-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpd_FMNIST_test.py
477 lines (333 loc) · 16 KB
/
pd_FMNIST_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
# use Python 3.9
# python3.9 -m venv new3.9
# source new3.9/bin/activate
# pip3.9 install -r requirements.txt
# pip3.9 install -r requirements_m1.txt
# cd Documents
# cd populationDescent
# python3 -m venv ~/venv-metal
# source ~/venv-metal/bin/activate
# python3 -m FMNISTtest
import csv
import random
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
import numpy as np
# Typing
import typing
from typing import TypeVar, Generic
from collections.abc import Callable
from tqdm import tqdm
from collections import namedtuple
import statistics
import dataclasses
from dataclasses import dataclass
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import datasets, layers, models
import tensorflow as tf
from matplotlib.backends.backend_pdf import PdfPages
from populationDescent import populationDescent
from NN_models_FMNIST import new_pd_NN_individual_FMNIST, new_hps_NN_individual_FMNIST
NN_Individual = namedtuple("NN_Individual", ["nn", "opt_obj", "LR_constant", "reg_constant"])
tf.config.run_functions_eagerly(True)
# calls gradient steps to train model, returns NORMALIZED training and validation loss
def NN_optimizer_manual_loss(NN_object, batches, batch_size, epochs):
# classification_NN_compiler(NN_object.nn)
batch_size = batch_size
epochs = epochs
normalized_training_loss, normalized_validation_loss = [], []
# print(""), print(NN_object), print("")
optimizer = NN_object.opt_obj
lossfn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
indices = np.random.choice(59999, size = (batch_size*batches, ), replace=False)
vIndices = np.random.choice(4999, size = (batch_size*10, ), replace=False)
# FM dataset
random_batch_FM_train_images, random_batch_FM_train_labels = FM_train_images[indices], FM_train_labels[indices]
random_batch_FM_validation_images, random_batch_FM_validation_labels = FM_validation_images[vIndices], FM_validation_labels[vIndices]
model_loss = gradient_steps(lossfn, random_batch_FM_train_images, random_batch_FM_train_labels, batch_size, epochs, NN_object)
# print(NN_object.LR_constant)
validation_loss = lossfn(random_batch_FM_validation_labels, NN_object.nn(random_batch_FM_validation_images))
tf.print("validation loss: %s" % validation_loss), print("")
normalized_training_loss.append(2/(2+(model_loss)))
normalized_training_loss = np.array(normalized_training_loss)
normalized_validation_loss.append(2/(2+(validation_loss)))
normalized_validation_loss = np.array(normalized_validation_loss)
# print(""), print("normalized training loss: %s" % normalized_training_loss)
# print("normalized validation loss: %s" % normalized_validation_loss)
#print(model_loss)
return normalized_training_loss, normalized_validation_loss
# function optimized to take gradient steps with tf variables
@tf.function
def gradient_steps(lossfn, training_set, labels, batch_size, epochs, NN_object):
with tf.device('/device:GPU:0'):
for e in range(epochs):
for x_batch, y_batch in tf.data.Dataset.from_tensor_slices((training_set, labels)).batch(batch_size):
with tf.GradientTape() as tape:
# make a prediction using the model and then calculate the loss
model_loss = lossfn(y_batch, NN_object.nn(x_batch))
# use regularization constant
regularization_loss = NN_object.nn.losses
reg_loss = sum(regularization_loss)
# mreg_loss = reg_loss * NN_object.reg_constant
total_training_loss = NN_object.LR_constant * (model_loss+reg_loss) # LR + REG randomization
# calculate the gradients using our tape and then update the model weights
grads = tape.gradient(total_training_loss, NN_object.nn.trainable_variables) ## with LR randomization and regularization loss
# x = [abs(grad) for grad in grads]
# tf.print(tf.reduce_mean([tf.reduce_mean(tf.abs(g)) for g in grads if g is not None])) # print average gradient magnitude
NN_object.opt_obj.apply_gradients(zip(grads, NN_object.nn.trainable_variables))
