forked from The-Fonz/xfoil-optimization-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_pso_rastrigin_test.py
79 lines (69 loc) · 2.84 KB
/
example_pso_rastrigin_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
"""
Test of Particle Swarm Optimization algorithm, using the Rastrigin function.
"""
from __future__ import division, print_function
import matplotlib.pyplot as plt
import numpy as np
from copy import copy
from optimization_algorithms.pso import Particle
def rastrigin_nd_randnone(*xi):
"""
Simulates airfoils that don't converge in Xfoil by randomly returning None
"""
# Return None 20% of the time
if np.random.rand() > .8:
return None
else:
return rastrigin_nd(*xi)
def rastrigin_nd(*xi):
"""
n-dimensional rastrigin function. Every argument should be a single
value or meshgrid, and is another dimension.
"""
return (10*len(xi)+ np.sum(a**2 - (10*np.cos(2*np.pi*a)) for a in xi))
# Parameters for 5 iterations, 1,000 function evaluations from:
# http://hvass-labs.org/people/magnus/publications/pedersen10good-pso.pdf
iterations, S, omega, theta_g, theta_p = 20, 23, -0.3328, 2.8446, 0
global_bestscore = None
global_bestpos = None
constraints = np.array(((-5,5),(-5,5)))
x, y = np.meshgrid(np.arange(*np.append(constraints[0],.05)),
np.arange(*np.append(constraints[1],.05)))
plt.title("Rastrigin function")
plt.contourf(x, y, rastrigin_nd(x,y), cmap=plt.cm.coolwarm)
plt.ion()
#plt.axis(constraints.flatten())
# Constructing a particle automatically initializes position and speed
particles = [Particle(constraints) for i in xrange(0, S)]
for n in xrange(iterations+1):
print("\nIteration {}\n".format(n))
for particle in particles:
# Keep scoring until converged
score = None
while not score:
# Update particle's velocity and position, after first loop
if n>0:
particle.update(global_bestpos, omega, theta_p, theta_g)
#particle.APSO(global_bestpos, .5, .5)
# Score
score = rastrigin_nd_randnone(*particle.pts)
if score==None:
print("Not converged")
if n==0:
print("First loop so randomizing particle")
particle.randomize()
#plt.plot(particle.pts[0], particle.pts[1], 'yx')
if score < particle.bestscore:
particle.new_best(score)
style, txt = 'bo', 'particle best'
if not global_bestscore or score < global_bestscore:
global_bestscore = score
# Copy to avoid globaL_bestpos becoming reference to array
global_bestpos = copy(particle.pts)
style, txt = 'ro', 'global best'
print("Plotting {} ({}, {})".format(txt, *particle.pts))
plt.pause(0.00001)
plt.plot(particle.pts[0], particle.pts[1], style)
print("Global best score: ", global_bestscore,
"Global best pos: ", global_bestpos)
plt.plot(global_bestpos[0], global_bestpos[1], 'yx', markersize=12)