-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcsdd.py
1158 lines (893 loc) · 35.1 KB
/
csdd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import copy
import pandas as pd
from pulp import *
from tqdm import tqdm
from node import DecisionNode, TerminalNode
from vtree_model import Vtree2
def sgn(x):
y = 0
if x > 0:
y = 1
return y
class Csdd:
def __init__(self):
self.opt = -2 # -1 = min CSDD / 0 = PSDD / 1 max = CSDD
self.problem = 0 # 0 = marginal, 1 = conditional, 2 = MAP, 3 = Robust
self.nodes = {} # Array of nodes
self.mu = -1.0 # mu (variable used for conditionals)
self.vtree = None # vtree
self.children = {} # vtree information
self.sdd = None # sdd ? REMOVE?
self.root = -1 # root of the sdd
self.psdd = None
self.xstar = [] # Same size of the total number of variables
self.evidence = [] # Array of evidences
self.literals = [] # Labels with the literals
self.logical_evidence = []
self.csv = []
self.serial = ''
def set_csv(self, csv): # Read the csv and set the column headers as literals
self.csv = pd.read_csv(csv, delimiter=',', header=0)
self.literals = list(self.csv.columns)
def set_vtree(self, filename): # Read the vtree
p = dict()
self.vtree, my_list = Vtree2.read(filename)
n_inner_nodes = len([l for l in my_list if str(l)[0] == 'I']) # n of inner nodes
# Start from the root and split left and right variables
active = self.vtree
self.children[active.id] = [list(active.left.variables()), list(active.right.variables())]
# Iterate unless all the decision nodes are processed
while len(list(self.children.keys())) < n_inner_nodes: # DFS
if str(active.left)[0] == 'I' and active.left.id not in list(self.children.keys()):
p[active.left.id] = active
active = active.left
self.children[active.id] = [list(active.left.variables()), list(active.right.variables())]
# if left already processed, go down-right
elif str(active.right)[0] == 'I' and active.right.id not in list(self.children.keys()):
p[active.right.id] = active
active = active.right
self.children[active.id] = [list(active.left.variables()), list(active.right.variables())]
else:
active = p[active.id] # Go up (both children processed)
def set_left_right(self):
for node in self.nodes:
if self.nodes[node].kind == 1:
self.nodes[node].left = self.children[self.nodes[node].vtree][0]
self.nodes[node].right = self.children[self.nodes[node].vtree][1]
def set_sdd(self, filename): # Read Sdd structure from a file
with open(filename, 'r') as f:
sdd_lines = f.readlines()
for literal in [_[1:].strip() for _ in sdd_lines if _[0] == 'L']:
# DEBUG: Decide a single format
if len(literal.split(' ')) == 3:
node_id, _, lit = [int(_) for _ in literal.split(' ')]
else:
node_id, lit = [int(_) for _ in literal.split(' ')]
self.nodes[node_id] = TerminalNode(node_id, abs(lit), sgn(lit))
for decision in [_[1:].strip() for _ in sdd_lines if _[0] == 'D']:
dd = [int(_) for _ in decision.split(' ')]
self.nodes[dd[0]] = DecisionNode(dd[0], dd[1], dd[3::2], dd[4::2])
for bot_node in [int(_[1:].strip()) for _ in sdd_lines if _[0] == 'F']:
for _, node in self.nodes.items():
if node.kind == 1:
if bot_node in node.primes:
vtree_par = self.nodes[node.id].vtree
vtree_child = self.children[vtree_par][0][0]
break
if bot_node in node.subs:
vtree_par = self.nodes[node.id].vtree
vtree_child = self.children[vtree_par][1][0]
break
self.nodes[bot_node] = TerminalNode(bot_node, vtree_child, 2, (vtree_child - 1) * 2)
for top_node in [int(_[1:].strip()) for _ in sdd_lines if _[0] == 'T']:
for _, node in self.nodes.items():
if node.kind == 1:
if top_node in node.primes:
vtree_par = self.nodes[node.id].vtree
vtree_child = self.children[vtree_par][0][0]
break
if top_node in node.subs:
vtree_par = self.nodes[node.id].vtree
vtree_child = self.children[vtree_par][1][0]
break
self.nodes[top_node] = TerminalNode(top_node, vtree_child, 3, (vtree_child - 1) * 2)
