-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautograder.py
579 lines (483 loc) · 22.7 KB
/
autograder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
# A custom autograder for this project
################################################################################
# A mini-framework for autograding
################################################################################
import optparse
import pickle
import random
import sys
import traceback
class WritableNull:
def write(self, string):
pass
def flush(self):
pass
class Tracker(object):
def __init__(self, questions, maxes, prereqs, mute_output):
self.questions = questions
self.maxes = maxes
self.prereqs = prereqs
self.points = {q: 0 for q in self.questions}
self.current_question = None
self.current_test = None
self.points_at_test_start = None
self.possible_points_remaining = None
self.mute_output = mute_output
self.original_stdout = None
self.muted = False
def mute(self):
if self.muted:
return
self.muted = True
self.original_stdout = sys.stdout
sys.stdout = WritableNull()
def unmute(self):
if not self.muted:
return
self.muted = False
sys.stdout = self.original_stdout
def begin_q(self, q):
assert q in self.questions
text = 'Question {}'.format(q)
print('\n' + text)
print('=' * len(text))
for prereq in sorted(self.prereqs[q]):
if self.points[prereq] < self.maxes[prereq]:
print("""*** NOTE: Make sure to complete Question {} before working on Question {},
*** because Question {} builds upon your answer for Question {}.
""".format(prereq, q, q, prereq))
return False
self.current_question = q
self.possible_points_remaining = self.maxes[q]
return True
def begin_test(self, test_name):
self.current_test = test_name
self.points_at_test_start = self.points[self.current_question]
print("*** {}) {}".format(self.current_question, self.current_test))
if self.mute_output:
self.mute()
def end_test(self, pts):
if self.mute_output:
self.unmute()
self.possible_points_remaining -= pts
if self.points[self.current_question] == self.points_at_test_start + pts:
print("*** PASS: {}".format(self.current_test))
elif self.points[self.current_question] == self.points_at_test_start:
print("*** FAIL")
self.current_test = None
self.points_at_test_start = None
def end_q(self):
assert self.current_question is not None
assert self.possible_points_remaining == 0
print('\n### Question {}: {}/{} ###'.format(
self.current_question,
self.points[self.current_question],
self.maxes[self.current_question]))
self.current_question = None
self.possible_points_remaining = None
def finalize(self):
import time
print('\nFinished at %d:%02d:%02d' % time.localtime()[3:6])
print("\nProvisional grades\n==================")
for q in self.questions:
print('Question %s: %d/%d' % (q, self.points[q], self.maxes[q]))
print('------------------')
print('Total: %d/%d' % (sum(self.points.values()),
sum([self.maxes[q] for q in self.questions])))
print("""
Your grades are NOT yet registered. To register your grades, make sure
to follow your instructor's guidelines to receive credit on your project.
""")
def add_points(self, pts):
self.points[self.current_question] += pts
TESTS = []
PREREQS = {}
def add_prereq(q, pre):
if isinstance(pre, str):
pre = [pre]
if q not in PREREQS:
PREREQS[q] = set()
PREREQS[q] |= set(pre)
def test(q, points):
def deco(fn):
TESTS.append((q, points, fn))
return fn
return deco
def parse_options(argv):
parser = optparse.OptionParser(description = 'Run public tests on student code')
parser.set_defaults(
edx_output=False,
gs_output=False,
no_graphics=False,
mute_output=False,
check_dependencies=False,
)
parser.add_option('--edx-output',
dest = 'edx_output',
action = 'store_true',
help = 'Ignored, present for compatibility only')
parser.add_option('--gradescope-output',
dest = 'gs_output',
action = 'store_true',
help = 'Ignored, present for compatibility only')
parser.add_option('--question', '-q',
dest = 'grade_question',
default = None,
help = 'Grade only one question (e.g. `-q q1`)')
parser.add_option('--no-graphics',
dest = 'no_graphics',
action = 'store_true',
help = 'Do not display graphics (visualizing your implementation is highly recommended for debugging).')
