forked from ibab/tensorflow-wavenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
86 lines (69 loc) · 2.92 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import argparse
from datetime import datetime
import json
import os
import numpy as np
import tensorflow as tf
from wavenet import WaveNet
SAMPLES = 16000
LOGDIR = './logdir'
WINDOW = 256
WAVENET_PARAMS = './wavenet_params.json'
def get_arguments():
parser = argparse.ArgumentParser(description='WaveNet generation script')
parser.add_argument('checkpoint', type=str,
help='Which model checkpoint to generate from')
parser.add_argument('--samples', type=int, default=SAMPLES,
help='How many waveform samples to generate')
parser.add_argument('--logdir', type=str, default=LOGDIR,
help='Directory in which to store the logging '
'information for TensorBoard.')
parser.add_argument('--window', type=int, default=WINDOW,
help='The number of past samples to take into '
'account at each step')
parser.add_argument('--wavenet_params', type=str, default=WAVENET_PARAMS,
help='JSON file with the network parameters')
return parser.parse_args()
def main():
args = get_arguments()
logdir = os.path.join(args.logdir, 'train', str(datetime.now()))
with open(args.wavenet_params, 'r') as config_file:
wavenet_params = json.load(config_file)
sess = tf.Session()
net = WaveNet(
1,
wavenet_params['quantization_steps'],
wavenet_params['dilations'],
wavenet_params['filter_width'],
wavenet_params['residual_channels'],
wavenet_params['dilation_channels'])
samples = tf.placeholder(tf.int32)
next_sample = net.predict_proba(samples)
saver = tf.train.Saver()
print('Restoring model from {}'.format(args.checkpoint))
saver.restore(sess, args.checkpoint)
quantization_steps = wavenet_params['quantization_steps']
waveform = [np.random.randint(quantization_steps)]
for step in range(args.samples):
if len(waveform) > args.window:
window = waveform[-args.window]
else:
window = waveform
prediction = sess.run(
next_sample,
feed_dict={samples: window})
sample = np.random.choice(np.arange(quantization_steps), p=prediction)
waveform.append(sample)
print('Sample {:3<d}/{:3<d}: {}'.format(step + 1, args.samples, sample))
# Undo the companding transformation
result = net.decode(samples)
datestring = str(datetime.now()).replace(' ', 'T')
writer = tf.train.SummaryWriter(
os.path.join(logdir, 'generation', datestring))
tf.audio_summary('generated', result, wavenet_params['sample_rate'])
summaries = tf.merge_all_summaries()
summary_out = sess.run(summaries, feed_dict={samples: np.reshape(waveform, [-1, 1])})
writer.add_summary(summary_out)
print('Finished generating. The result can be viewed in TensorBoard.')
if __name__ == '__main__':
main()