
)) %>%
# plot
ggplot(aes(x = t, y = est)) +
geom_line(aes(x = t, y = true_effect, color = "True Effect"), linetype = "dashed") +
geom_ribbon(aes(ymin = lower_ci, ymax = upper_ci),
color = "lightgrey", alpha = 1/4) +
geom_pointrange(aes(ymin = lower_ci, ymax = upper_ci, color = "Estimated Effect"), show.legend = FALSE) +
geom_hline(yintercept = 0) +
geom_vline(xintercept = -0.5, linetype = "dashed") +
scale_x_continuous(breaks = -5:5) +
labs(x = "Relative Time", y = if_else(title == "Callaway & Sant'Anna", expression(widehat(delta)), expression(" "))) +
scale_color_manual(values = c("#A7473A", "#4B5F6C")) +
ggtitle(title) +
theme(legend.position = if_else(title == "Sun & Abraham", "bottom", "none"),
legend.title = element_blank(),
plot.title = element_text(hjust = 0.5),
axis.title.y = element_text(angle = 360, hjust = 0.5, vjust = 0.5))
}
# run plots
cs_es <- make_es_plot(cs, "Callaway & Sant'Anna")
sa_es <- make_es_plot(sa, "Sun & Abraham")
stacked_es <- make_es_plot(stacked, "Stacked Regression")
# combine and save
new_did_sims <- cs_es + sa_es + stacked_es
ggsave(new_did_sims, filename = here::here("Figs_Tables", "new_did_sims.png"), dpi = 500,
width = 10, height = 4)