parser.add_option('--mute',
dest = 'mute_output',
action = 'store_true',
help = 'Mute output from executing tests')
parser.add_option('--check-dependencies',
dest = 'check_dependencies',
action = 'store_true',
help = 'check that numpy and matplotlib are installed')
(options, args) = parser.parse_args(argv)
return options
def main():
options = parse_options(sys.argv)
if options.check_dependencies:
check_dependencies()
return
if options.no_graphics:
disable_graphics()
questions = set()
maxes = {}
for q, points, fn in TESTS:
questions.add(q)
maxes[q] = maxes.get(q, 0) + points
if q not in PREREQS:
PREREQS[q] = set()
questions = list(sorted(questions))
if options.grade_question:
if options.grade_question not in questions:
print("ERROR: question {} does not exist".format(options.grade_question))
sys.exit(1)
else:
questions = [options.grade_question]
PREREQS[options.grade_question] = set()
tracker = Tracker(questions, maxes, PREREQS, options.mute_output)
for q in questions:
started = tracker.begin_q(q)
if not started:
continue
for testq, points, fn in TESTS:
if testq != q:
continue
tracker.begin_test(fn.__name__)
try:
fn(tracker)
except KeyboardInterrupt:
tracker.unmute()
print("\n\nCaught KeyboardInterrupt: aborting autograder")
tracker.finalize()
print("\n[autograder was interrupted before finishing]")
sys.exit(1)
except:
tracker.unmute()
print(traceback.format_exc())
tracker.end_test(points)
tracker.end_q()
tracker.finalize()
################################################################################
# Tests begin here
################################################################################
import numpy as np
import matplotlib
import contextlib
import nn
import backend
def check_dependencies():
import matplotlib.pyplot as plt
import time
fig, ax = plt.subplots(1, 1)
ax.set_xlim([-1, 1])
ax.set_ylim([-1, 1])
line, = ax.plot([], [], color="black")
plt.show(block=False)
for t in range(400):
angle = t * 0.05
x = np.sin(angle)
y = np.cos(angle)
line.set_data([x,-x], [y,-y])
fig.canvas.draw_idle()
fig.canvas.start_event_loop(1e-3)
def disable_graphics():
backend.use_graphics = False
@contextlib.contextmanager
def no_graphics():
old_use_graphics = backend.use_graphics
backend.use_graphics = False
yield
backend.use_graphics = old_use_graphics
def verify_node(node, expected_type, expected_shape, method_name):
if expected_type == 'parameter':
assert node is not None, (
"{} should return an instance of nn.Parameter, not None".format(method_name))
assert isinstance(node, nn.Parameter), (
"{} should return an instance of nn.Parameter, instead got type {!r}".format(
method_name, type(node).__name__))
elif expected_type == 'loss':
assert node is not None, (
"{} should return an instance a loss node, not None".format(method_name))
assert isinstance(node, (nn.SquareLoss, nn.SoftmaxLoss)), (
"{} should return a loss node, instead got type {!r}".format(
method_name, type(node).__name__))
elif expected_type == 'node':
assert node is not None, (
"{} should return a node object, not None".format(method_name))
assert isinstance(node, nn.Node), (
"{} should return a node object, instead got type {!r}".format(
method_name, type(node).__name__))
else:
assert False, "If you see this message, please report a bug in the autograder"
if expected_type != 'loss':
assert all([(expected == '?' or actual == expected) for (actual, expected) in zip(node.data.shape, expected_shape)]), (
"{} should return an object with shape {}, got {}".format(
method_name, nn.format_shape(expected_shape), nn.format_shape(node.data.shape)))
def trace_node(node_to_trace):
"""
Returns a set containing the node and all ancestors in the computation graph
"""
nodes = set()
tape = []
def visit(node):
if node not in nodes:
for parent in node.parents:
visit(parent)
nodes.add(node)
tape.append(node)
visit(node_to_trace)
return nodes
@test('q1', points=6)
def check_perceptron(tracker):
import models
print("Sanity checking perceptron...")