tf.print("training loss: %s" % model_loss) ## remove this --> put nothing (put at recombination)
return model_loss
def NN_randomizer_manual_loss(NN_object, normalized_amount, input_factor):
print(""), print("RANDOMIZING")
# original: (0, 1e-3), (0, normalized_amount), (0, normalized amount)
with tf.device('/device:GPU:0'):
factor = input_factor
# randomizing NN weights
model_clone = tf.keras.models.clone_model(NN_object.nn)
model_clone.set_weights(NN_object.nn.get_weights())
mu, sigma = 0, (1e-2) #1e-4 for sin
gNoise = (np.random.normal(mu, sigma))*(normalized_amount)
weights = (NN_object.nn.get_weights())
randomized_weights = [w + gNoise for w in NN_object.nn.get_weights()]
model_clone.set_weights(randomized_weights)
# randomizing regularization rate
mu, sigma = 0, (normalized_amount*factor) # 0.7, 1 #10 # 0.3
randomization = 2**(np.random.normal(mu, sigma))
new_reg_constant = (NN_object.reg_constant) * randomization
# randomizing learning_rates
mu, sigma = 0, (normalized_amount*factor) # 0.7, 1, 10,x 0.3
randomization = 2**(np.random.normal(mu, sigma))
new_LR_constant = (NN_object.LR_constant) * randomization
new_NN_Individual = NN_Individual(model_clone, NN_object.opt_obj, new_LR_constant, new_reg_constant) # without randoimzed LR
return new_NN_Individual
# unnormalized
def observer(NN_object, tIndices):
random_batch_FM_validation_images, random_batch_FM_validation_labels = FM_validation_images[tIndices], FM_validation_labels[tIndices]
lossfn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
test_loss = lossfn(random_batch_FM_validation_labels, NN_object.nn(random_batch_FM_validation_images))
# print(test_loss)
# ntest_loss = 1/(1+test_loss)
return test_loss
def graph_history(history, grad_steps):
integers = [i for i in range(1, (len(history))+1)]
ema = []
avg = history[0]
ema.append(avg)
for loss in history:
avg = (avg * 0.9) + (0.1 * loss)
ema.append(avg)
x = [j * rr * (batches * pop_size) for j in integers]
y = history
# plot line
plt.plot(x, ema[:len(history)])
# plot title/captions
plt.title("Population Descent FMNIST")
plt.xlabel("Gradient Steps")
plt.ylabel("Validation Loss")
plt.tight_layout()
print("ema:"), print(ema), print("")
print("x:"), print(x), print("")
print("history:"), print(history), print("")
# plt.savefig("TEST_DATA/PD_trial_%s.png" % trial)
def save_image(filename):
p = PdfPages(filename)
fig = plt.figure(1)
fig.savefig(p, format='pdf')
p.close()
filename = "pd_FMNIST_progress_with_reg_model4_line.pdf"
save_image(filename)
# plot points too
plt.scatter(x, history, s=20)
def save_image(filename):
p = PdfPages(filename)
fig = plt.figure(1)
fig.savefig(p, format='pdf')
p.close()
filename = "pd_FMNIST_progress_with_reg_model4_with_points.pdf"
save_image(filename)
# plt.show(block=True), plt.close()
# plt.close('all')
# returns training and test loss (UNNORMALIZED) on data chosen with random seed
def evaluator(NN_object):
# classification_NN_compiler(NN_object) # only if using manual loss optimizer/randomizer
batch_size = 64
np.random.seed(0)
eIndices = np.random.choice(4999, size = (batch_size*25, ), replace=False)
random_batch_FM_train_images, random_batch_FM_train_labels, random_batch_FM_test_images, random_batch_FM_test_labels = FM_train_images[eIndices], FM_train_labels[eIndices], FM_test_images[eIndices], FM_test_labels[eIndices]
print(""), print(""), print("Evaluating models on test data after randomization")
# evaluating on train, test images
lossfn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
train_loss = lossfn(random_batch_FM_train_labels, NN_object.nn(random_batch_FM_train_images))
test_loss = lossfn(random_batch_FM_test_labels, NN_object.nn(random_batch_FM_test_images))
ntest_loss = 2/(2+test_loss)
print("unnormalized train loss: %s" % train_loss)
print("unnormalized test loss: %s" % test_loss)
# print("normalized (1/1+loss) test loss: %s" % ntest_loss)
return train_loss, test_loss # unnormalized