def set_root(self): # Find the root of a sdd
descendants = [self.nodes[_].primes + self.nodes[_].subs for _ in self.nodes if self.nodes[_].kind == 1]
descendants = [item for sublist in descendants for item in sublist]
decision_nodes = [_ for _ in self.nodes if self.nodes[_].kind == 1]
self.root = [_ for _ in decision_nodes if _ not in descendants][0]
def learn_counts(self): # Exctract counts from the csv
# Decision nodes
for decision_node in tqdm([_ for _ in self.nodes if self.nodes[_].kind == 1]):
self.nodes[decision_node].denominator = 0
self.nodes[decision_node].numerator = ([0 for _ in range(len(self.nodes[decision_node].primes))])
for i in range((len(self.csv))):
row = list(self.csv.iloc[i, :])
if decision_node != self.root:
feasible, branch = self.learning(decision_node, row)
if feasible:
self.nodes[decision_node].denominator += 1
self.nodes[decision_node].numerator[branch] += 1
else: # root node
for k, branch in enumerate(self.nodes[decision_node].primes):
mini_csdd = self.sub_csdd(branch)
mini_csdd.logical_evidence = row
if mini_csdd.logic_inference() == 1:
self.nodes[decision_node].numerator[k] += 1
break
self.nodes[decision_node].denominator = sum(self.nodes[decision_node].numerator)
# Logically impossible branches
for branch, my_sub in enumerate(self.nodes[decision_node].subs):
if self.nodes[my_sub].kind == 0:
if self.nodes[my_sub].state == 2:
assert self.nodes[decision_node].numerator[branch] == 0
self.nodes[decision_node].numerator[branch] = -1
# Terminal (top) nodes
for top_node in [_ for _ in self.nodes if self.nodes[_].kind == 0]:
if self.nodes[top_node].state == 3:
self.nodes[top_node].numerator = 0
self.nodes[top_node].denominator = 0
for i in range((len(self.csv))):
row = list(self.csv.iloc[i, :])
feasible, branch = self.learning(top_node, row) # DEBUG: Branch unused?
if feasible:
self.nodes[top_node].denominator += 1
if row[self.nodes[top_node].lit - 1]:
self.nodes[top_node].numerator += 1
def learn_credal_sets(self, ess = 1.0, eps = 0.01): # DEBUG: Better management of epsilon
for node in self.nodes:
if self.nodes[node].kind == 1: # Decision nodes
if len(self.nodes[node].thetas) > 1:
zeros = False
n = self.nodes[node].denominator
if n == 0 and min(self.nodes[node].numerator) >= 0: # Vacuous model when no data
self.nodes[node].thetas = [[eps, 1 - eps] for _ in self.nodes[node].numerator]
else:
for aa, bb in enumerate(self.nodes[node].numerator):
if bb == -1:
self.nodes[node].thetas[aa] = [0, 0]
zeros = True
else:
self.nodes[node].thetas[aa] = [(bb + eps) / (n + ess), (bb + ess - eps) / (n + ess)]
if zeros and len(self.nodes[node].thetas) == 2:
for k, theta in enumerate(self.nodes[node].thetas):
if theta != [0, 0]:
self.nodes[node].thetas[k] = [1, 1]
else:
self.nodes[node].thetas[0] = [1,1]
elif self.nodes[node].state == 3: # Terminal (top) nodes
m = self.nodes[node].numerator
n = self.nodes[node].denominator
if n == 0:
self.nodes[node].theta = [eps, 1 - eps]
else:
self.nodes[node].theta = [(m + eps) / (n + ess), (m + ess - eps) / (n + ess)]
def read_csdd(self,filename): # Read CSDD file (check)
with open(filename, "r") as text_file:
a = text_file.read()
for line in a.split("\n"):
pieces = line.split(' ')
if pieces[0]=='T':
identifier = int(pieces[1])
kind = int(pieces[2])
lit = int(pieces[3])
if kind != 3:
self.nodes[identifier] = TerminalNode(identifier, lit, kind)
else:
th = [float(pieces[4]),float(pieces[5])]
self.nodes[identifier] = TerminalNode(identifier, lit, kind, int(pieces[6]), th)
if pieces[0]=='D':
identifier = int(pieces[1])
vtree_id = int(pieces[-1])
b = int((len(pieces)-3)/4)
children = pieces[2:-1]
qq = [children[i:i+4] for i in range(0, len(children), 4)]
primes = []
subs = []
thetas = []
for ee in qq:
primes.append(int(ee[0]))
subs.append(int(ee[1]))
thetas.append([float(ee[2]),float(ee[3])])