np_random = np.random.RandomState(0)
# Check that the perceptron weights are initialized to a vector with `dimensions` entries.
for dimensions in range(1, 10):
p = models.PerceptronModel(dimensions)
p_weights = p.get_weights()
verify_node(p_weights, 'parameter', (1, dimensions), "PerceptronModel.get_weights()")
# Check that run returns a node, and that the score in the node is correct
for dimensions in range(1, 10):
p = models.PerceptronModel(dimensions)
p_weights = p.get_weights()
verify_node(p_weights, 'parameter', (1, dimensions), "PerceptronModel.get_weights()")
point = np_random.uniform(-10, 10, (1, dimensions))
score = p.run(nn.Constant(point))
verify_node(score, 'node', (1, 1), "PerceptronModel.run()")
calculated_score = nn.as_scalar(score)
expected_score = float(np.dot(point.flatten(), p_weights.data.flatten()))
assert np.isclose(calculated_score, expected_score), (
"The score computed by PerceptronModel.run() ({:.4f}) does not match the expected score ({:.4f})".format(
calculated_score, expected_score))
# Check that get_prediction returns the correct values, including the
# case when a point lies exactly on the decision boundary
for dimensions in range(1, 10):
p = models.PerceptronModel(dimensions)
random_point = np_random.uniform(-10, 10, (1, dimensions))
for point in (random_point, np.zeros_like(random_point)):
prediction = p.get_prediction(nn.Constant(point))
assert prediction == 1 or prediction == -1, (
"PerceptronModel.get_prediction() should return 1 or -1, not {}".format(
prediction))
expected_prediction = np.where(np.dot(point, p.get_weights().data.T) >= 0, 1, -1).item()
assert prediction == expected_prediction, (
"PerceptronModel.get_prediction() returned {}; expected {}".format(
prediction, expected_prediction))
tracker.add_points(2) # Partial credit for passing sanity checks
print("Sanity checking perceptron weight updates...")
# Test weight updates. This involves constructing a dataset that
# requires 0 or 1 updates before convergence, and testing that weight
# values change as expected. Note that (multiplier < -1 or multiplier > 1)
# must be true for the testing code to be correct.
dimensions = 2
for multiplier in (-5, -2, 2, 5):
p = models.PerceptronModel(dimensions)
orig_weights = p.get_weights().data.reshape((1, dimensions)).copy()
if np.abs(orig_weights).sum() == 0.0:
# This autograder test doesn't work when weights are exactly zero
continue
point = multiplier * orig_weights
sanity_dataset = backend.Dataset(
x=np.tile(point, (500, 1)),
y=np.ones((500, 1)) * -1.0
)
p.train(sanity_dataset)
new_weights = p.get_weights().data.reshape((1, dimensions))
if multiplier < 0:
expected_weights = orig_weights
else:
expected_weights = orig_weights - point
if not np.all(new_weights == expected_weights):
print()
print("Initial perceptron weights were: [{:.4f}, {:.4f}]".format(
orig_weights[0,0], orig_weights[0,1]))
print("All data points in the dataset were identical and had:")
print(" x = [{:.4f}, {:.4f}]".format(
point[0,0], point[0,1]))
print(" y = -1")
print("Your trained weights were: [{:.4f}, {:.4f}]".format(
new_weights[0,0], new_weights[0,1]))
print("Expected weights after training: [{:.4f}, {:.4f}]".format(
expected_weights[0,0], expected_weights[0,1]))
print()
assert False, "Weight update sanity check failed"
print("Sanity checking complete. Now training perceptron")
model = models.PerceptronModel(3)
dataset = backend.PerceptronDataset(model)
model.train(dataset)
backend.maybe_sleep_and_close(1)
assert dataset.epoch != 0, "Perceptron code never iterated over the training data"
accuracy = np.mean(np.where(np.dot(dataset.x, model.get_weights().data.T) >= 0.0, 1.0, -1.0) == dataset.y)
if accuracy < 1.0:
print("The weights learned by your perceptron correctly classified {:.2%} of training examples".format(accuracy))
