-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathamaz_optimizer.py
65 lines (53 loc) · 2.27 KB
/
amaz_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import chainer
from chainer import optimizers
class Optimizers(object):
def __init__(self,model,epoch=300):
self.model = model
self.epoch = epoch
self.optimizer = None
def __call__(self):
pass
def update(self):
self.optimizer.update()
def setup(self,model):
self.optimizer.setup(model)
class OptimizerDarknet(Optimizers):
def __init__(self,model=None,lr=0.04,momentum=0.9,epoch=160,schedule=(35,45,50),weight_decay=5.0e-4,decay_power=4,batch=64):
super(OptimizerDarknet,self).__init__(model,epoch)
self.lr = lr
self.decay_power = decay_power #polynominal rate decays
self.optimizer = optimizers.MomentumSGD(self.lr,momentum)
weight_decay = chainer.optimizer.WeightDecay(weight_decay)
self.optimizer.setup(model)
self.optimizer.add_hook(weight_decay)
self.schedule = schedule
self.batch = batch
self.data_length = 50000
def update_parameter(self,current_epoch):
if current_epoch in self.schedule:
self.lr = self.lr * 0.47
self.optimizer.lr = self.lr
print("optimizer was changed to {0}..".format(self.lr))
else:
print("current optimizer {0}".format(self.lr))
class OptimizerDarknet448(Optimizers):
def __init__(self,model=None,lr=0.001,momentum=0.9,epoch=160,schedule=(90,145,200),weight_decay=5.0e-4,decay_power=4,batch=64):
super(OptimizerDarknet,self).__init__(model,epoch)
self.lr = lr
self.decay_power = decay_power #polynominal rate decays
self.optimizer = optimizers.MomentumSGD(self.lr,momentum)
weight_decay = chainer.optimizer.WeightDecay(weight_decay)
self.optimizer.setup(model)
self.optimizer.add_hook(weight_decay)
self.schedule = schedule
self.batch = batch
self.data_length = 50000
def update_parameter(self,current_epoch):
# if current_epoch in self.schedule:
# new_lr = self.lr * (1 - self.batch/self.data_length) ** self.decay_power
# if current_epoch in self.schedule:
# new_lr = new_lr * 0.1
# self.lr = new_lr
# self.optimizer.lr = new_lr
# print("optimizer was changed to {0}..".format(new_lr))
print("no update")