-
Notifications
You must be signed in to change notification settings - Fork 251
/
Copy path(CVPR 2024)RAMiT.py
375 lines (289 loc) · 15.6 KB
/
(CVPR 2024)RAMiT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import torch.nn as nn
from einops import rearrange
import torch.nn.functional as F
import torch
import math
# Github地址:https://github.com/rami0205/RAMiT
# 论文:Reciprocal Attention Mixing Transformer for Lightweight Image Restoration(CVPR 2024 Workshop)
# 论文地址:https://arxiv.org/abs/2305.11474
# RAMiT(Reciprocal Attention Mixing Transformer)
# 全网最全100➕即插即用模块GitHub地址:https://github.com/ai-dawang/PlugNPlay-Modules
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class QKVProjection(nn.Module):
def __init__(self, dim, num_head, qkv_bias=True):
super(QKVProjection, self).__init__()
self.dim = dim
self.num_head = num_head
self.qkv = nn.Conv2d(dim, 3 * dim, 1, bias=qkv_bias)
def forward(self, x):
qkv = self.qkv(x)
qkv = rearrange(qkv, 'b (l c) h w -> b l c h w', l=self.num_head)
return qkv
def flops(self, resolutions):
return resolutions[0] * resolutions[1] * 1 * 1 * self.dim * 3 * self.dim
def get_relative_position_index(win_h, win_w):
# get pair-wise relative position index for each token inside the window
coords = torch.stack(torch.meshgrid([torch.arange(win_h), torch.arange(win_w)], indexing='ij')) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None,
:] # 2, Wh*Ww, Wh*Ww (xaxis matrix & yaxis matrix)
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += win_h - 1 # shift to start from 0
relative_coords[:, :, 1] += win_w - 1
relative_coords[:, :, 0] *= 2 * win_w - 1
return relative_coords.sum(-1) # Wh*Ww, Wh*Ww
class SpatialSelfAttention(nn.Module):
def __init__(self, dim, num_head, total_head, window_size=8, shift=0, attn_drop=0.0, proj_drop=0.0, helper=True):
super(SpatialSelfAttention, self).__init__()
self.dim = dim
self.num_head = num_head
self.total_head = total_head
self.window_size = window_size
self.window_area = window_size ** 2
self.shift = shift
self.helper = helper
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_head, 1, 1))), requires_grad=True)
# define a parameter table of relative position bias, shape: 2*Wh-1 * 2*Ww-1, nH
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size - 1) * (2 * window_size - 1), num_head))
# get pair-wise relative position index for each token inside the window
self.register_buffer("relative_position_index", get_relative_position_index(window_size, window_size))
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Conv2d(dim * num_head, dim * num_head, 1)
self.proj_drop = nn.Dropout(proj_drop)
def _get_rel_pos_bias(self) -> torch.Tensor:
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)].view(self.window_area, self.window_area, -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
return relative_position_bias.unsqueeze(0)
def forward(self, qkv, ch=None):
B, L, C, H, W = qkv.size()
# window shift
if self.shift > 0:
qkv = torch.roll(qkv, shifts=(-self.shift, -self.shift), dims=(-2, -1))
# window partition
q, k, v = rearrange(qkv, 'b l c (h wh) (w ww) -> (b h w) l (wh ww) c',
wh=self.window_size, ww=self.window_size).chunk(3, dim=-1) # [B_, L1, hw, C/L] respectively
if ch is not None and self.helper: # [B, C, H, W]
if self.shift > 0:
ch = torch.roll(ch, shifts=(-self.shift, -self.shift), dims=(-2, -1))
ch = rearrange(ch, 'b (l c) (h wh) (w ww) -> (b h w) l (wh ww) c',
l=self.total_head - self.num_head, wh=self.window_size,
ww=self.window_size) # [B_, L1, hw, C/L]
ch = torch.mean(ch, dim=1, keepdim=True) # head squeeze [B_, 1, hw, C/L]
v = v * ch # [B_, L1, hw, C/L]
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(2, -1) # [B_, L1, hw, hw]
logit_scale = torch.clamp(self.logit_scale, max=math.log(1. / 0.01)).exp()
attn = attn * logit_scale
attn = attn + self._get_rel_pos_bias()
attn = self.attn_drop(F.softmax(attn, dim=-1))
x = attn @ v # [B_, L1, hw, C/L]
# window unpartition + head merge
x = window_unpartition(x, (H, W), self.window_size) # [B, L1*C/L, H, W]
x = self.proj_drop(self.proj(x))