print("To receive full points for this question, your perceptron must converge to 100% accuracy")
return
tracker.add_points(4)
@test('q2', points=6)
def check_regression(tracker):
import models
model = models.RegressionModel()
dataset = backend.RegressionDataset(model)
detected_parameters = None
for batch_size in (1, 2, 4):
inp_x = nn.Constant(dataset.x[:batch_size])
inp_y = nn.Constant(dataset.y[:batch_size])
output_node = model.run(inp_x)
verify_node(output_node, 'node', (batch_size, 1), "RegressionModel.run()")
trace = trace_node(output_node)
assert inp_x in trace, "Node returned from RegressionModel.run() does not depend on the provided input (x)"
if detected_parameters is None:
detected_parameters = [node for node in trace if isinstance(node, nn.Parameter)]
for node in trace:
assert not isinstance(node, nn.Parameter) or node in detected_parameters, (
"Calling RegressionModel.run() multiple times should always re-use the same parameters, but a new nn.Parameter object was detected")
for batch_size in (1, 2, 4):
inp_x = nn.Constant(dataset.x[:batch_size])
inp_y = nn.Constant(dataset.y[:batch_size])
loss_node = model.get_loss(inp_x, inp_y)
verify_node(loss_node, 'loss', None, "RegressionModel.get_loss()")
trace = trace_node(loss_node)
assert inp_x in trace, "Node returned from RegressionModel.get_loss() does not depend on the provided input (x)"
assert inp_y in trace, "Node returned from RegressionModel.get_loss() does not depend on the provided labels (y)"
for node in trace:
assert not isinstance(node, nn.Parameter) or node in detected_parameters, (
"RegressionModel.get_loss() should not use additional parameters not used by RegressionModel.run()")
tracker.add_points(2) # Partial credit for passing sanity checks
model.train(dataset)
backend.maybe_sleep_and_close(1)
train_loss = model.get_loss(nn.Constant(dataset.x), nn.Constant(dataset.y))
verify_node(train_loss, 'loss', None, "RegressionModel.get_loss()")
train_loss = nn.as_scalar(train_loss)
# Re-compute the loss ourselves: otherwise get_loss() could be hard-coded
# to always return zero
train_predicted = model.run(nn.Constant(dataset.x))
verify_node(train_predicted, 'node', (dataset.x.shape[0], 1), "RegressionModel.run()")
sanity_loss = 0.5 * np.mean((train_predicted.data - dataset.y)**2)
assert np.isclose(train_loss, sanity_loss), (
"RegressionModel.get_loss() returned a loss of {:.4f}, "
"but the autograder computed a loss of {:.4f} "
"based on the output of RegressionModel.run()".format(
train_loss, sanity_loss))
loss_threshold = 0.02
if train_loss <= loss_threshold:
print("Your final loss is: {:f}".format(train_loss))
tracker.add_points(4)
else:
print("Your final loss ({:f}) must be no more than {:.4f} to receive full points for this question".format(train_loss, loss_threshold))
@test('q3', points=6)
def check_digit_classification(tracker):
import models
model = models.DigitClassificationModel()
dataset = backend.DigitClassificationDataset(model)
detected_parameters = None
for batch_size in (1, 2, 4):
inp_x = nn.Constant(dataset.x[:batch_size])
inp_y = nn.Constant(dataset.y[:batch_size])
output_node = model.run(inp_x)
verify_node(output_node, 'node', (batch_size, 10), "DigitClassificationModel.run()")
trace = trace_node(output_node)
assert inp_x in trace, "Node returned from DigitClassificationModel.run() does not depend on the provided input (x)"
if detected_parameters is None:
detected_parameters = [node for node in trace if isinstance(node, nn.Parameter)]
for node in trace:
assert not isinstance(node, nn.Parameter) or node in detected_parameters, (
"Calling DigitClassificationModel.run() multiple times should always re-use the same parameters, but a new nn.Parameter object was detected")
for batch_size in (1, 2, 4):
inp_x = nn.Constant(dataset.x[:batch_size])
