-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_fp16.py
42 lines (39 loc) · 1.72 KB
/
inference_fp16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "3"
import sys
sys.path.append('XGLM')
from transformers import AutoTokenizer
import torch
from tqdm import tqdm
import logging
import json
from config import Config
import argparse
config = Config()
logging.getLogger().setLevel(logging.INFO)
from model import CodeMixXglm, FP16_Module, CodeMixBloom
parser = argparse.ArgumentParser(description='PyTorch CodeMix Model')
parser.add_argument('--model-type', type=str, default='xglm', help='used model for eval')
parser.add_argument('--load_model_dir', type=str, help='used model struct dir for eval')
parser.add_argument('--load_checkpoint_dir', type=str, help='used checkpoint model dir for eval')
parser.add_argument('--num_beams', type=int, default=3)
parser.add_argument('--top_k', type=int, default=40)
parser.add_argument('--top_p', type=float, default=1.0)
args = parser.parse_args()
config.model_dir = args.load_model_dir
if args.model_type == 'xglm':
model = CodeMixXglm(config)
else:
model = CodeMixBloom(config)
# model.half()
# model = FP16_Module(model)
# model.load_state_dict(torch.load('/home/fengwang/ASR/XGLM/checkpoint/model_3b_2.ckpt'))
# print(model)
model.load_state_dict(torch.load(args.load_checkpoint_dir))
model.to(config.device)
tokenizer = AutoTokenizer.from_pretrained(config.model_dir)
input_ids = torch.tensor([tokenizer.convert_tokens_to_ids(tokenizer.tokenize('<s>'))], dtype=torch.long, device=config.device)
attention_mask = torch.tensor([[1]],dtype=torch.long, device=config.device)
outputs=model.generate(input_ids=input_ids, attention_mask=attention_mask, do_sample=True, num_beams = args.num_beams, top_k=args.top_k, top_p=args.top_p)
outputs=tokenizer.batch_decode(outputs, skip_special_tokens=True)
print(outputs[0])