-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathamaz_optimizer.py
39 lines (31 loc) · 1.18 KB
/
amaz_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import chainer
from chainer import optimizers
class Optimizers(object):
def __init__(self,model,epoch=300):
self.model = model
self.epoch = epoch
self.optimizer = None
def __call__(self):
pass
def update(self):
self.optimizer.update()
def setup(self,model):
self.optimizer.setup(model)
class OptimizerVGG(Optimizers):
def __init__(self,model=None,lr=0.01,momentum=0.9,epoch=300,schedule=(50,68),weight_decay=5.0e-4):
super(OptimizerVGG,self).__init__(model,epoch)
self.lr = lr
self.optimizer = optimizers.MomentumSGD(self.lr,momentum)
weight_decay = chainer.optimizer.WeightDecay(weight_decay)
self.optimizer.setup(model)
self.optimizer.add_hook(weight_decay)
self.schedule = schedule
def update_parameter(self,current_epoch):
# if current_epoch in self.schedule:
# new_lr = self.lr * 0.1
# self.optimizer.lr = new_lr
# print("optimizer was changed to {0}..".format(new_lr))
if current_epoch % 2 == 0:
lr = self.lr * 0.94
print('lr is changed: {} -> {}'.format(self.lr, lr))
self.lr = lr