self.nodes[identifier] = DecisionNode(identifier,vtree_id,primes,subs,thetas)
def csdd2psdd(self): # Compute a psdd from a csdd
self.psdd = copy.deepcopy(self)
self.psdd.opt = 0
for node in self.nodes:
if self.nodes[node].kind == 0:
if self.nodes[node].state == 3:
interval = self.nodes[node].theta
self.psdd.nodes[node].theta = sum(interval) / 2.0
if self.nodes[node].kind == 1:
thetas2 = []
for k, theta in enumerate(self.nodes[node].thetas):
if k != len(self.nodes[node].thetas) - 1:
thetas2.append(sum(theta) / 2.0)
else:
thetas2.append(sum(theta) / 2.0)
thetas2[-1] = 1.0 - sum(thetas2[:-1])
self.psdd.nodes[node].thetas = thetas2
def set_evidence(self, e):
#assert len(e) == len(self.nodes)
self.evidence = e
def set_optimum(self, o):
self.opt = o
def clean_messages(self):
for node in self.nodes:
self.nodes[node].message = -1.0
self.nodes[node].logical_message = -1
def compute(self, evidences, verbose=False, eps= 0.01):
result = dict()
queries = []
observations = []
explanations = []
for (lit, evi) in zip(self.literals, evidences):
if evi in [0, 1]:
observations.append(str(lit) + '=' + str(evi))
if evi in [2, 3]:
queries.append(str(lit) + '=' + str(evi - 2))
if evi == 4:
explanations.append(str(lit))
if explanations:
assert not queries, 'No queries for MAP'
# TODO: Add find_map
# self.opt = 1
if self.opt != 0:
result[-1] = self.inference(-1, 2, evidences)
result[1] = self.inference(1, 2, evidences)
self.find_map(evidences.count(4))
prob = ','.join(
[str(a) + '=' + str(b) for a, b, c in zip(self.literals, self.xstar, self.evidence) if c == 4])
else:
result[-1] = self.inference(0, 2, evidences)
result[1] = result[-1]
self.find_map(evidences.count(4))
prob = ','.join(
[str(a) + '=' + str(b) for a, b, c in zip(self.literals, self.xstar, self.evidence) if c == 4])
prob = 'P(' + prob
if len(observations) > 0:
prob += '|' + ','.join(observations)
prob += ')*'
elif not queries:
if self.opt != 0:
result[-1] = self.inference(-1, 0, evidences)
result[+1] = self.inference(+1, 0, evidences)
else:
self.opt = -1
result[-1] = self.inference(0, 0, evidences)
result[+1] = result[-1] # self.inference(0, 0, evidences)
prob = 'P(' + ','.join(observations) + ')'
else:
assert len(queries) == 1
optimization = [-1, +1]
for o in optimization: # Todo move bisection to a separate method
a = 0.0000
b = 1.0000
fa = self.inference(o, 1, evidences, a)
fb = self.inference(o, 1, evidences, b)
assert fa * fb <= 0 , 'Cannot run bisection'
if fa == 0 and fb == 0:
#print(evidences)
assert False, 'This should not happen' # c = -0.0001
elif fa == 0 and fb < 0:
c = 0.0
elif fa == 0 and fb > 0:
c = 0.0
elif fa > 0 and fb ==0:
c = 1.0
elif fa < 0 and fb == 0:
c = 1.0
else:
c = a -fa/(fb-fa)*(b-a)
fc = self.inference(o, 1, evidences, c)
if fa * fc < 0:
b = c
else:
a = c
#if verbose:
# print('f(a=%2.4f)=%2.7f,f(b=%2.4f)=%2.7f' % (a, fa, b, fb))
while (b - a) > eps: # DEBUG
c = (a + b) / 2
fc = self.inference(o, 1, evidences, c)
#if verbose:
# print('f(a=%2.4f)=%2.7f,f(b=%2.4f)=%2.7f' % (a,fa, b,fb))
if fa * fc < 0:
b = c
else:
a = c
fa = fc
result[o] = c
prob = 'P(' + queries[0] + '|' + ','.join(observations) + ')'
if verbose:
print('%2.8f <= %s <= %2.8f' % (result[-1], prob, result[1]))
return result
# TODO
# self.psdd.inference()
def sub_csdd(self, origin):
go_ahead = True
origin = [origin]
while go_ahead:
old_origin = origin
for node in origin:
if self.nodes[node].kind == 1:
children = self.nodes[node].primes + self.nodes[node].subs
origin = list(set(origin) | set(children))
if len(origin) == len(old_origin):
go_ahead = False
csdd = Csdd()
for k in origin:
csdd.nodes[k] = self.nodes[k]
csdd.clean_messages()
return csdd
# Inference methods
def compute_logical_message_terminal(self, node):
node.logical_message = 0
if node.kind == 0: # Terminal
if node.state == 0: # False
if self.logical_evidence[node.lit - 1] == 0: # Observed = True
