Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Results - After the "df2regulon" step of the tutorial #595

Open
LiorBaryo opened this issue Nov 14, 2024 · 0 comments
Open

Results - After the "df2regulon" step of the tutorial #595

LiorBaryo opened this issue Nov 14, 2024 · 0 comments
Labels
question Further information is requested

Comments

@LiorBaryo
Copy link

Hello,

I am currently learning how to use pySCENIC, and ran the given tutorial.
Right before the last step of the pySCENIC pipeline of creating the AUC matrix, it is suggested to build the regulons using the df2regulons function.
The output of this step is a long list of regulons, and for each regulon there are various parameters, including the transcription factor name, the gene2weight dictionary and more. For example, one of the regulons from the tutorial:

name='6720489N17Rik',
gene2weight=frozendict.frozendict({'Arhgef5': np.float64(1.0642277382469154), 'Dleu7': np.float64(1.171468799210279), 'Ltbp1': np.float64(1.3452080123862935), 'Slitrk6': np.float64(4.7638839176164405), 'BC023829': np.float64(3.057212543536579), 'Neb': np.float64(1.3027495474599102), 'Col8a1': np.float64(0.5131416679291328), 'Cep63': np.float64(0.6548412938225057), 'Nts': np.float64(1.1252382619078989), 'Kcp': np.float64(0.6260326748658571), 'Ryr1': np.float64(2.1651465131676484), 'Acer3': np.float64(3.718374867914573), 'Cep350': np.float64(1.9253248160252), 'Kdm2b': np.float64(0.6503335330805443), 'Wdr91': np.float64(0.7887676834397574), 'Slc43a3': np.float64(0.7715775632734195), 'Myof': np.float64(0.7719908731938169), 'Nphs1': np.float64(2.4437719970932585), 'Sgpp1': np.float64(1.0407409615981351)}),
gene2occurrence=frozendict.frozendict({}),
transcription_factor='6720489N17Rik',
context=frozenset({'activating', 'transfac_pro__M06006.png'}),
score=1.1904771156122713,
nes=0.0,
orthologous_identity=0.0,
similarity_qvalue=0.0,
annotation=''

One of the parameters is a "score" for each regulon, in bold above.
What is this score? It is different than the AUC score calculated in the next step, so I am having trouble understanding what this score represents/how it is calculated...

Thank you in advance!

@LiorBaryo LiorBaryo added the question Further information is requested label Nov 14, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
question Further information is requested
Projects
None yet
Development

No branches or pull requests

1 participant