# window reverse shift
if self.shift > 0:
x = torch.roll(x, shifts=(self.shift, self.shift), dims=(-2, -1))
return x
def flops(self, resolutions):
H, W = resolutions
num_wins = H // self.window_size * W // self.window_size
flops = self.num_head * H * W * self.dim if self.helper else 0 # v = v*ch
flops += num_wins * self.num_head * self.window_area * self.dim * self.window_area # attn = Q@K^T
flops += num_wins * self.num_head * self.window_area * self.window_area * self.dim # attn@V
flops += H * W * 1 * 1 * self.num_head * self.dim * self.num_head * self.dim # self.proj
return flops
def window_unpartition(x, resolutions, window_size):
return rearrange(x, '(b h w) l (wh ww) c -> b (l c) (h wh) (w ww)',
h=resolutions[0] // window_size, w=resolutions[1] // window_size, wh=window_size)
class ChannelSelfAttention(nn.Module):
def __init__(self, dim, num_head, total_head, attn_drop=0.0, proj_drop=0.0, helper=True):
super(ChannelSelfAttention, self).__init__()
self.dim = dim
self.num_head = num_head
self.total_head = total_head
self.helper = helper
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_head, 1, 1))), requires_grad=True)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Conv2d(dim * num_head, dim * num_head, 1)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, qkv, sp=None):
B, L, C, H, W = qkv.size()
q, k, v = rearrange(qkv, 'b l c h w -> b l c (h w)').chunk(3, dim=-2) # [B, L2, C/L, HW]
if sp is not None and self.helper:
sp = torch.mean(sp, dim=1, keepdim=True) # channel squeeze # [B, 1, H, W]
sp = rearrange(sp, 'b (l c) h w -> b l c (h w)', l=1) # [B, 1, 1, HW]
v = v * sp # [B, L2, C/L, HW]
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(2, -1) # [B, L2, C/L, C/L]
logit_scale = torch.clamp(self.logit_scale, max=math.log(1. / 0.01)).exp()
attn = attn * logit_scale
attn = F.softmax(attn, dim=-1)
attn = self.attn_drop(attn)
x = attn @ v # [B, L2, C/L, HW]
# head merge
x = rearrange(x, 'b l c (h w) -> b (l c) h w', h=H) # [B, L2*C/L, H, W]
x = self.proj_drop(self.proj(x)) # [B, L2*C/L, H, W]
return x
def flops(self, resolutions):
H, W = resolutions
flops = self.num_head * self.dim * H * W if self.helper else 0 # v = v*sp
flops += self.num_head * self.dim * H * W * self.dim # attn = Q@K^T
flops += self.num_head * self.dim * self.dim * H * W # attn@V
flops += H * W * 1 * 1 * self.num_head * self.dim * self.num_head * self.dim # self.proj
return flops
class ReshapeLayerNorm(nn.Module):
def __init__(self, dim, norm_layer=nn.LayerNorm):
super(ReshapeLayerNorm, self).__init__()
self.dim = dim
self.norm = norm_layer(dim)
def forward(self, x):
B, C, H, W = x.size()
x = rearrange(x, 'b c h w -> b (h w) c')
x = self.norm(x)
x = rearrange(x, 'b (h w) c -> b c h w', h=H)
return x
def flops(self, resolutions):
H, W = resolutions
flops = 0
flops += H * W * self.dim
return flops
class MobiVari1(nn.Module): # MobileNet v1 Variants
def __init__(self, dim, kernel_size, stride, act=nn.LeakyReLU, out_dim=None):
super(MobiVari1, self).__init__()
self.dim = dim
self.kernel_size = kernel_size
self.out_dim = out_dim or dim
self.dw_conv = nn.Conv2d(dim, dim, kernel_size, stride, kernel_size // 2, groups=dim)
self.pw_conv = nn.Conv2d(dim, self.out_dim, 1, 1, 0)
self.act = act()
def forward(self, x):
out = self.act(self.pw_conv(self.act(self.dw_conv(x)) + x))
return out + x if self.dim == self.out_dim else out
def flops(self, resolutions):
H, W = resolutions
flops = H * W * self.kernel_size * self.kernel_size * self.dim + H * W * 1 * 1 * self.dim * self.out_dim # self.dw_conv + self.pw_conv
return flops
class MobiVari2(MobiVari1): # MobileNet v2 Variants
def __init__(self, dim, kernel_size, stride, act=nn.LeakyReLU, out_dim=None, exp_factor=1.2, expand_groups=4):
super(MobiVari2, self).__init__(dim, kernel_size, stride, act, out_dim)
self.expand_groups = expand_groups
expand_dim = int(dim * exp_factor)
expand_dim = expand_dim + (expand_groups - expand_dim % expand_groups)
self.expand_dim = expand_dim
self.exp_conv = nn.Conv2d(dim, self.expand_dim, 1, 1, 0, groups=expand_groups)