inp_y = nn.Constant(dataset.y[:batch_size])
loss_node = model.get_loss(inp_x, inp_y)
verify_node(loss_node, 'loss', None, "DigitClassificationModel.get_loss()")
trace = trace_node(loss_node)
assert inp_x in trace, "Node returned from DigitClassificationModel.get_loss() does not depend on the provided input (x)"
assert inp_y in trace, "Node returned from DigitClassificationModel.get_loss() does not depend on the provided labels (y)"
for node in trace:
assert not isinstance(node, nn.Parameter) or node in detected_parameters, (
"DigitClassificationModel.get_loss() should not use additional parameters not used by DigitClassificationModel.run()")
tracker.add_points(2) # Partial credit for passing sanity checks
model.train(dataset)
test_logits = model.run(nn.Constant(dataset.test_images)).data
test_predicted = np.argmax(test_logits, axis=1)
test_accuracy = np.mean(test_predicted == dataset.test_labels)
accuracy_threshold = 0.97
if test_accuracy >= accuracy_threshold:
print("Your final test set accuracy is: {:%}".format(test_accuracy))
tracker.add_points(4)
else:
print("Your final test set accuracy ({:%}) must be at least {:.0%} to receive full points for this question".format(test_accuracy, accuracy_threshold))
@test('q4', points=7)
def check_lang_id(tracker):
import models
model = models.LanguageIDModel()
dataset = backend.LanguageIDDataset(model)
detected_parameters = None
for batch_size, word_length in ((1, 1), (2, 1), (2, 6), (4, 8)):
start = dataset.dev_buckets[-1, 0]
end = start + batch_size
inp_xs, inp_y = dataset._encode(dataset.dev_x[start:end], dataset.dev_y[start:end])
inp_xs = inp_xs[:word_length]
output_node = model.run(inp_xs)
verify_node(output_node, 'node', (batch_size, len(dataset.language_names)), "LanguageIDModel.run()")
trace = trace_node(output_node)
for inp_x in inp_xs:
assert inp_x in trace, "Node returned from LanguageIDModel.run() does not depend on all of the provided inputs (xs)"
# Word length 1 does not use parameters related to transferring the
# hidden state across timesteps, so initial parameter detection is only
# run for longer words
if word_length > 1:
if detected_parameters is None:
detected_parameters = [node for node in trace if isinstance(node, nn.Parameter)]
for node in trace:
assert not isinstance(node, nn.Parameter) or node in detected_parameters, (
"Calling LanguageIDModel.run() multiple times should always re-use the same parameters, but a new nn.Parameter object was detected")
for batch_size, word_length in ((1, 1), (2, 1), (2, 6), (4, 8)):
start = dataset.dev_buckets[-1, 0]
end = start + batch_size
inp_xs, inp_y = dataset._encode(dataset.dev_x[start:end], dataset.dev_y[start:end])
inp_xs = inp_xs[:word_length]
loss_node = model.get_loss(inp_xs, inp_y)
trace = trace_node(loss_node)
for inp_x in inp_xs:
assert inp_x in trace, "Node returned from LanguageIDModel.run() does not depend on all of the provided inputs (xs)"
assert inp_y in trace, "Node returned from LanguageIDModel.get_loss() does not depend on the provided labels (y)"
for node in trace:
assert not isinstance(node, nn.Parameter) or node in detected_parameters, (
"LanguageIDModel.get_loss() should not use additional parameters not used by LanguageIDModel.run()")
tracker.add_points(2) # Partial credit for passing sanity checks
model.train(dataset)
test_predicted_probs, test_predicted, test_correct = dataset._predict('test')
test_accuracy = np.mean(test_predicted == test_correct)
accuracy_threshold = 0.81
if test_accuracy >= accuracy_threshold:
print("Your final test set accuracy is: {:%}".format(test_accuracy))
tracker.add_points(5)
else:
print("Your final test set accuracy ({:%}) must be at least {:.0%} to receive full points for this question".format(test_accuracy, accuracy_threshold))
if __name__ == '__main__':
main()