-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
48 lines (34 loc) · 1.42 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import pandas as pd
from pycaret.regression import load_model, predict_model
from fastapi import FastAPI, File, UploadFile, Request, Response, HTTPException
from fastapi.templating import Jinja2Templates
from io import BytesIO
import uvicorn
import numpy as np
app = FastAPI()
#. Load trained Pipeline
my_model = load_model('model')
templates = Jinja2Templates(directory='templates')
@app.get('/')
async def func(request: Request):
return templates.TemplateResponse('home.html', {'request': request})
@app.post('/petrol_price')
async def create_upload_file(request: Request,file: UploadFile = File(...)):
try:
contents = file.file.read()
buffer = BytesIO(contents)
df = pd.read_csv(buffer)
except:
raise HTTPException(status_code=500, detail='Something went wrong')
finally:
buffer.close()
file.file.close()
df['Date'] =pd.to_datetime(df['Date'])
df['month'] = [i.month for i in df['Date']]
df['year'] = [i.year for i in df['Date']]
df['week'] = [i.week for i in df['Date']]
df['Series'] = np.arange(1,len(df)+1)
forecast_df = predict_model(my_model,df)
result = forecast_df.drop(['Prediction', 'month', 'year', 'week', 'Series'],axis=1)
result.rename(columns={'Label':'Forecast','Date':'Date(YYYY-DD-MM)'},inplace=True)
return templates.TemplateResponse('home.html',{'request': request, 'data': result.to_html()})