-
Notifications
You must be signed in to change notification settings - Fork 0
/
backend.py
447 lines (379 loc) · 17.6 KB
/
backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import collections
import os
import time
import os
import matplotlib.pyplot as plt
import numpy as np
import nn
use_graphics = True
def maybe_sleep_and_close(seconds):
if use_graphics and plt.get_fignums():
time.sleep(seconds)
for fignum in plt.get_fignums():
fig = plt.figure(fignum)
plt.close(fig)
try:
# This raises a TclError on some Windows machines
fig.canvas.start_event_loop(1e-3)
except:
pass
def get_data_path(filename):
path = os.path.join(
os.path.dirname(__file__), os.pardir, "data", filename)
if not os.path.exists(path):
path = os.path.join(
os.path.dirname(__file__), "data", filename)
if not os.path.exists(path):
path = os.path.join(
os.path.dirname(__file__), filename)
if not os.path.exists(path):
raise Exception("Could not find data file: {}".format(filename))
return path
class Dataset(object):
def __init__(self, x, y):
assert isinstance(x, np.ndarray)
assert isinstance(y, np.ndarray)
assert np.issubdtype(x.dtype, np.floating)
assert np.issubdtype(y.dtype, np.floating)
assert x.ndim == 2
assert y.ndim == 2
assert x.shape[0] == y.shape[0]
self.x = x
self.y = y
def iterate_once(self, batch_size):
assert isinstance(batch_size, int) and batch_size > 0, (
"Batch size should be a positive integer, got {!r}".format(
batch_size))
assert self.x.shape[0] % batch_size == 0, (
"Dataset size {:d} is not divisible by batch size {:d}".format(
self.x.shape[0], batch_size))
index = 0
while index < self.x.shape[0]:
x = self.x[index:index + batch_size]
y = self.y[index:index + batch_size]
yield nn.Constant(x), nn.Constant(y)
index += batch_size
def iterate_forever(self, batch_size):
while True:
yield from self.iterate_once(batch_size)
def get_validation_accuracy(self):
raise NotImplementedError(
"No validation data is available for this dataset. "
"In this assignment, only the Digit Classification and Language "
"Identification datasets have validation data.")
class PerceptronDataset(Dataset):
def __init__(self, model):
points = 500
x = np.hstack([np.random.randn(points, 2), np.ones((points, 1))])
y = np.where(x[:, 0] + 2 * x[:, 1] - 1 >= 0, 1.0, -1.0)
super().__init__(x, np.expand_dims(y, axis=1))
self.model = model
self.epoch = 0
if use_graphics:
fig, ax = plt.subplots(1, 1)
limits = np.array([-3.0, 3.0])
ax.set_xlim(limits)
ax.set_ylim(limits)
positive = ax.scatter(*x[y == 1, :-1].T, color="red", marker="+")
negative = ax.scatter(*x[y == -1, :-1].T, color="blue", marker="_")
line, = ax.plot([], [], color="black")
text = ax.text(0.03, 0.97, "", transform=ax.transAxes, va="top")
ax.legend([positive, negative], [1, -1])
plt.show(block=False)
self.fig = fig
self.limits = limits
self.line = line
self.text = text
self.last_update = time.time()
def iterate_once(self, batch_size):
self.epoch += 1
for i, (x, y) in enumerate(super().iterate_once(batch_size)):
yield x, y
if use_graphics and time.time() - self.last_update > 0.01:
w = self.model.get_weights().data.flatten()
limits = self.limits
if w[1] != 0:
self.line.set_data(limits, (-w[0] * limits - w[2]) / w[1])
elif w[0] != 0:
self.line.set_data(np.full(2, -w[2] / w[0]), limits)
else:
self.line.set_data([], [])
self.text.set_text(
"epoch: {:,}\npoint: {:,}/{:,}\nweights: {}".format(
self.epoch, i * batch_size + 1, len(self.x), w))
self.fig.canvas.draw_idle()
self.fig.canvas.start_event_loop(1e-3)
self.last_update = time.time()
class RegressionDataset(Dataset):
def __init__(self, model):
x = np.expand_dims(np.linspace(-2 * np.pi, 2 * np.pi, num=200), axis=1)
np.random.RandomState(0).shuffle(x)
self.argsort_x = np.argsort(x.flatten())
y = np.sin(x)
super().__init__(x, y)
self.model = model
self.processed = 0
if use_graphics:
fig, ax = plt.subplots(1, 1)
ax.set_xlim(-2 * np.pi, 2 * np.pi)
ax.set_ylim(-1.4, 1.4)
real, = ax.plot(x[self.argsort_x], y[self.argsort_x], color="blue")
learned, = ax.plot([], [], color="red")
text = ax.text(0.03, 0.97, "", transform=ax.transAxes, va="top")
ax.legend([real, learned], ["real", "learned"])
plt.show(block=False)
self.fig = fig
self.learned = learned
self.text = text
self.last_update = time.time()
def iterate_once(self, batch_size):
for x, y in super().iterate_once(batch_size):
yield x, y
self.processed += batch_size
if use_graphics and time.time() - self.last_update > 0.1:
predicted = self.model.run(nn.Constant(self.x)).data
loss = self.model.get_loss(
nn.Constant(self.x), nn.Constant(self.y)).data
self.learned.set_data(self.x[self.argsort_x], predicted[self.argsort_x])
self.text.set_text("processed: {:,}\nloss: {:.6f}".format(
self.processed, loss))
self.fig.canvas.draw_idle()
self.fig.canvas.start_event_loop(1e-3)
self.last_update = time.time()
class DigitClassificationDataset(Dataset):
def __init__(self, model):
mnist_path = get_data_path("mnist.npz")
with np.load(mnist_path) as data:
train_images = data["train_images"]
train_labels = data["train_labels"]
test_images = data["test_images"]
test_labels = data["test_labels"]
assert len(train_images) == len(train_labels) == 60000
assert len(test_images) == len(test_labels) == 10000
self.dev_images = test_images[0::2]
self.dev_labels = test_labels[0::2]
self.test_images = test_images[1::2]
self.test_labels = test_labels[1::2]
train_labels_one_hot = np.zeros((len(train_images), 10))
train_labels_one_hot[range(len(train_images)), train_labels] = 1
super().__init__(train_images, train_labels_one_hot)
self.model = model
self.epoch = 0
if use_graphics:
width = 20 # Width of each row expressed as a multiple of image width
samples = 100 # Number of images to display per label
fig = plt.figure()
ax = {}
images = collections.defaultdict(list)
texts = collections.defaultdict(list)
for i in reversed(range(10)):
ax[i] = plt.subplot2grid((30, 1), (3 * i, 0), 2, 1,
sharex=ax.get(9))
plt.setp(ax[i].get_xticklabels(), visible=i == 9)
ax[i].set_yticks([])
ax[i].text(-0.03, 0.5, i, transform=ax[i].transAxes,
va="center")
ax[i].set_xlim(0, 28 * width)
ax[i].set_ylim(0, 28)
for j in range(samples):
images[i].append(ax[i].imshow(
np.zeros((28, 28)), vmin=0, vmax=1, cmap="Greens",
alpha=0.3))
texts[i].append(ax[i].text(
0, 0, "", ha="center", va="top", fontsize="smaller"))
