-
Notifications
You must be signed in to change notification settings - Fork 251
/
Copy pathFMS.py
426 lines (346 loc) · 16.7 KB
/
FMS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_wavelets import DWTForward
from einops import rearrange
from timm.models.layers import DropPath, trunc_normal_
# 论文地址:https://arxiv.org/pdf/2405.01992
# 论文:SFFNet: A Wavelet-Based Spatial and Frequency Domain Fusion Network for Remote Sensing Segmentation, arxiv2405
class Bconv(nn.Module):
def __init__(self, ch_in, ch_out, k, s):
'''
:param ch_in: 输入通道数
:param ch_out: 输出通道数
:param k: 卷积核尺寸
:param s: 步长
:return:
'''
super(Bconv, self).__init__()
self.conv = nn.Conv2d(ch_in, ch_out, k, s, padding=k // 2)
self.bn = nn.BatchNorm2d(ch_out)
self.act = nn.SiLU()
def forward(self, x):
'''
:param x: 输入
:return:
'''
return self.act(self.bn(self.conv(x)))
class SppCSPC(nn.Module):
def __init__(self, ch_in, ch_out):
'''
:param ch_in: 输入通道
:param ch_out: 输出通道
'''
super(SppCSPC, self).__init__()
# 分支一
self.conv1 = nn.Sequential(
Bconv(ch_in, ch_out, 1, 1),
Bconv(ch_out, ch_out, 3, 1),
Bconv(ch_out, ch_out, 1, 1)
)
# 分支二(SPP)
self.mp1 = nn.MaxPool2d(5, 1, 5 // 2) # 卷积核为5的池化
self.mp2 = nn.MaxPool2d(9, 1, 9 // 2) # 卷积核为9的池化
self.mp3 = nn.MaxPool2d(13, 1, 13 // 2) # 卷积核为13的池化
# concat之后的卷积
self.conv1_2 = nn.Sequential(
Bconv(4 * ch_out, ch_out, 1, 1),
Bconv(ch_out, ch_out, 3, 1)
)
# 分支三
self.conv3 = Bconv(ch_in, ch_out, 1, 1)
# 此模块最后一层卷积
self.conv4 = Bconv(2 * ch_out, ch_out, 1, 1)
def forward(self, x):
# 分支一输出
output1 = self.conv1(x)
# 分支二池化层的各个输出
mp_output1 = self.mp1(output1)
mp_output2 = self.mp2(output1)
mp_output3 = self.mp3(output1)
# 合并以上并进行卷积
result1 = self.conv1_2(torch.cat((output1, mp_output1, mp_output2, mp_output3), dim=1))
# 分支三
result2 = self.conv3(x)
return self.conv4(torch.cat((result1, result2), dim=1))
class ConvBNReLU(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d, bias=False):
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2),
norm_layer(out_channels),
nn.ReLU6()
)
class ConvBN(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d, bias=False):
super(ConvBN, self).__init__(
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2),
norm_layer(out_channels)
)
class Conv(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, bias=False):
super(Conv, self).__init__(
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2)
)
class SeparableConvBNReLU(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1,
norm_layer=nn.BatchNorm2d):
super(SeparableConvBNReLU, self).__init__(
nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation,
padding=((stride - 1) + dilation * (kernel_size - 1)) // 2,
groups=in_channels, bias=False),
norm_layer(out_channels),
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
nn.ReLU6()
)
class SeparableConvBN(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1,
norm_layer=nn.BatchNorm2d):
super(SeparableConvBN, self).__init__(
nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation,
padding=((stride - 1) + dilation * (kernel_size - 1)) // 2,
groups=in_channels, bias=False),
norm_layer(out_channels),
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
)
class SeparableConv(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
super(SeparableConv, self).__init__(
nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation,
padding=((stride - 1) + dilation * (kernel_size - 1)) // 2,
groups=in_channels, bias=False),
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU6, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1, 0, bias=True)
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1, 0, bias=True)
self.drop = nn.Dropout(drop, inplace=True)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class GlobalAttention(nn.Module):
