-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_t3po.py
305 lines (259 loc) · 15.1 KB
/
train_t3po.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
DEBUG = False
import argparse
import time
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from utils.utils import seed_torch, str2bool, init_experiment
from data.open_set_datasets import get_class_splits, get_datasets
from utils.schedulers import get_scheduler
########################################################################################################################
import sys, os, os.path as osp
from utils.get_model import get_arch
from tqdm import tqdm
from test import test_model_t3po_single
########################################################################################################################
parser = argparse.ArgumentParser("Training")
# Dataset
parser.add_argument('--dataset', type=str, default='kather2016', help="")
parser.add_argument('--out-num', type=int, default=10, help='For cifar-10-100')
parser.add_argument('--image_size', type=int, default=150)
# optimization
parser.add_argument('--optim', type=str, default='adam', help="Which optimizer to use {adam, sgd, adam_sam}")
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--lr', type=float, default=0.01, help="learning rate for model")
parser.add_argument('--weight_decay', type=float, default=0.0, help="LR regularisation on weights")
parser.add_argument('--weighted_ce', default=True, type=str2bool, help='weigh ce values per nr of transforms', metavar='BOOL')
parser.add_argument('--momentum', type=float, default=0.0, help="momentum for SGD")
parser.add_argument('--max_epoch', type=int, default=200)
parser.add_argument('--stop_epoch', type=int, default=-1)
parser.add_argument('--scheduler', type=str, default='cosine_warm_restarts_warmup')
parser.add_argument('--num_restarts', type=int, default=0, help='How many restarts for cosine_warm_restarts schedule')
# model
parser.add_argument('--model', type=str, default='mobilenet_2heads')
parser.add_argument('--dropout_p', type=float, default=0.0, help="dropout for classifier")
# aug
parser.add_argument('--transform', type=str, default='T3PO_color_wide')
# misc
parser.add_argument('--verbose', default=False, type=str2bool, help='print stats to screen during training', metavar='BOOL')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--device', default='cuda:0', type=str, help='device (cuda or cpu, default: cuda:0)')
parser.add_argument('--eval_freq', type=int, default=20)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--split_idx', default=0, type=int, help='OSR splits for each dataset, see data/open_set_splits/osr_splits.py')
parser.add_argument('--use_softmax_in_eval', default=False, type=str2bool, help='Do we use softmax or logits for evaluation', metavar='BOOL')
parser.add_argument('--save_path', type=str, default='')
def save_networks(network, filename):
weights = network.state_dict()
torch.save(weights, filename)
class AverageMeter(object):
"""Computes and stores the average and current value.
Code imported from https://github.com/pytorch/examples/blob/master/imagenet/main.py#L247-L262
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def train_one_epoch(net, criterion, optimizer, trainloader):
n_augs = trainloader.dataset.transforms.transform.n_augs
weight=torch.zeros(n_augs)
weight[0]=n_augs
net.train()
losses_class, losses_transforms, train_acc_class, train_acc_transforms = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
torch.cuda.empty_cache()
loss_all, acc_tr = 0, 0
n_correct_class, n_correct_transforms, total = 0, 0, 0
for (images, labels_transform), labels_class in tqdm(trainloader):
if torch.cuda.is_available():
images, labels_transform, labels_class, weight = images.cuda(), labels_transform.cuda(), labels_class.cuda(), weight.cuda()
with torch.set_grad_enabled(True):
optimizer.zero_grad()
logits_class, logits_transforms = net(images)
# compute loss for classification
loss_class = criterion(logits_class, labels_class)
# compute loss for transform prediction
if args.weighted_ce:
loss_transforms = torch.nn.functional.cross_entropy(logits_transforms, labels_transform, weight=weight)
else:
loss_transforms = torch.nn.functional.cross_entropy(logits_transforms, labels_transform)
preds_class = logits_class.max(dim=1)[1]
preds_transforms = logits_transforms.max(dim=1)[1]
(loss_class+loss_transforms).backward()
optimizer.step()
n_correct_class += (preds_class == labels_class).sum()
n_correct_transforms += (preds_transforms == labels_transform).sum()