ax[9].set_xticks(np.linspace(0, 28 * width, 11))
ax[9].set_xticklabels(
["{:.1f}".format(num) for num in np.linspace(0, 1, 11)])
ax[9].tick_params(axis="x", pad=16)
ax[9].set_xlabel("Probability of Correct Label")
status = ax[0].text(
0.5, 1.5, "", transform=ax[0].transAxes, ha="center",
va="bottom")
plt.show(block=False)
self.width = width
self.samples = samples
self.fig = fig
self.images = images
self.texts = texts
self.status = status
self.last_update = time.time()
def iterate_once(self, batch_size):
self.epoch += 1
for i, (x, y) in enumerate(super().iterate_once(batch_size)):
yield x, y
if use_graphics and time.time() - self.last_update > 1:
dev_logits = self.model.run(nn.Constant(self.dev_images)).data
dev_predicted = np.argmax(dev_logits, axis=1)
dev_probs = np.exp(nn.SoftmaxLoss.log_softmax(dev_logits))
dev_accuracy = np.mean(dev_predicted == self.dev_labels)
self.status.set_text(
"epoch: {:d}, batch: {:d}/{:d}, validation accuracy: "
"{:.2%}".format(
self.epoch, i, len(self.x) // batch_size, dev_accuracy))
for i in range(10):
predicted = dev_predicted[self.dev_labels == i]
probs = dev_probs[self.dev_labels == i][:, i]
linspace = np.linspace(
0, len(probs) - 1, self.samples).astype(int)
indices = probs.argsort()[linspace]
for j, (prob, image) in enumerate(zip(
probs[indices],
self.dev_images[self.dev_labels == i][indices])):
self.images[i][j].set_data(image.reshape((28, 28)))
left = prob * (self.width - 1) * 28
if predicted[indices[j]] == i:
self.images[i][j].set_cmap("Greens")
self.texts[i][j].set_text("")
else:
self.images[i][j].set_cmap("Reds")
self.texts[i][j].set_text(predicted[indices[j]])
self.texts[i][j].set_x(left + 14)
self.images[i][j].set_extent([left, left + 28, 0, 28])
self.fig.canvas.draw_idle()
self.fig.canvas.start_event_loop(1e-3)
self.last_update = time.time()
def get_validation_accuracy(self):
dev_logits = self.model.run(nn.Constant(self.dev_images)).data
dev_predicted = np.argmax(dev_logits, axis=1)
dev_accuracy = np.mean(dev_predicted == self.dev_labels)
return dev_accuracy
class LanguageIDDataset(Dataset):
def __init__(self, model):
self.model = model
data_path = get_data_path("lang_id.npz")
with np.load(data_path) as data:
self.chars = data['chars']
self.language_codes = data['language_codes']
self.language_names = data['language_names']
self.train_x = data['train_x']
self.train_y = data['train_y']
self.train_buckets = data['train_buckets']
self.dev_x = data['dev_x']
self.dev_y = data['dev_y']
self.dev_buckets = data['dev_buckets']
self.test_x = data['test_x']
self.test_y = data['test_y']
self.test_buckets = data['test_buckets']
self.epoch = 0
self.bucket_weights = self.train_buckets[:,1] - self.train_buckets[:,0]
self.bucket_weights = self.bucket_weights / float(self.bucket_weights.sum())
self.chars_print = self.chars
try:
print(u"Alphabet: {}".format(u"".join(self.chars)))
except UnicodeEncodeError:
self.chars_print = "abcdefghijklmnopqrstuvwxyzaaeeeeiinoouuacelnszz"
print("Alphabet: " + self.chars_print)
self.chars_print = list(self.chars_print)
print("""
NOTE: Your terminal does not appear to support printing Unicode characters.