node.logical_message = 1
if node.state == 1: # True
if self.logical_evidence[node.lit - 1] == 1: # Observed = False
node.logical_message = 1 # Inconsistent OR unobserved
if node.state == 3: # 'Top'
node.logical_message = 1 # Unobserved
def compute_message_terminal(self, node):
if self.problem == 0: # Marginal query
node.message = 0.0 # Bot (node.state == 2)
if node.state == 0: # Literal is False
node.message = 1.0 # Obs = False OR n/a
if self.evidence[node.lit - 1] == 1: # Obs = True
node.message = 0.0
if node.state == 1: # Literal is True
node.message = 1.0 # Obs = True OR n/a
if self.evidence[node.lit - 1] == 0: # Obs = False
node.message = 0.0
if node.state == 3: # Top
if self.evidence[node.lit - 1] == -1: # Obs = n/a
node.message = 1.0
if self.evidence[node.lit - 1] == 1: # Obs = True
if self.opt == 0: # P (PSDD)
node.message = node.theta
if self.opt == -1: # lP (CSDD)
node.message = node.theta[0]
if self.opt == 1: # uP (CSDD)
node.message = node.theta[1]
if self.evidence[node.lit - 1] == 0: # Obs = False
if self.opt == 0: # P (PSDD)
node.message = 1.0 - node.theta
if self.opt == -1: # lP (CSDD)
node.message = 1.0 - node.theta[1]
if self.opt == 1: # uP (CSDD)
node.message = 1.0 - node.theta[0]
if self.problem == 1: # Conditional query
node.message = 0.0 # Bot (node.state == 2)
if node.state == 0: # Literal is False
node.message = 0.0
if self.evidence[node.lit - 1] == 2: # Queried and False
node.message = 1 - self.mu
if self.evidence[node.lit - 1] == 3: # Queried and True
node.message = -self.mu
if node.state == 1: # Literal is True
if self.evidence[node.lit - 1] == 2: # Queried and False
node.message = - self.mu
if self.evidence[node.lit - 1] == 3: # Queried and True
node.message = 1 - self.mu
if node.state == 3: # Top
if self.evidence[node.lit - 1] == 2: # Queried and False
if self.opt == -1:
node.message = 1 - node.theta[1] - self.mu
if self.opt == +1:
node.message = 1 - node.theta[0] - self.mu
if self.evidence[node.lit - 1] == 3: # Queried and True
if self.opt == -1:
node.message = node.theta[0] - self.mu
if self.opt == +1:
node.message = node.theta[1] - self.mu
if self.problem == 2: # MAP query maximax for CSDD and map for PSDD
node.message = 0.0
node.m = 0.0
if node.state in [0, 1]: # Literals
if self.evidence[node.lit - 1] == 4: # node = unobserved literal
node.message = 1.0 # A literal gives message one as it has the freedom to take the optimal state
node.m = 1.0
node.map = node.state # MAP state is the literal state
else: # node = evidence
if self.evidence[node.lit - 1] == node.state: # node is an observed literal if consistent takes one
node.message = 1.0
node.m = 1.0
else:
node.message = 0.0
node.m = 0.0
elif node.state == 3: # Top
if self.evidence[node.lit - 1] == 4:
if self.opt == 0: # PSDD
if node.theta > 0.5: # p > 1-p
node.message = node.theta
node.m = node.theta
node.map = 1
else:
node.message = 1.0 - node.theta
node.m = 1.0 - node.theta
node.map = 0
else: # CSDD max only
if node.theta[1] > (1 - node.theta[0]):
node.message = node.theta[1]
node.m = node.theta[1]
node.map = 1
else:
node.message = 1 - node.theta[0] # 1-l
node.m = 1 - node.theta[0] # 1-l
node.map = 0
else: # if the node is associated to an observed literal
if self.opt == 0: # PSDD
node.message = 1 - node.theta
if self.evidence[node.lit - 1] == 1:
node.message = node.theta
elif self.opt == 1:
node.message = 1 - node.theta[0]
node.m = 1 - node.theta[0]
if self.evidence[node.lit - 1] == 1:
node.message = node.theta[1]
node.m = node.theta[1]
else: # Minimizing
node.message = 1 - node.theta[1]
node.m = 1 - node.theta[1]
if self.evidence[node.lit - 1] == 1:
node.message = node.theta[0]
node.m = node.theta[0]
if self.problem == 3: # Robustness CSDD query
if node.state < 2: # Literal
if self.evidence[node.lit - 1] == 4: # To be explained
node.message = 1.0