# External Evaluator
def Parameter_class_evaluator(population):
pop_train_loss, pop_test_loss = [], []
for i in range(len(population)):
individual_train_loss, individual_test_loss = evaluator(population[i])
pop_train_loss.append(individual_train_loss)
pop_test_loss.append(individual_test_loss)
# avg_total_test_loss = np.mean(all_test_loss)
best_test_model_loss = np.min(pop_test_loss)
best_train_model_loss = pop_train_loss[pop_test_loss.index(best_test_model_loss)]
return best_train_model_loss, best_test_model_loss
# CLASSES
Individual = TypeVar('Individual')
@dataclass
class Parameters(Generic[Individual]):
population: Callable[[int], np.array]
randomizer: Callable[[np.array, float], np.array]
optimizer: Callable[[np.array], np.array]
observer: Callable[[np.array], np.array] # check this for typing
randomization: bool
CV_selection: bool
rr: int
history: [np.array]
fine_tuner: Callable[[np.array], np.array]
# updated np typing
# population: Callable[[int], npt.NDArray[Individual]]
# randomizer: Callable[[npt.NDArray[Individual], float], np.Array[Individual]]
# optimizer: Callable[[npt.NDArray[Individual]], np.Array[Individual]]
def individual_to_params(
pop_size: int,
new_individual: Callable[[], Individual],
individual_randomizer: Callable[[Individual, float], Individual],
individual_optimizer: Callable[[Individual], Individual],
observer: Callable[[Individual], float],
randomization: bool,
CV_selection: bool,
rr: int, # randomization rate
history: [float]
) -> Parameters[Individual]:
def Parameter_new_population(pop_size: int) -> np.array(Individual):
population = np.zeros(pop_size, dtype=object)
for i in range(pop_size):
population[i], model_num = new_individual()
return population, model_num
def Parameter_class_randomizer(population: np.array(Individual), normalized_amount: float) -> np.array(Individual):
randomized_population = np.zeros(len(population), dtype=object)
for i in range(len(population)):
new_object = individual_randomizer(population[i], normalized_amount[i], input_factor)
randomized_population[i] = new_object
return randomized_population
def Parameter_class_optimizer(population: np.array(Individual)) -> np.array(Individual):
lFitnesses, vFitnesses = [], []
for i in range(len(population)):
normalized_training_loss, normalized_validation_loss = individual_optimizer(NN_Individual(*population[i]), batches, batch_size, epochs)
print(""), print(f"model #{i+1}, lr = {population[i].LR_constant}, reg={population[i].reg_constant}"), print("")
lFitnesses.append(normalized_training_loss)
vFitnesses.append(normalized_validation_loss)
lFitnesses = np.array(lFitnesses)
lFitnesses = lFitnesses.reshape([len(lFitnesses), ])
vFitnesses = np.array(vFitnesses)
vFitnesses = vFitnesses.reshape([len(vFitnesses), ])
return lFitnesses, vFitnesses
# (during optimization)
def Parameter_class_observer(population, history):
batch_size = 64
tIndices = np.random.choice(4999, size = (batch_size*10, ), replace=False)
all_test_loss = []
for i in range(len(population)):
unnormalized_model_loss = observer(population[i], tIndices)
all_test_loss.append(unnormalized_model_loss)
avg_test_loss = np.mean(all_test_loss)
best_test_model_loss = np.min(all_test_loss)
history.append(best_test_model_loss) ## main action of observer (to graph optimization progress later)
return
def fine_tuner(population: np.array(Individual)) -> np.array(Individual):
for j in range(5):
for i in range(len(population)):
print(""), print("Fine-Tuning models"), print("model #%s" % (i+1)), print("")
normalized_training_loss, normalized_validation_loss = individual_optimizer(NN_Individual(*population[i]), 64, 128, 1)
return
Parameters_object = Parameters(Parameter_new_population, Parameter_class_randomizer, Parameter_class_optimizer, Parameter_class_observer, randomization, CV_selection, rr, history, fine_tuner)
return Parameters_object
def create_Parameters_NN_object(pop_size, randomization, CV_selection, rr):
history = []