For the purposes of printing to the terminal, some of the letters in the
alphabet above have been substituted with ASCII symbols.""".strip())
print("")
# Select some examples to spotlight in the monitoring phase (3 per language)
spotlight_idxs = []
for i in range(len(self.language_names)):
idxs_lang_i = np.nonzero(self.dev_y == i)[0]
idxs_lang_i = np.random.choice(idxs_lang_i, size=3, replace=False)
spotlight_idxs.extend(list(idxs_lang_i))
self.spotlight_idxs = np.array(spotlight_idxs, dtype=int)
# Templates for printing updates as training progresses
max_word_len = self.dev_x.shape[1]
max_lang_len = max([len(x) for x in self.language_names])
self.predicted_template = u"Pred: {:<NUM}".replace('NUM',
str(max_lang_len))
self.word_template = u" "
self.word_template += u"{:<NUM} ".replace('NUM', str(max_word_len))
self.word_template += u"{:<NUM} ({:6.1%})".replace('NUM', str(max_lang_len))
self.word_template += u" {:<NUM} ".replace('NUM',
str(max_lang_len + len('Pred: ')))
for i in range(len(self.language_names)):
self.word_template += u"|{}".format(self.language_codes[i])
self.word_template += "{probs[" + str(i) + "]:4.0%}"
self.last_update = time.time()
def _encode(self, inp_x, inp_y):
xs = []
for i in range(inp_x.shape[1]):
if np.all(inp_x[:,i] == -1):
break
assert not np.any(inp_x[:,i] == -1), (
"Please report this error in the project: batching by length was done incorrectly in the provided code")
x = np.eye(len(self.chars))[inp_x[:,i]]
xs.append(nn.Constant(x))
y = np.eye(len(self.language_names))[inp_y]
y = nn.Constant(y)
return xs, y
def _softmax(self, x):
exp = np.exp(x - np.max(x, axis=-1, keepdims=True))
return exp / np.sum(exp, axis=-1, keepdims=True)
def _predict(self, split='dev'):
if split == 'dev':
data_x = self.dev_x
data_y = self.dev_y
buckets = self.dev_buckets
else:
data_x = self.test_x
data_y = self.test_y
buckets = self.test_buckets
all_predicted = []
all_correct = []
for bucket_id in range(buckets.shape[0]):
start, end = buckets[bucket_id]
xs, y = self._encode(data_x[start:end], data_y[start:end])
predicted = self.model.run(xs)
all_predicted.extend(list(predicted.data))
all_correct.extend(list(data_y[start:end]))
all_predicted_probs = self._softmax(np.asarray(all_predicted))
all_predicted = np.asarray(all_predicted).argmax(axis=-1)
all_correct = np.asarray(all_correct)
return all_predicted_probs, all_predicted, all_correct
def iterate_once(self, batch_size):
assert isinstance(batch_size, int) and batch_size > 0, (
"Batch size should be a positive integer, got {!r}".format(
batch_size))
assert self.train_x.shape[0] >= batch_size, (
"Dataset size {:d} is smaller than the batch size {:d}".format(
self.train_x.shape[0], batch_size))
self.epoch += 1
for iteration in range(self.train_x.shape[0] // batch_size):
bucket_id = np.random.choice(self.bucket_weights.shape[0], p=self.bucket_weights)
example_ids = self.train_buckets[bucket_id, 0] + np.random.choice(
self.train_buckets[bucket_id, 1] - self.train_buckets[bucket_id, 0],
size=batch_size)
yield self._encode(self.train_x[example_ids], self.train_y[example_ids])
if use_graphics and time.time() - self.last_update > 0.5:
dev_predicted_probs, dev_predicted, dev_correct = self._predict()
dev_accuracy = np.mean(dev_predicted == dev_correct)
print("epoch {:,} iteration {:,} validation-accuracy {:.1%}".format(
self.epoch, iteration, dev_accuracy))
for idx in self.spotlight_idxs:
correct = (dev_predicted[idx] == dev_correct[idx])
word = u"".join([self.chars_print[ch] for ch in self.dev_x[idx] if ch != -1])
print(self.word_template.format(
word,
self.language_names[dev_correct[idx]],
dev_predicted_probs[idx, dev_correct[idx]],
"" if correct else self.predicted_template.format(
self.language_names[dev_predicted[idx]]),
probs=dev_predicted_probs[idx,:],
))
self.last_update = time.time()
def get_validation_accuracy(self):
dev_predicted_probs, dev_predicted, dev_correct = self._predict()
dev_accuracy = np.mean(dev_predicted == dev_correct)
return dev_accuracy
def main():
import models
model = models.PerceptronModel(3)
dataset = PerceptronDataset(model)
model.train(dataset)
model = models.RegressionModel()
dataset = RegressionDataset(model)
model.train(dataset)
model = models.DigitClassificationModel()
dataset = DigitClassificationDataset(model)
model.train(dataset)
model = models.LanguageIDModel()
dataset = LanguageIDDataset(model)
model.train(dataset)
if __name__ == "__main__":
main()