-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
169 lines (141 loc) · 5.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "3,4"
import sys
sys.path.append('XGLM')
# from transformers import AutoTokenizer, BloomForCausalLM
import torch
from tqdm import tqdm
import logging
import torch.optim as optim
from transformers.optimization import get_cosine_schedule_with_warmup
from torch.utils.data import DataLoader
import json
from torch.cuda.amp import autocast, GradScaler
from fp16.fp16 import FP16_Optimizer, DynamicLossScaler
from util import seed_everything
from config import Config
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import argparse
seed_everything()
logging.getLogger().setLevel(logging.INFO)
config = Config()
def train_epoch(train_loader, model, optimizer, epoch ,scheduler=None, scaler=None):
# set model to training mode
model.train()
# step number in one epoch: 336
train_losses = 0
prey_lis=[]
truy_lis=[]
if config.use_tqdm:
train_bar = enumerate(tqdm(train_loader))
else:
train_bar = enumerate(train_loader)
for idx, batch_samples in train_bar:
optimizer.zero_grad()
cbatch=batch_samples
# print(cbatch)
while True:
# loss = model(**cbatch)
loss = model(cbatch['bloom_data'], cbatch['bloom_mask_data'], label = cbatch['label'])
reduced_loss = loss.detach().clone().view(1)
if not DynamicLossScaler._has_inf_or_nan(reduced_loss):
train_losses += reduced_loss.item()
if config.fp16:
# scaler.scale(loss).backward()
optimizer.backward(loss, update_master_grads=False)
optimizer.update_master_grads()
if config.clip_grad > 0.0:
optimizer.clip_master_grads(config.clip_grad)
else:
loss.backward()
optimizer.step()
if not config.fp16 and scheduler is not None:
scheduler.step()
break
else:
print("Found NaN loss, skip backward")
del loss
torch.cuda.empty_cache()
train_loss = float(train_losses) / len(train_loader)
logging.info("Epoch: {}, train loss: {}".format(epoch, train_loss))
def train( model:torch.nn.Module, optimizer,train_loader, scheduler=None, scaler=None):
best_val_f1 = 0.0
patience_counter = 0
# start training
for epoch in range(1, config.epoch_num + 1):
if config.useddp:
train_loader.sampler.set_epoch(epoch)
train_epoch(train_loader, model, optimizer, epoch , scheduler, scaler)
# torch.save(model,config.save_train_model_file+'/model_'+str(epoch))
if config.useddp:
if dist.get_rank() == 0:
torch.save(model.state_dict(),config.save_train_model_file+'/model_3b_fp16_'+str(epoch)+'.ckpt')
else:
torch.save(model.state_dict(),config.save_train_model_file+'/model_3b_fp16_'+str(epoch%3)+'.ckpt')
# torch.save(model.module.state_dict(), "%d.ckpt" % epoch)
logging.info("Training Finished!")
def get_data(path):
data=[]
with open(path,'r') as f:
for line in f.readlines():
data.append({
'text':line.strip(),
'label':line.strip()
})
return data
# .half()
# scaler = GradScaler()
if config.useddp:
dist.init_process_group(backend='nccl')
from model import CodeMixXglm, FP16_Module, CodeMixBloom
from dataset import ChmixEnGen
parser = argparse.ArgumentParser(description='PyTorch CodeMix Model')
parser.add_argument('--model-type', type=str, default='xglm', help='used model for training')
parser.add_argument('--load_model_dir', type=str, help='used local model dir for training')
parser.add_argument('--save_train_model_file', type=str, help='save checkpoint dir')
args = parser.parse_args()
config.model_dir = args.load_model_dir
config.save_train_model_file = args.save_train_model_file
print('using model {}'.format(args.model_type))
if args.model_type == 'xglm':
model = CodeMixXglm(config)
else:
model = CodeMixBloom(config)
# model = CodeMix()
# model = CodeMixBloom()
model.to(config.device)
if config.useddp:
model = DDP(model, device_ids=[0], output_device=0)
if config.fp16:
# model.half()
model = FP16_Module(model)
train_data_path = '/home/fengwang/ASR/data/new_zh_en_data/all_data/all_train.txt'
train_data_lis = get_data(train_data_path)
train_dataset = ChmixEnGen(config,train_data_lis)
train_size = len(train_dataset)
if config.useddp:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = DataLoader(train_dataset, batch_size=config.batch_size,
shuffle=True, collate_fn=train_dataset.collate_fn,
sampler=train_sampler)
else:
train_loader = DataLoader(train_dataset, batch_size=config.batch_size,
shuffle=True, collate_fn=train_dataset.collate_fn)
optimizer = optim.AdamW(model.parameters(), lr = config.learning_rate)
if config.fp16:
optimizer = FP16_Optimizer(optimizer,
static_loss_scale=config.loss_scale,
dynamic_loss_scale=True,
dynamic_loss_args={
'scale_window': 1000,
'min_scale': 1,
'delayed_shift': 2})
optimizer._model_params_to_master_params()
scheduler= None
if not config.fp16:
train_steps_per_epoch = train_size // config.batch_size
scheduler = get_cosine_schedule_with_warmup(optimizer,
num_warmup_steps=train_steps_per_epoch,
num_training_steps=config.epoch_num * train_steps_per_epoch)
train(model, optimizer, train_loader, scheduler=scheduler)