-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
103 lines (89 loc) · 2.94 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import argparse
import collections
import torch
import data_loader.data_loaders as module_data
import embedding.embedding as module_embedding
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
from parse_config import ConfigParser
from trainer import Trainer
def main(config):
logger = config.get_logger("train")
# setup data_loader instances
train_data_loader = config.initialize(
"train_data_loader", module_data, **{"training": True}
)
valid_data_loader = train_data_loader.get_validation()
# pdb.set_trace()
# build model architecture, then print to console
try:
config["embedding"]["args"].update({"vocab": train_data_loader.dataset.vocab})
embedding = config.initialize("embedding", module_embedding)
except:
embedding = None
config["arch"]["args"].update({"vocab": train_data_loader.dataset.vocab})
config["arch"]["args"].update({"embedding": embedding})
model = config.initialize("arch", module_arch)
logger.info(model)
# get function handles of loss and metrics
loss = getattr(module_loss, config["loss"])
metrics = [getattr(module_metric, met) for met in config["metrics"]]
# build optimizer, learning rate scheduler. delete every lines containing
# lr_scheduler for disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = config.initialize("optimizer", torch.optim, trainable_params)
lr_scheduler = config.initialize(
"lr_scheduler", torch.optim.lr_scheduler, optimizer
)
trainer = Trainer(
model,
loss,
metrics,
optimizer,
config=config,
data_loader=train_data_loader,
valid_data_loader=valid_data_loader,
lr_scheduler=lr_scheduler,
)
trainer.train()
if __name__ == "__main__":
args = argparse.ArgumentParser(
description="PyTorch Natural Language Processing Template"
)
args.add_argument(
"-c",
"--config",
default=None,
type=str,
help="config file path (default: None)",
)
args.add_argument(
"-r",
"--resume",
default=None,
type=str,
help="path to latest checkpoint (default: None)",
)
args.add_argument(
"-d",
"--device",
default=None,
type=str,
help="indices of GPUs to enable (default: all)",
)
# custom cli options to modify configuration from default values given in
# json file.
CustomArgs = collections.namedtuple("CustomArgs", "flags type target")
options = [
CustomArgs(
["--lr", "--learning_rate"], type=float, target=("optimizer", "args", "lr")
),
CustomArgs(
["--bs", "--batch_size"],
type=int,
target=("data_loader", "args", "batch_size"),
),
]
config = ConfigParser(args, options)
main(config)