forked from Lornatang/CRNN-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
119 lines (92 loc) · 4.06 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Copyright 2022 Dakewe Biotech Corporation. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import os
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
import config
from dataset import ImageDataset, valid_test_collate_fn
from decoder import ctc_decode
from model import CRNN
def load_dataloader() -> DataLoader:
# Load datasets
datasets = ImageDataset(dataroot=config.dataroot,
annotation_file_name=config.annotation_file_name,
image_width=config.model_image_width,
image_height=config.model_image_height,
mean=config.mean,
std=config.std,
mode="test")
dataloader = DataLoader(dataset=datasets,
batch_size=1,
shuffle=False,
num_workers=1,
collate_fn=valid_test_collate_fn,
pin_memory=True,
drop_last=False,
persistent_workers=True)
return dataloader
def build_model() -> nn.Module:
# Initialize the model
model = CRNN(config.model_num_classes)
model = model.to(device=config.device)
print("Build CRNN model successfully.")
# Load the CRNN model weights
checkpoint = torch.load(config.model_path, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint["state_dict"])
print(f"Load CRNN model weights `{os.path.abspath(config.model_path)}` successfully.")
# Start the verification mode of the model.
model.eval()
if config.fp16:
# Turn on half-precision inference.
model.half()
return model
def main() -> None:
# Initialize correct predictions image number
total_correct = 0
# Initialize model
model = build_model()
# Load test dataLoader
dataloader = load_dataloader()
# Create a experiment folder results
if not os.path.exists(config.result_dir):
os.makedirs(config.result_dir)
# Get the number of test image files
total_files = len(dataloader)
with open(os.path.join(config.result_dir, config.result_file_name), "w") as f:
with torch.no_grad():
for batch_index, (image_path, images, labels) in enumerate(dataloader):
# Transfer in-memory data to CUDA devices to speed up training
images = images.to(device=config.device, non_blocking=True)
if config.fp16:
# Convert to FP16
images = images.half()
# Inference
output = model(images)
# record accuracy
output_log_probs = F.log_softmax(output, 2)
_, prediction_chars = ctc_decode(output_log_probs, config.chars_dict)
if "".join(prediction_chars[0]) == labels[0].lower():
total_correct += 1
if batch_index < total_files - 1:
information = f"`{os.path.basename(image_path[0])}` -> `{''.join(prediction_chars[0])}`"
print(information)
else:
information = f"Acc: {total_correct / total_files * 100:.2f}%"
print(information)
# Text information to be written to the file
f.write(information + "\n")
if __name__ == "__main__":
main()