#if node.state == self.xstar[node.lit - 1]:
# node.message = 0.0
else: # Observed
node.message = 0.0
if node.state == self.evidence[node.lit - 1]:
assert self.psdd.xstar[node.lit - 1] == node.state
node.message = 1.0
elif node.state == 3: # Top
if self.psdd.xstar[node.lit - 1]:
node.message = max(1,(1-node.theta[0])/node.theta[0])
else:
node.message = max(1,node.theta[1]/(1-node.theta[1]))
elif node.state == 4: # Bot
node.message = 0 # DEBUG: forse e' 1?
def compute_logical_message_decision(self, node):
node.logical_message = 0
for (prime, sub) in zip(node.primes, node.subs):
if self.nodes[prime].logical_message * self.nodes[sub].logical_message == 1:
node.logical_message = 1
break
def compute_message_decision(self, node):
if self.opt == 0: # P (PSDD)
if self.problem == 0: # Marginal query
node.message = 0.0
for (theta, prime, sub) in zip(node.thetas, node.primes, node.subs):
assert self.nodes[prime] != -1.0, 'Bad var order'
assert self.nodes[sub] != -1.0, 'Bad var order'
node.message += theta * self.nodes[prime].message * self.nodes[sub].message
if self.problem == 2: # Credal MAP query # this is an argmax
candidates = []
for (theta, prime, sub) in zip(node.thetas, node.primes, node.subs):
assert self.nodes[prime] != -1.0, 'Bad var order'
assert self.nodes[sub] != -1.0, 'Bad var order'
candidates.append(theta * self.nodes[prime].message * self.nodes[sub].message)
node.message = max(candidates)
node.map = candidates.index(node.message)
else: # CSDD
if self.problem in [0, 1]:
all_zeros = True
x_vars = []
objective = []
for i in range(len(node.thetas)):
x_vars.append(LpVariable('x' + str(i), lowBound=node.thetas[i][0], upBound=node.thetas[i][1],
cat='Continuous'))
for x, prime, sub in zip(x_vars, node.primes, node.subs):
if self.problem == 0: # Marginal
coefficient = self.nodes[prime].message * self.nodes[sub].message
if self.problem == 1: # Conditional
# if node.id == 173:
# print('Eccomi',prime,self.nodes[prime].message,sub,self.nodes[sub].message)
assert len([e for e in self.evidence if e >= 2]) == 1, 'Only single queries'
queried = [i for i, e in enumerate(self.evidence) if e >= 2][0]
if (queried + 1) in self.nodes[node.id].left:
message1 = self.nodes[prime].message
r_csdd = self.sub_csdd(sub)
if self.opt == -1:
if message1 < 0:
message2 = r_csdd.inference(+1, 0, self.evidence) # sub evi
else:
message2 = r_csdd.inference(-1, 0, self.evidence)
if self.opt == +1:
if message1 < 0:
message2 = r_csdd.inference(-1, 0, self.evidence)
else:
message2 = r_csdd.inference(+1, 0, self.evidence)
elif (queried + 1) in self.nodes[node.id].right:
message2 = self.nodes[sub].message
l_csdd = self.sub_csdd(prime)
if self.opt == -1:
if message2 < 0:
message1 = l_csdd.inference(+1, 0, self.evidence)
else:
message1 = l_csdd.inference(-1, 0, self.evidence)
if self.opt == +1:
if message2 < 0:
message1 = l_csdd.inference(-1, 0, self.evidence)
else:
message1 = l_csdd.inference(+1, 0, self.evidence)
else:
message1 = 0
message2 = 0
coefficient = message1 * message2
if coefficient != 0: # Check if this is the case
objective.insert(-1, x * coefficient)
all_zeros = False
if all_zeros:
node.message = 0
else:
if self.opt == -1: # lP (CSDD)
my_model = LpProblem("Minimizing", LpMinimize)
if self.opt == 1: # uP (CSDD)
my_model = LpProblem("Maximizing", LpMaximize)
my_model += lpSum(objective)
my_model += (pulp.lpSum(x_vars) == 1)
my_model.solve()
node.message = value(my_model.objective)
elif self.problem == 2: # Credal MAP
candidate_messages = []
for (theta, prime, sub) in zip(node.thetas, node.primes, node.subs):
assert self.nodes[prime] != -1.0, 'Bad var order'
assert self.nodes[sub] != -1.0, 'Bad var order'
#print(theta,'errrr')
candidate_messages.append(theta[1] * self.nodes[prime].message * self.nodes[sub].message)
node.message = max(candidate_messages)
node.m = max(candidate_messages)
