-
Notifications
You must be signed in to change notification settings - Fork 251
/
Copy pathDASI.py
149 lines (134 loc) · 5.77 KB
/
DASI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import torch.nn as nn
import torch.nn.functional as F
#论文地址:https://arxiv.org/pdf/2403.10778v1.pdf
#论文:HCF-Net: Hierarchical Context Fusion Network for Infrared Small Object Detection
class Bag(nn.Module):
def __init__(self):
super(Bag, self).__init__()
def forward(self, p, i, d):
edge_att = torch.sigmoid(d)
return edge_att * p + (1 - edge_att) * i
class conv_block(nn.Module):
def __init__(self,
in_features,
out_features,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
dilation=(1, 1),
norm_type='bn',
activation=True,
use_bias=True,
groups = 1
):
super().__init__()
self.conv = nn.Conv2d(in_channels=in_features,
out_channels=out_features,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=use_bias,
groups = groups)
self.norm_type = norm_type
self.act = activation
if self.norm_type == 'gn':
self.norm = nn.GroupNorm(32 if out_features >= 32 else out_features, out_features)
if self.norm_type == 'bn':
self.norm = nn.BatchNorm2d(out_features)
if self.act:
# self.relu = nn.GELU()
self.relu = nn.ReLU(inplace=False)
def forward(self, x):
x = self.conv(x)
if self.norm_type is not None:
x = self.norm(x)
if self.act:
x = self.relu(x)
return x
class DASI(nn.Module):
def __init__(self, in_features, out_features) -> None:
super().__init__()
self.bag = Bag()
self.tail_conv = nn.Sequential(
conv_block(in_features=out_features,
out_features=out_features,
kernel_size=(1, 1),
padding=(0, 0),
norm_type=None,
activation=False)
)
self.conv = nn.Sequential(
conv_block(in_features = out_features // 2,
out_features = out_features // 4,
kernel_size=(1, 1),
padding=(0, 0),
norm_type=None,
activation=False)
)
self.bns = nn.BatchNorm2d(out_features)
self.skips = conv_block(in_features=in_features,
out_features=out_features,
kernel_size=(1, 1),
padding=(0, 0),
norm_type=None,
activation=False)
self.skips_2 = conv_block(in_features=in_features * 2,
out_features=out_features,
kernel_size=(1, 1),
padding=(0, 0),
norm_type=None,
activation=False)
self.skips_3 = nn.Conv2d(in_features//2, out_features,
kernel_size=3, stride=2, dilation=2, padding=2)
# self.skips_3 = nn.Conv2d(in_features//2, out_features,
# kernel_size=3, stride=2, dilation=1, padding=1)
self.relu = nn.ReLU()
self.fc = nn.Conv2d(out_features, in_features, kernel_size=1, bias=False)
self.gelu = nn.GELU()
def forward(self, x , x_low, x_high):
if x_high != None:
x_high = self.skips_3(x_high)
x_high = torch.chunk(x_high, 4, dim=1)
if x_low != None:
x_low = self.skips_2(x_low)
x_low = F.interpolate(x_low, size=[x.size(2), x.size(3)], mode='bilinear', align_corners=True)
x_low = torch.chunk(x_low, 4, dim=1)
x_skip = self.skips(x)
x = self.skips(x)
x = torch.chunk(x, 4, dim=1)
if x_high == None:
x0 = self.conv(torch.cat((x[0], x_low[0]), dim=1))
x1 = self.conv(torch.cat((x[1], x_low[1]), dim=1))
x2 = self.conv(torch.cat((x[2], x_low[2]), dim=1))
x3 = self.conv(torch.cat((x[3], x_low[3]), dim=1))
elif x_low == None:
x0 = self.conv(torch.cat((x[0], x_high[0]), dim=1))
x1 = self.conv(torch.cat((x[0], x_high[1]), dim=1))
x2 = self.conv(torch.cat((x[0], x_high[2]), dim=1))
x3 = self.conv(torch.cat((x[0], x_high[3]), dim=1))
else:
x0 = self.bag(x_low[0], x_high[0], x[0])
x1 = self.bag(x_low[1], x_high[1], x[1])
x2 = self.bag(x_low[2], x_high[2], x[2])
x3 = self.bag(x_low[3], x_high[3], x[3])
x = torch.cat((x0, x1, x2, x3), dim=1)
x = self.tail_conv(x)
x += x_skip
x = self.bns(x)
x = self.fc(x)
x = self.relu(x)
return x
if __name__ == '__main__':
x = torch.randn(1, 3, 64, 64)# B C H W
x_low = torch.randn(1, 3 * 2, 64 // 2, 64 // 2)
x_high = torch.randn(1, 3 // 2, 64 * 2, 64 * 2)
# 实例化 DASI 模块
block = DASI(3, 3 * 4)
# 打印输入和输出的形状
output = block(x, x_low, x_high)
print("输入 x 的形状:", x.size())
print("输入 x_low 的形状:", x_low.size())
print("输入 x_high 的形状:", x_high.size())
print("输出的形状:", output.size())