total += labels_class.size(0)
losses_class.update(loss_class.item(), images.size(0))
losses_transforms.update(loss_transforms.item(), images.size(0))
train_acc_class.update(n_correct_class/total, images.size(0))
train_acc_transforms.update(n_correct_transforms/total, images.size(0))
acc_tr_class = 100*train_acc_class.avg # for printing
acc_tr_transforms = 100 * train_acc_transforms.avg # for printing
loss_all += (losses_class.avg+losses_transforms.avg)
return losses_class.avg, losses_transforms.avg, acc_tr_class, acc_tr_transforms, get_mean_lr(optimizer)
def get_optimizer(args, params_list):
if args.optim == 'sgd':
optimizer = torch.optim.SGD(params_list, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
elif args.optim == 'adam':
if args.weight_decay == 0:
optimizer = torch.optim.Adam(params_list, lr=args.lr)
else:
optimizer = torch.optim.AdamW(params_list, lr=args.lr, weight_decay=args.weight_decay)
else:
raise NotImplementedError
return optimizer
def get_mean_lr(optimizer):
return torch.mean(torch.Tensor([param_group['lr'] for param_group in optimizer.param_groups])).item()
def train_model(args):
use_gpu = torch.cuda.is_available()
if use_gpu:
print("Currently using GPU: {}".format(args.device))
cudnn.benchmark = False
else:
print("Currently using CPU")
train_loader, val_loader, out_loader = dataloaders['train'], dataloaders['val'], dataloaders['test_unknown']
out_loader.dataset.transforms.transform.fast_test = True
# Get base network and criterion
print("Creating model: {}".format(args.model))
net = get_arch(args.model, len(args.train_classes), additional_classes=args.additional_classes, dropout_p=args.dropout_p, pretrained=True)
criterion = torch.nn.CrossEntropyLoss()
if use_gpu: net = net.cuda()
optimizer = get_optimizer(args=args, params_list=net.parameters())
scheduler = get_scheduler(optimizer, args)
start = time.time()
best_acc, best_auroc, best_epoch, checkpointed_model = 0, 0, 0, False
with open(osp.join(args.log_dir, 'log.txt'), 'a') as f: print(100 * "=", file=f)
for epoch in range(1, args.max_epoch + 1):
print("==> Epoch {}/{}".format(epoch, args.max_epoch))
# # print('NO TRAINING')
l_class, l_tr, acc_class, acc_tr, lr = train_one_epoch(net, criterion, optimizer, train_loader)
print('Class loss= {:.4f}, Transform loss= {:.4f}, Class acc = {:.2f}, Transf. acc = {:.2f} -- '
'LR = {:.7f}'.format(l_class, l_tr, acc_class, acc_tr, lr))
if epoch % args.eval_freq == 0 or epoch == args.max_epoch:
with open(osp.join(args.log_dir, 'log.txt'), 'a') as f:
print("==> Epoch {}/{}".format(epoch, args.max_epoch), file=f)
# test train_loader
acc_train = test_model_t3po_single(net, train_loader, args)
# test val_loader
val_loader.dataset.transforms.transform.fast_test = True
acc_val = test_model_t3po_single(net, val_loader, args)
val_loader.dataset.transforms.transform.fast_test = False
print(100 * "-")
print('TRAIN Set Acc. = {:.2f} -- CLOSED VAL Set Accuracy = {:.2f}'.format(acc_train, acc_val))
with open(osp.join(args.log_dir, 'log.txt'), 'a') as f:
print('TRAIN Set Acc. = {:.2f} -- CLOSED VAL Set Accuracy = {:.2f}'.format(acc_train, acc_val), file=f)
print(100 * "-", file=f)
if acc_val > best_acc: # checkpointing best acc_val model only if we are halfway in training, avoids spurious performance peaks
if epoch > args.max_epoch//2:
print('-------- Best Closed Set Accuracy Attained, {:.2f} --> {:.2f}. Checkpointing. --------'.format(best_acc, acc_val))
checkpointed_model = True
for f in os.listdir(args.model_dir): os.remove(osp.join(args.model_dir, f))
save_path_best = osp.join(args.model_dir, 'net_state_dict_ep{}_acc{:.2f}.pth'.format(epoch, best_acc))
save_networks(net, save_path_best)
else:
print('-------- Best Closed Set Accuracy Attained, {:.2f} --> {:.2f}. --------'.format(best_acc, acc_val))
best_acc, best_epoch = acc_val, epoch
else:
print('-------- Best Closed Set Accuracy so far {:.2f} at epoch {:d} --------'.format(best_acc, best_epoch))
print(100 * "-")
if args.scheduler == 'plateau' or args.scheduler == 'warm_restarts_plateau':
scheduler.step(best_acc, epoch)
elif args.scheduler == 'multi_step':
scheduler.step()
else:
scheduler.step(epoch=epoch)
if epoch == args.stop_epoch: break
if not checkpointed_model: # save the last model if no model was saved during training
save_path_best = osp.join(args.model_dir, 'net_state_dict_ep{}_acc{:.2f}.pth'.format(epoch, acc_val))
save_networks(net, save_path_best)
end = time.time()
hours, rem = divmod(end - start, 3600)
minutes, seconds = divmod(rem, 60)
print('Finished. Total elapsed time: {:0>2}h {:0>2}min {:05.2f}secs'.format(int(hours), int(minutes), seconds))