# creates Parameter object to pass into Population Descent
object = individual_to_params(pop_size, new_pd_NN_individual_FMNIST, NN_randomizer_manual_loss, NN_optimizer_manual_loss, observer, randomization=randomization, CV_selection=CV_selection, rr=rr, history=history)
object.population, model_num = object.population(pop_size) # initiazling population
return object, model_num
# Fashion-MNIST dataset
fashion_mnist = tf.keras.datasets.fashion_mnist
(FM_train_images, FM_train_labels), (FM_test_images, FM_test_labels) = fashion_mnist.load_data()
sample_shape = FM_train_images[0].shape
# print(sample_shape)
img_width, img_height = sample_shape[0], sample_shape[1]
FM_input_shape = (img_width, img_height, 1)
# Reshape data
FM_train_images = FM_train_images.reshape(len(FM_train_images), FM_input_shape[0], FM_input_shape[1], FM_input_shape[2])
FM_test_images = FM_test_images.reshape(len(FM_test_images), FM_input_shape[0], FM_input_shape[1], FM_input_shape[2])
# normalizing data
FM_train_images, FM_test_images = FM_train_images / 255.0, FM_test_images / 255.0
# FM_train_images, FM_test_images = FM_train_images[0:10000] / 255.0, FM_test_images[0:10000] / 255.0
# splitting data into validation/test set
FM_validation_images, FM_validation_labels = FM_test_images[0:5000], FM_test_labels[0:5000]
FM_test_images, FM_test_labels = FM_test_images[5000:], FM_test_labels[5000:]
# PARAMETERS
SEED = [200]
# SEED = [34, 97]
# SEED = [74]
# 11, 24
iterations = 115
pop_size = 5
number_of_replaced_individuals = 2
randomization = True
CV_selection = True
rr = 1 # leash for exploration (how many iterations of gradient descent to run before randomization)
# gradient descent parameters
batch_size = 64
batches = 128
epochs = 1
grad_steps = iterations * epochs * batches * pop_size
# randomization amount
input_factor = 15
# # NN model chosen (from NN_models.py)
# model_num = 4
graph = True
import os
# seed:
def set_seeds(seed=SEED):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
tf.random.set_seed(seed)
np.random.seed(seed)
def set_global_determinism(seed=SEED):
set_seeds(seed=seed)
os.environ['TF_DETERMINISTIC_OPS'] = '1'
os.environ['TF_CUDNN_DETERMINISTIC'] = '1'
tf.config.threading.set_inter_op_parallelism_threads(1)
tf.config.threading.set_intra_op_parallelism_threads(1)
## MAIN RUNNING CODE
if __name__ == "__main__":
for i in range(len(SEED)):
print(""), print("MAJOR ITERATION %s: " % (i+1)), print("")
# set seed
set_global_determinism(seed=SEED[i])
#creating object to pass into pop descent
Parameters_object, model_num = create_Parameters_NN_object(pop_size, randomization, CV_selection, rr)
#creating lists to store data
loss_data, acc_data, total_test_loss, batch_test_loss, total_test_acc = [], [], [], [], []
import time
start_time = time.time()
#RUNNING OPTIMIZATION
optimized_population, lfitnesses, vfitnesses, history = populationDescent(Parameters_object, number_of_replaced_individuals = number_of_replaced_individuals, iterations = iterations)
#measuring how long optimization took
time_lapsed = time.time() - start_time
print(""), print(""), print("time:"), print("--- %s seconds ---" % time_lapsed), print(""), print("")
# evaluate from outside
total_hist, batch_hist = [], []
# returns UNNORMALIZED training and test loss, data chosen with a random seed
best_train_model_loss, best_test_model_loss = Parameter_class_evaluator(optimized_population)
parameter_string = "CV_sel: %s, randomize=%s, %s iterations, %s models, %s replaced, rr=%s" % (CV_selection, randomization, iterations, pop_size, number_of_replaced_individuals, rr)
# writing data to excel file
data = [[best_test_model_loss, best_train_model_loss, grad_steps, model_num, CV_selection, randomization, iterations, pop_size, number_of_replaced_individuals, rr, input_factor, time_lapsed, epochs, batches, batch_size, SEED[i]]]
with open('/Users/abhi/Documents/research_data/pd_data_model4_ablation.csv', 'a', newline = '') as file:
writer = csv.writer(file)
writer.writerows(data)
if graph:
graph_history(history, grad_steps)