-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_224.py
42 lines (38 loc) · 1.51 KB
/
main_224.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import argparse
from chainer import optimizers
import darknet19
import amaz_imagenet
import amaz_augumentationCustom
import amaz_optimizer
import amaz_trainer_batchInbatch
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='cifar10')
parser.add_argument('--epoch', '-e', type=int,
default=60,
help='maximum epoch')
parser.add_argument('--batch', '-b', type=int,
default=64,
help='mini batch number')
parser.add_argument('--batchinbatch', '-bb', type=int,
default=16,
help='batch in batch number')
parser.add_argument('--gpu', '-g', type=int,
default=-1,
help='-1 means cpu, put gpu id here')
parser.add_argument('--lr', '-lr', type=float,
default=0.1,
help='learning rate')
args = parser.parse_args().__dict__
lr = args.pop('lr')
epoch = args.pop('epoch')
imagenet = amaz_imagenet.ImageNet()
dataset = imagenet.loader()
model = darknet19.Darknet19(category_num=1000)
optimizer = amaz_optimizer.OptimizerDarknet(model,lr=0.04,epoch=60,batch=args.pop("batch"))
dataaugumentation = amaz_augumentationCustom.Normalize224
args['model'] = model
args['optimizer'] = optimizer
args['dataset'] = dataset
args['dataaugumentation'] = dataaugumentation
main = amaz_trainer_batchInbatch.Trainer(**args)
main.run()