# TODO: remove it?
node.map = candidate_messages.index(node.message)
elif self.problem == 3: # Robustness in decision nodes
if node.red:
# Finding the "j" branch
for kkk, ooo in enumerate(node.primes):
oo_csdd = self.sub_csdd(ooo)
oo_csdd.logical_evidence = self.psdd.xstar
if oo_csdd.logic_inference():
j = kkk
# Preparing the sub-CSDD to be used in the denominator
ll_csdd = self.sub_csdd(node.primes[j])
rr_csdd = self.sub_csdd(node.subs[j])
aa_csdd = copy.deepcopy(ll_csdd)
bb_csdd = copy.deepcopy(rr_csdd)
# Marginal lower probabilities of the sub-evidence in the sub-CSDD
message1 = aa_csdd.inference(-1, 0, self.psdd.xstar)
message2 = bb_csdd.inference(-1, 0, self.psdd.xstar)
assert message1 > 0, 'Lilith s conjecture'
denominator = message1 * message2
possible_messages = []
i = 0
for (prime, sub) in zip(node.primes, node.subs):
if i != j:
lll_csdd = self.sub_csdd(node.primes[i])
rrr_csdd = self.sub_csdd(node.subs[i])
aaa_csdd = copy.deepcopy(lll_csdd)
bbb_csdd = copy.deepcopy(rrr_csdd)
coefficient2 = aaa_csdd.inference(1, 2, self.evidence) * bbb_csdd.inference(1, 2, self.evidence)
possible_messages.append(coefficient2 / denominator * node.thetas[i][1] / node.thetas[j][0])
else:
possible_messages.append(self.nodes[node.primes[j]].message * self.nodes[node.subs[j]].message)
i += 1
node.message = max(possible_messages)
#print(possible_messages)
else:
node.message = 0
def find_map(self, n):
processed = [] # Nodes already processed
assert len(self.nodes) > 1, 'To add MAP for single node CSDD'
assert self.root >= 0, 'bad root'
self.xstar = copy.deepcopy(self.evidence)
for node in self.nodes:
self.nodes[node].visited = 0
active_node = self.root
assert self.nodes[active_node].kind == 1
self.nodes[active_node].visited = 1
active_branch = self.nodes[active_node].map
while len(processed) != n:
if self.nodes[active_node].kind == 0: # If terminal
if self.evidence[a_node.lit - 1] == 4: # DEBUG
processed.append((a_node.lit, a_node.map))
self.xstar[a_node.lit - 1] = a_node.map
active_node = self.nodes[active_node].parent
else: # If the active node is a decision node
active_branch = self.nodes[active_node].map
if self.nodes[
self.nodes[active_node].primes[active_branch]].visited == 0: # and its active prime is unvisited
a_node = self.nodes[self.nodes[active_node].primes[active_branch]] # Let's visit the active prime
a_node.visited = 1
a_node.parent = active_node # not forgetting to notice the parent
active_node = a_node.id
active_branch = a_node.map
elif self.nodes[
self.nodes[active_node].subs[active_branch]].visited == 0: # and its active prime is unvisited
a_node = self.nodes[self.nodes[active_node].subs[active_branch]] # Let's visit the active prime
a_node.visited = 1
a_node.parent = active_node # not forgetting to notice the parent
active_node = a_node.id
active_branch = a_node.map
else:
# if active_node != self.root:
active_node = self.nodes[active_node].parent
return processed
def paint_red(self, verbose = False):
for my_node in self.nodes:
self.nodes[my_node].red = False
self.nodes[self.root].red = True
# Starting from the root node
active_node = self.root
root_activated = 1
while root_activated < 3:
# Check the prime children
for idx, prime in enumerate(self.nodes[active_node].primes):
oo_csdd = self.sub_csdd(prime)
oo_csdd.logical_evidence = self.psdd.xstar
# Let us find the consistent prime
if oo_csdd.logic_inference():
# The consistent prime can be a decision node or a terminal
# if it is a terminal there is nothing to do (no else)
if self.nodes[prime].kind == 1:
