-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathamaz_optimizer.py
52 lines (41 loc) · 1.71 KB
/
amaz_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import chainer
from chainer import optimizers
class Optimizers(object):
def __init__(self,model,epoch=300):
self.model = model
self.epoch = epoch
self.optimizer = None
def __call__(self):
pass
def update(self):
self.optimizer.update()
def setup(self,model):
self.optimizer.setup(model)
class OptimizerSqueeze(Optimizers):
def __init__(self,model=None,lr=0.01,momentum=0.9,epoch=300,schedule=(150,225),weight_decay=1.0e-4):
super(OptimizerSqueeze,self).__init__(model,epoch)
self.lr = lr
self.optimizer = optimizers.MomentumSGD(self.lr,momentum)
weight_decay = chainer.optimizer.WeightDecay(weight_decay)
self.optimizer.setup(model)
self.optimizer.add_hook(weight_decay)
self.schedule = schedule
def update_parameter(self,current_epoch):
if current_epoch in self.schedule:
new_lr = self.lr * 0.1
self.optimizer.lr = new_lr
print("optimizer was changed to {0}..".format(new_lr))
class OptimizerNIN(Optimizers):
def __init__(self,model=None,lr=0.1,momentum=0.9,epoch=300,schedule=(150,220),weight_decay=1.0e-4):
super(OptimizerNIN,self).__init__(model,epoch)
self.lr = lr
self.optimizer = optimizers.MomentumSGD(self.lr,momentum)
weight_decay = chainer.optimizer.WeightDecay(weight_decay)
self.optimizer.setup(model)
self.optimizer.add_hook(weight_decay)
self.schedule = schedule
def update_parameter(self,current_epoch):
if current_epoch in self.schedule:
new_lr = self.lr * 0.1
self.optimizer.lr = new_lr
print("optimizer was changed to {0}..".format(new_lr))