def __init__(self,
dim=256,
num_heads=16,
qkv_bias=False,
window_size=8,
relative_pos_embedding=True
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // self.num_heads
self.scale = head_dim ** -0.5
self.ws = window_size
self.qkv = Conv(dim, 3*dim, kernel_size=1, bias=qkv_bias)
self.proj = SeparableConvBN(dim, dim, kernel_size=window_size)
self.attn_x = nn.Conv2d(dim,dim,kernel_size=(window_size, 1), stride=1, padding=(window_size//2 - 1, 0))
self.attn_y = nn.Conv2d(dim,dim,kernel_size=(1, window_size), stride=1, padding=(0, window_size//2 - 1))
self.relative_pos_embedding = relative_pos_embedding
if self.relative_pos_embedding:
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size - 1) * (2 * window_size - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.ws)
coords_w = torch.arange(self.ws)
coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij')) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.ws - 1 # shift to start from 0
relative_coords[:, :, 1] += self.ws - 1
relative_coords[:, :, 0] *= 2 * self.ws - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
trunc_normal_(self.relative_position_bias_table, std=.02)
def pad(self, x, ps):
_, _, H, W = x.size()
if W % ps != 0:
x = F.pad(x, (0, ps - W % ps), mode='reflect')
if H % ps != 0:
x = F.pad(x, (0, 0, 0, ps - H % ps), mode='reflect')
return x
def pad_out(self, x):
x = F.pad(x, pad=(0, 1, 0, 1), mode='reflect')
return x
def forward(self, x):
B, C, H, W = x.shape
x = self.pad(x, self.ws)
B, C, Hp, Wp = x.shape
qkv = self.qkv(x)
q, k, v = rearrange(qkv, 'b (qkv h d) (hh ws1) (ww ws2) -> qkv (b hh ww) h (ws1 ws2) d', h=self.num_heads,
d=C//self.num_heads, hh=Hp//self.ws, ww=Wp//self.ws, qkv=3, ws1=self.ws, ws2=self.ws)
dots = (q @ k.transpose(-2, -1)) * self.scale
if self.relative_pos_embedding:
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.ws * self.ws, self.ws * self.ws, -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
dots += relative_position_bias.unsqueeze(0)
attn = dots.softmax(dim=-1)
attn = attn @ v
attn = rearrange(attn, '(b hh ww) h (ws1 ws2) d -> b (h d) (hh ws1) (ww ws2)', h=self.num_heads,
d=C//self.num_heads, hh=Hp//self.ws, ww=Wp//self.ws, ws1=self.ws, ws2=self.ws)
attn = attn[:, :, :H, :W]
out = self.attn_x(F.pad(attn, pad=(0, 0, 0, 1), mode='reflect')) + \
self.attn_y(F.pad(attn, pad=(0, 1, 0, 0), mode='reflect'))
out = self.pad_out(out)
out = self.proj(out)
# print(out.size())
out = out[:, :, :H, :W]
return out
class LocalAttention(nn.Module):
def __init__(self,
dim=256,
window_size=8,
):
super().__init__()
self.local = SppCSPC(dim,dim)
# self.bam = BAM(gate_channel=dim)
self.proj = SeparableConvBN(dim, dim, kernel_size=window_size)
def pad(self, x, ps):
_, _, H, W = x.size()
if W % ps != 0:
x = F.pad(x, (0, ps - W % ps), mode='reflect')
if H % ps != 0:
x = F.pad(x, (0, 0, 0, ps - H % ps), mode='reflect')
return x
def pad_out(self, x):
x = F.pad(x, pad=(0, 1, 0, 1), mode='reflect')
return x
def forward(self, x):
B, C, H, W = x.shape
local = self.local(x)
out = self.pad_out(local)
out = self.proj(out)
out = out[:, :, :H, :W]
return out
class LocalBlock(nn.Module):
expansion = 1
def __init__(self, dim=256, num_heads=16, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.ReLU6, norm_layer=nn.BatchNorm2d, window_size=8,C=0,H=0,W=0):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn =LocalAttention(dim,window_size=window_size)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, act_layer=act_layer, drop=drop)
self.norm2 = norm_layer(dim)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class multilocalBlock(nn.Module):
expansion = 1