self.dw_conv = nn.Conv2d(expand_dim, expand_dim, kernel_size, stride, kernel_size // 2, groups=expand_dim)
self.pw_conv = nn.Conv2d(expand_dim, self.out_dim, 1, 1, 0)
def forward(self, x):
x1 = self.act(self.exp_conv(x))
out = self.pw_conv(self.act(self.dw_conv(x1) + x1))
return out + x if self.dim == self.out_dim else out
def flops(self, resolutions):
H, W = resolutions
flops = H * W * 1 * 1 * (self.dim // self.expand_groups) * self.expand_dim # self.exp_conv
flops += H * W * self.kernel_size * self.kernel_size * self.expand_dim # self.dw_conv
flops += H * W * 1 * 1 * self.expand_dim * self.out_dim # self.pw_conv
return flops
class FeedForward(nn.Module):
def __init__(self, dim, hidden_ratio, act_layer=nn.GELU, bias=True, drop=0.0):
super(FeedForward, self).__init__()
self.dim = dim
self.hidden_ratio = hidden_ratio
self.hidden = nn.Conv2d(dim, int(dim * hidden_ratio), 1, bias=bias)
self.drop1 = nn.Dropout(drop)
self.out = nn.Conv2d(int(dim * hidden_ratio), dim, 1, bias=bias)
self.drop2 = nn.Dropout(drop)
self.act = act_layer()
def forward(self, x):
return self.drop2(self.out(self.drop1(self.act(self.hidden(x)))))
def flops(self, resolutions):
H, W = resolutions
flops = 2 * H * W * 1 * 1 * self.dim * self.dim * self.hidden_ratio # self.hidden + self.out
return flops
class NoLayer(nn.Identity):
def __init__(self):
super(NoLayer, self).__init__()
def flops(self, resolutions):
return 0
def forward(self, x, **kwargs):
return x.flatten(1, 2)
class DRAMiTransformer(nn.Module): # Reciprocal Attention Transformer Block
def __init__(self, dim, num_head=4, chsa_head_ratio=0.25, window_size=8, shift=0, head_dim=None, qkv_bias=True, mv_ver=1,
hidden_ratio=2.0, act_layer=nn.GELU, norm_layer=ReshapeLayerNorm, attn_drop=0.0, proj_drop=0.0,
drop_path=0.0, helper=True,
mv_act=nn.LeakyReLU, exp_factor=1.2, expand_groups=4):
super(DRAMiTransformer, self).__init__()
self.dim = dim
self.num_head = num_head
self.window_size = window_size
self.chsa_head = int(num_head * chsa_head_ratio)
self.shift = shift
self.helper = helper
self.qkv_proj = QKVProjection(dim, num_head, qkv_bias=qkv_bias)
self.sp_attn = SpatialSelfAttention(dim // num_head, num_head - self.chsa_head, num_head,
window_size, shift, attn_drop, proj_drop,
helper) if num_head - self.chsa_head != 0 else NoLayer()
self.ch_attn = ChannelSelfAttention(dim // num_head, self.chsa_head, num_head, attn_drop, proj_drop,
helper) if self.chsa_head != 0 else NoLayer()
if mv_ver == 1:
self.mobivari = MobiVari1(dim, 3, 1, act=mv_act)
elif mv_ver == 2:
self.mobivari = MobiVari2(dim, 3, 1, act=mv_act, out_dim=None, exp_factor=exp_factor,
expand_groups=expand_groups)
self.norm1 = norm_layer(dim)
self.ffn = FeedForward(dim, hidden_ratio, act_layer=act_layer)
self.norm2 = norm_layer(dim)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x, sp_=None, ch_=None):
B, C, H, W = x.size()
# QKV projection + head split
qkv = self.qkv_proj(x) # [B, L, C, H, W]
# SP-SA / CH-SA
sp = self.sp_attn(qkv[:, :self.num_head - self.chsa_head], ch=ch_) # [B, L1*C/L, H, W]
ch = self.ch_attn(qkv[:, self.num_head - self.chsa_head:], sp=sp_) # [B, L2*C/L, H, W]
attn0 = self.mobivari(torch.cat([sp, ch], dim=1)) # merge [B, C, H, W]
attn = self.drop_path(self.norm1(attn0)) + x # LN, skip connection [B, C, H, W]
# FFN
out = self.drop_path(self.norm2(self.ffn(attn))) + attn # FFN, LN, skip connection [B, C, H, W]
return out, sp, ch, attn0
def flops(self, resolutions):
flops = self.qkv_proj.flops(resolutions)
flops += self.sp_attn.flops(resolutions)
flops += self.ch_attn.flops(resolutions)
flops += self.mobivari.flops(resolutions)
flops += self.norm1.flops(resolutions)
flops += self.ffn.flops(resolutions)
flops += self.norm2.flops(resolutions)
params = sum([p.numel() for n, p in self.named_parameters()])
return flops
if __name__ == '__main__':
# Instantiate the model
block = DRAMiTransformer(dim=64)
input = torch.randn(4, 64, 32, 32) # 输入B C H W
# Forward pass
output, sp, ch, attn0 = block(input)
# Print input and output shapes
print(input.size())
print(output.size())
print(sp.size())
print(ch.size())
print(attn0.size())