-
Notifications
You must be signed in to change notification settings - Fork 251
/
Copy pathLAE.py
65 lines (51 loc) · 2.37 KB
/
LAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import torch.nn as nn
from einops import rearrange
# 论文地址:https://arxiv.org/pdf/2408.14087
# 论文:LSM-YOLO: A Compact and Effective ROI Detector for Medical Detection
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Perform transposed convolution of 2D data."""
return self.act(self.conv(x))
class LAE(nn.Module):
# Light-weight Adaptive Extraction
def __init__(self, ch, group=16) -> None:
super().__init__()
self.softmax = nn.Softmax(dim=-1)
self.attention = nn.Sequential(
nn.AvgPool2d(kernel_size=3, stride=1, padding=1),
Conv(ch, ch, k=1)
)
self.ds_conv = Conv(ch, ch * 4, k=3, s=2, g=(ch // group))
def forward(self, x):
# bs, ch, 2*h, 2*w => bs, ch, h, w, 4
att = rearrange(self.attention(x), 'bs ch (s1 h) (s2 w) -> bs ch h w (s1 s2)', s1=2, s2=2)
att = self.softmax(att)
# bs, 4 * ch, h, w => bs, ch, h, w, 4
x = rearrange(self.ds_conv(x), 'bs (s ch) h w -> bs ch h w s', s=4)
x = torch.sum(x * att, dim=-1)
return x
if __name__ == '__main__':
input = torch.randn(1, 16, 64, 64) # B C H W
block = LAE(ch=16)
output = block(input)
print(input.size())
print(output.size())