with open(osp.join(args.log_dir, 'log.txt'), 'a') as f:
print('Finished. Total elapsed time: {:0>2}h {:0>2}min {:05.2f}secs'.format(int(hours), int(minutes), seconds), file=f)
test_loader, out_loader = dataloaders['test_known'], dataloaders['test_unknown']
test_loader.dataset.transforms.transform.fast_test = True
out_loader.dataset.transforms.transform.fast_test = True
net.load_state_dict(torch.load(save_path_best, map_location=torch.device('cpu')))
if torch.cuda.is_available(): net = net.cuda()
results = test_model_t3po_single(net, test_loader, args, out_loader)
print(100 * "=")
print('CLOSED TEST Set Accuracy = {:.2f} -- AUROC/AUROC_TR = {:.2f}/{:.2f} --- Open Set Score = {:.2f}'.format(results['ACC'], results['AUROC'], results['AUROC_TR'], results['OSCR']))
with open(osp.join(args.log_dir, 'log.txt'), 'a') as f:
print(100 * "*", file=f)
print('CLOSED TEST Set Accuracy = {:.2f} -- AUROC/AUROC_TR = {:.2f}/{:.2f} --- Open Set Score = {:.2f}'.format(results['ACC'], results['AUROC'], results['AUROC_TR'], results['OSCR']), file=f)
print(100 * "*", file=f)
print(100 * "*")
return save_path_best
if __name__ == '__main__':
args = parser.parse_args()
seed_torch(args.seed)
args.epochs = args.max_epoch
img_size = args.image_size
results = dict()
print('dataset:', args.dataset, 'split_idx:', args.split_idx)
args.train_classes, args.open_set_classes = get_class_splits(args.dataset, args.split_idx)
args.save_path = osp.join(args.save_path, 'split_{}/seed_{}'.format(args.split_idx, args.seed))
args = init_experiment(args, args.save_path)
# get_datasets receives args.split_idx, which determines what split to use
# alternatively one can manually pass known_classes, open_set_classes as lists, that overrides evth.
datasets = get_datasets(args.dataset, transform=args.transform, image_size=args.image_size, seed=args.seed, args=args)
# # datasets is a dict with keys 'train', 'val', 'test_known', 'test_unknown', check them out:
# print(type(datasets), list(datasets.keys()))
# a = datasets['train']
# item = a[0]
# print(len(item)) # item contains two items, first one is (image, transform_idx), second one is label
# data, label = item
# image, transform_idx = data
# print('item[0]=(image, transform_idx)', image.shape, transform_idx)
# print('item[1]=label', label)
# print(5*'-')
# b = datasets['test_known']
# item = b[0]
# print(len(item)) # item contains two items, first one is (image_LIST, transform_idx_LIST), second one is label
# data, label = item
# image_list, transform_idx_list = item[0]
# print('item[0]=(image_LIST, transform_idx_LIST)', len(image_list), len(transform_idx_list))
# # transform_idx_LIST contains n_augs x2 -1, all transforms applied twice (+/-) unless identity.
# print('item[1]=label', label)
dataloaders = {}
n_augs = datasets['train'].transforms.transform.n_augs
for k, ds, in datasets.items():
shuffle = True if k == 'train' else False
batch_size = args.batch_size if k == 'train' else args.batch_size//n_augs
batch_size = args.batch_size
dataloaders[k] = DataLoader(ds, batch_size=batch_size, shuffle=shuffle, num_workers=args.num_workers)
# dataloaders is a dict with keys 'train', 'val', 'test_known', 'test_unknown', check it out:
# print(dataloaders['train'].dataset.transforms.transform.n_augs)
# # in training, dataloader returns [(batch_of_images, batch_of_transform_idxs), batch_of_labels]
# (images_batch, transform_idxs_batch), label_batch = next(iter(dataloaders['train']))
# print('TRAINING: batch=(images_batch, transform_idxs_batch), label_batch', images_batch.shape, transform_idxs_batch, label_batch)
#
# # in test, dataloader returns [(LIST_OF_batch_of_images, LIST_OF_batch_of_transform_idxs), LIST_OF_batch_of_labels]
# (images_batch_list, transform_idxs_batch_list), label_batch = next(iter(dataloaders['test_known']))
# print('TEST: batch=(LIST_OF_images_batch, LIST_OF_transform_idxs_batch), label_batch', len(images_batch_list), len(transform_idxs_batch_list), label_batch)
# print('LEN of LIST_OF_images_batch/LIST_OF_transform_idxs_batch is 2xn_transforms -1 = {}'.format(2*n_augs-1))
# print(('each item containing a batch of images and a batch of transform_idxs, batch_size//n_augs'))
# for im, tr_idx in zip(images_batch_list, transform_idxs_batch_list):
# print(im.shape, tr_idx.shape)
additional_classes = n_augs
vars(args).update(
{
'known': args.train_classes,
'unknown': args.open_set_classes,
'img_size': img_size,
'dataloaders': dataloaders,
'num_classes': len(args.train_classes),
'additional_classes': additional_classes
}
)
train_model(args)