# If the consistent prime is not red (we already know it is a dec) we paint it
if not self.nodes[prime].red:
self.nodes[prime].red = True
# and we set as active the node
active_node = prime
if verbose:
print("Active Node:", active_node,'Down Left')
# if the consistent prime was already red, but its sub not we paint
# and activate the sub (in case it is a decision)
elif self.nodes[self.nodes[active_node].subs[idx]].kind == 1:
if not self.nodes[self.nodes[active_node].subs[idx]].red:
self.nodes[self.nodes[active_node].subs[idx]].red = True
active_node = self.nodes[active_node].subs[idx]
if verbose:
print("Active Node:", active_node, 'Down Right')
else:
for node_red in self.nodes:
if self.nodes[node_red].kind == 1:
if self.nodes[node_red].red:
children = self.nodes[node_red].primes + self.nodes[node_red].subs
if active_node in children:
active_node = node_red
if verbose:
print("Active Node:", active_node, 'Up')
break
else:
for node_red in self.nodes:
if self.nodes[node_red].kind == 1:
if self.nodes[node_red].red:
children = self.nodes[node_red].primes+self.nodes[node_red].subs
if active_node in children:
active_node = node_red
if verbose:
print("Active Node:", active_node, 'Up')
break
# no else?
elif self.nodes[self.nodes[active_node].subs[idx]].kind == 1:
if not self.nodes[self.nodes[active_node].subs[idx]].red:
self.nodes[self.nodes[active_node].subs[idx]].red = True
active_node = self.nodes[active_node].subs[idx]
if verbose:
print("Active Node:", active_node, 'Down Right')
else:
for node_red in self.nodes:
if self.nodes[node_red].kind == 1:
if self.nodes[node_red].red:
children = self.nodes[node_red].primes+self.nodes[node_red].subs
if active_node in children:
active_node = node_red
if verbose:
print("Active Node:", active_node, 'Up')
break
else:
for node_red in self.nodes:
if self.nodes[node_red].kind == 1:
if self.nodes[node_red].red:
children = self.nodes[node_red].primes+self.nodes[node_red].subs
if active_node in children:
active_node = node_red
if verbose:
print("Active Node:", active_node, 'Up')
break
if active_node == self.root:
root_activated += 1
if verbose:
print("Root, again")
def inference(self, opt, prob, evi, mu=-1.0):
self.mu = mu
self.opt = opt
self.problem = prob
self.set_evidence(evi)
to_process = []
# Preprocessing / cleaning
if self.problem == 3:
for node in self.nodes:
self.nodes[node].map = self.psdd.nodes[node].map
for id_node, this_node in self.nodes.items():
if this_node.kind == 0: # TERMINAL
self.compute_message_terminal(this_node)
else: # DECISION
to_process.append(id_node)
if len(self.nodes) == 1:
for node in self.nodes:
root = node
else:
while len(to_process) > 0:
#print('TO PROC',len(to_process))
if len(to_process) == 1:
root = to_process[0]
#print('root is',root,to_process)
for node2 in to_process:
#print('processing',node2)
children = self.nodes[node2].primes + self.nodes[node2].subs
#print(children)
#print([v for v in children if v in to_process])
#print('---')
if not len([v for v in children if v in to_process]):
self.compute_message_decision(self.nodes[node2])
to_process.remove(node2)
break
#else:
# break
self.root = root # DEBUG: Finding the root of the csdd?
return self.nodes[root].message
def logic_inference(self):
to_process = []
for id_node, this_node in self.nodes.items():
if this_node.kind == 0: # TERMINAL
self.compute_logical_message_terminal(this_node)
else: # DECISION
to_process.append(id_node)
if len(self.nodes) == 1:
# TODO: Verificare, non serve il for
for node in self.nodes: