-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathJeffnRpsCandidate.py
155 lines (149 loc) · 6.43 KB
/
JeffnRpsCandidate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
ROCK, PAPER, SCISSORS = range(3)
LOSES_TO = [PAPER, SCISSORS, ROCK]
import random
import sys
from RpsCandidate import *
class JeffnRpsCandidate(RpsCandidate):
"""
This sucker is genetic. These GA arguments are all optional, and should only be used
for tweaking manually. For the purpose of this competition, the defaults should be used.
"""
def __init__(self, generationSize = 6, geneCount = 6, mutationRate = .01):
RpsCandidate.__init__(self)
self.currentGeneration = Generation(generationSize, geneCount, mutationRate)
self.currentGeneration.randomGeneration()
self.currentGeneration.nextActor()
self.currentActor = self.currentGeneration.getCurrentActor()
self.currentMove = 0
self.winCounter = 0
self.lossCounter = 0
self.tieCounter = 0
def getWins(self):
return self.winCounter
def getLosses(self):
return self.lossCounter
def getTies(self):
return self.tieCounter
def resetScoreKeepers(self):
self.winCounter = 0
self.lossCounter = 0
self.tieCounter = 0
def getNextMove(self):
# Is our current generation depleted? If so, breed a new one.
if (not self.currentActor.hasNextMove() and not self.currentGeneration.hasNextActor()):
self.currentGeneration = self.currentGeneration.breed()
# Is our current actor depleted? If so, grab the next actor.
if (not self.currentActor.hasNextMove()):
self.currentGeneration.nextActor()
self.currentActor = self.currentGeneration.getCurrentActor()
# Grab the next move from the current actor.
self.currentActor.nextMove()
self.currentMove = self.currentActor.getCurrentMove()
return self.currentMove
def setOpponentsLastMove(self, move):
if (move == self.currentMove):
self.tieCounter = self.tieCounter + 1
elif (LOSES_TO[self.currentMove] == move):
self.currentActor.recordLoss()
self.lossCounter = self.lossCounter + 1
else:
self.currentActor.recordWin()
self.winCounter = self.winCounter + 1
class Actor(object):
def __init__(self, geneCount, mutationRate, manualSelection = random.choice((ROCK, PAPER, SCISSORS))):
self.geneCount = geneCount
self.mutationRate = mutationRate
self.currentGene = -1
self.score = 0
"""
The following is actually a very interesting tweak. I initially started with a
pure random generation of DNA. This had a nice quality of promoting diversity.
In testing I noticed that while the algorithm would converge on a constant move
strategy fairly quickly, some of the other more complicated strategies were slow
to converge. Strategies like a fast walk rotation of values (R, P, S, R, P, S...)
are difficult to come to because a pure random initial sample might not have
enough of the correct guesses in the correct positions. By reducing the entropy
of the initial generation, using actors who's genes were all the same move, what
I did was increase the variance of actor fitness after the first generation and
simulatneously increase the probability that there would always be a sample with
the correct move in the correct location. The result is an algorithm that
converges on the correct moves much more efficently.
"""
#randomSelection = random.choice((ROCK, PAPER, SCISSORS))
#self.dna = [randomSelection for n in range(self.geneCount)]
self.dna = [manualSelection for n in range(self.geneCount)]
self.mutate()
def printDNA(self):
print '[%s]' % ', '.join(map(str, self.dna))
def dnaToString(self):
return '[%s]' % ', '.join(map(str, self.dna))
def getGene(self, index):
return self.dna[index]
def getCurrentMove(self):
if (self.currentGene < len(self.dna)):
return self.dna[self.currentGene]
else:
raise Exception("No more moves")
def nextMove(self):
self.currentGene = self.currentGene + 1
def hasNextMove(self):
return self.currentGene + 1 < len(self.dna)
def recordWin(self):
self.score = self.score + 1
def recordLoss(self):
self.score = self.score
def getFitness(self):
if (self.score < 1):
return 0
else:
return 2**self.score
def childOf(self, parent1, parent2):
# choose a pivot point around which the contributing parents will swap
pivot = random.randrange(self.geneCount)
for i in range(self.geneCount):
if (i < pivot):
self.dna[i] = parent1.getGene(i)
else:
self.dna[i] = parent2.getGene(i)
def mutate(self):
for i in range(self.geneCount):
r = random.random()
if(r < self.mutationRate):
self.dna[i] = random.choice((ROCK, PAPER, SCISSORS))
class Generation(object):
def __init__(self, generationSize, geneCount, mutationRate):
self.actors = []
self.currentActor = -1
self.generationSize = generationSize
self.geneCount = geneCount
self.mutationRate = mutationRate
def printGeneration(self):
for i in self.actors:
i.printDNA()
def randomGeneration(self):
self.actors = [Actor(self.geneCount, self.mutationRate, (n*100)%3) for n in range(self.generationSize)]
def addActor(self, actor):
self.actors.append(actor)
def getCurrentActor(self):
if (self.currentActor < len(self.actors)):
return self.actors[self.currentActor]
else:
raise Exception("No more actors")
def nextActor(self):
self.currentActor = self.currentActor + 1
def hasNextActor(self):
return self.currentActor + 1 < len(self.actors)
def breed(self):
next = Generation(self.generationSize, self.geneCount, self.mutationRate)
pool = []
for actor in self.actors:
pool.extend([actor for i in range(actor.getFitness())])
if (len(pool) == 0):
next.randomGeneration()
return next
for i in range(self.generationSize):
a = Actor(self.geneCount, self.mutationRate)
a.childOf(pool[random.randrange(len(pool))], pool[random.randrange(len(pool))])
a.mutate()
next.addActor(a)
return next