def __init__(self,dim=256,outdim=256, num_heads=16, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.ReLU6, norm_layer=nn.BatchNorm2d, window_size=8,C=0,H=0,W=0):
super().__init__()
self.down = Conv(dim,outdim,kernel_size=3,stride=2,dilation=1,bias=False)
self.norm1 = norm_layer(outdim)
self.attn =LocalAttention(outdim,window_size=window_size)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
# mlp_hidden_dim = int(dim * mlp_ratio)
# self.mlp = Mlp(in_features=outdim, hidden_features=mlp_hidden_dim, out_features=outdim, act_layer=act_layer, drop=drop)
self.norm2 = norm_layer(outdim)
def forward(self, x):
x = self.down(x)
x = x + self.drop_path(self.attn(self.norm1(x)))
x = self.drop_path(self.norm2(x))
return x
class GlobalBlock(nn.Module):
expansion = 1
def __init__(self, dim=256, num_heads=16, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.ReLU6, norm_layer=nn.BatchNorm2d, window_size=8,C=0,H=0,W=0):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = GlobalAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, window_size=window_size)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, act_layer=act_layer, drop=drop)
self.norm2 = norm_layer(dim)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class GlBlock(nn.Module):
expansion = 1
def __init__(self, dim=256,outdim = 256, num_heads=16, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.ReLU6, norm_layer=nn.BatchNorm2d, window_size=8,C=0,H=0,W=0):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = GlobalAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, window_size=window_size)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
# mlp_hidden_dim = int(dim * mlp_ratio)
# self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, act_layer=act_layer, drop=drop)
self.norm2 = norm_layer(dim)
self.down = Conv(dim, outdim, kernel_size=3, stride=2, dilation=1, bias=False)
def forward(self, x):
x = self.down(x)
x = x + self.drop_path(self.attn(self.norm1(x)))
x = self.norm2(x)
return x
# feature mapping stage(FMS)
class FMS(nn.Module):
def __init__(self, in_ch, out_ch,num_heads=8, window_size=8):
super(FMS, self).__init__()
self.wt = DWTForward(J=1, mode='zero', wave='haar')
self.glb = GlBlock(dim=in_ch,outdim=in_ch,num_heads=num_heads, window_size=window_size)
self.localb=multilocalBlock(dim=in_ch,outdim=in_ch,num_heads=8, window_size=window_size)
self.conv_bn_relu = nn.Sequential(
nn.Conv2d(in_ch*3, in_ch, kernel_size=1, stride=1),
nn.BatchNorm2d(in_ch),
nn.ReLU(inplace=True),
)
self.outconv_bn_relu_L = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=1, stride=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
)
self.outconv_bn_relu_H = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=1, stride=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
)
self.outconv_bn_relu_glb = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=1, stride=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
)
self.outconv_bn_relu_local = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=1, stride=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
)
def forward(self, x,imagename=None):
yL, yH = self.wt(x)
y_HL = yH[0][:,:,0,::]
y_LH = yH[0][:,:,1,::]
y_HH = yH[0][:,:,2,::]
yH = torch.cat([y_HL, y_LH, y_HH], dim=1)
yH = self.conv_bn_relu(yH)
yL = self.outconv_bn_relu_L(yL)
yH = self.outconv_bn_relu_H(yH)
glb = self.outconv_bn_relu_glb(self.glb(x))
local = self.outconv_bn_relu_local(self.localb(x))
return yL,yH,glb,local
if __name__ == '__main__':
block = FMS(in_ch=64, out_ch=128)
input = torch.randn(1, 64, 256, 256)
# 前向传播
yL, yH, glb, local = block(input)
# 打印输入和输出的形状
print(input.size())
print(yL.size())
print(yH.size())
print(glb.size())
print(local.size())