diff --git a/.gitignore b/.gitignore index feaca95..a41985f 100644 --- a/.gitignore +++ b/.gitignore @@ -1,2 +1,3 @@ .ipynb_checkpoints .vscode +data diff --git a/01. Introduction/.gitignore b/01. Introduction/.gitignore deleted file mode 100644 index 1269488..0000000 --- a/01. Introduction/.gitignore +++ /dev/null @@ -1 +0,0 @@ -data diff --git a/01. Introduction/MNIST_GAN.ipynb b/01. Introduction/MNIST_GAN.ipynb index 9b015bf..2ed8761 100644 --- a/01. Introduction/MNIST_GAN.ipynb +++ b/01. Introduction/MNIST_GAN.ipynb @@ -45,7 +45,7 @@ "transform = transforms.ToTensor()\n", "\n", "# MNIST dataset\n", - "mnist = datasets.MNIST(root='./data/',\n", + "mnist = datasets.MNIST(root='../data/',\n", " train=True,\n", " transform=transform,\n", " download=True,)\n", @@ -295,4 +295,4 @@ }, "nbformat": 4, "nbformat_minor": 1 -} +} \ No newline at end of file diff --git a/02. DCGAN/DCGAN.ipynb b/02. DCGAN/DCGAN.ipynb index 5451e21..0f0b2d2 100644 --- a/02. DCGAN/DCGAN.ipynb +++ b/02. DCGAN/DCGAN.ipynb @@ -71,7 +71,7 @@ "transform = transforms.ToTensor()\n", "\n", "# MNIST dataset\n", - "mnist = datasets.MNIST(root='./data/',\n", + "mnist = datasets.MNIST(root='../data/',\n", " train=True,\n", " transform=transform,\n", " download=True,)\n", diff --git a/03. Conditional GAN/README.md b/03. Conditional GAN/README.md new file mode 100644 index 0000000..db5cd89 --- /dev/null +++ b/03. Conditional GAN/README.md @@ -0,0 +1,25 @@ +# Conditional GAN + +Gan được ứng dụng vào bài toán sinh số viết tay trong 2 bài trước, [GAN](../01.%20Introduction/README.md) và [DCGAN](../02.%20DCGAN/README.md). Kết quả thu được cũng khá khả quan :smile: + +Tuy nhiên có 1 vấn đề nhỏ của ảnh được sinh ra: chúng ta không biết ảnh sinh ra là số gì, chỉ biết rằng đó là số. Vậy làm thế nào để có thể nói cho mô hình biết rằng hãy sinh ra số 1, số 2 đi? Conditional GAN sinh ra để giải quyết vấn đề đó. + +## Kiến trúc cGAN + +Conditional GAN được giới thiệu ngay sau khi GAN được ra mắt ([bài báo](https://arxiv.org/abs/1411.1784)) với ý tưởng khá đơn giản: nối thêm vector label vào input của cả bộ Generator và Discriminator. + +![cGAN](images/cgan.png) + +> Kiến trúc cGAN (ảnh lấy từ bài báo gốc) + +Cúng không có quá nhiều để nói về mô hình này. Bắt tay triển khai thử thôi :muscle: + +## Triển khai và kết quả + +Mình sẽ sử dụng lại gần như [toàn bộ code của bài GAN](../01.%20Introduction/MNIST_GAN.ipynb) với 1 chút thay đổi nhỏ: + +### Bộ Discriminator + +### Bộ Generator + +### Kết quả diff --git a/03. Conditional GAN/cGAN.ipynb b/03. Conditional GAN/cGAN.ipynb new file mode 100644 index 0000000..05689e6 --- /dev/null +++ b/03. Conditional GAN/cGAN.ipynb @@ -0,0 +1,1544 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "accelerator": "GPU", + "colab": { + "name": "Untitled0.ipynb", + "provenance": [], + "collapsed_sections": [], + "include_colab_link": true + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "7852865bf1c347debef9e09770ab1130": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_c4d91d6707e4414784b6bba22c604ec9", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_97799fa5b652408684e659116b875a73", + "IPY_MODEL_1b563eda8ea140e885ed5dd0e7928ab2" + ] + } + }, + "c4d91d6707e4414784b6bba22c604ec9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "97799fa5b652408684e659116b875a73": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_262401a52a6447669dc72856ad1463ff", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 9912422, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 9912422, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_78e03c92e78b44b9998f50cd62ebc4cd" + } + }, + "1b563eda8ea140e885ed5dd0e7928ab2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_4fe1ab86f34f421d912ab3ba7fb6ca9c", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 9913344/? [07:09<00:00, 23087.39it/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_b13b88b0f1b9498881dd2c0f36fc3052" + } + }, + "262401a52a6447669dc72856ad1463ff": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "initial", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "78e03c92e78b44b9998f50cd62ebc4cd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "4fe1ab86f34f421d912ab3ba7fb6ca9c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "b13b88b0f1b9498881dd2c0f36fc3052": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "8f77425bd2d3422aa86a6104f21d57a5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_41888726d40b40a68ae98c174cf7eda0", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_8463317a408e41708e17702ef1f2c8df", + "IPY_MODEL_69284303eb4d43f2be4c17a84f694d68" + ] + } + }, + "41888726d40b40a68ae98c174cf7eda0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "8463317a408e41708e17702ef1f2c8df": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_b8018a87a5144750af0bee0b0262f4f1", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 28881, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 28881, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_1c5d42cc6c334c7687e9f3ae2fdcb61f" + } + }, + "69284303eb4d43f2be4c17a84f694d68": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_77277c0fbfbd42ceb3fcab8934bad29a", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 29696/? [00:01<00:00, 27213.38it/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_f33701338c3f420a985af78bc99e1b26" + } + }, + "b8018a87a5144750af0bee0b0262f4f1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "initial", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "1c5d42cc6c334c7687e9f3ae2fdcb61f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "77277c0fbfbd42ceb3fcab8934bad29a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "f33701338c3f420a985af78bc99e1b26": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "33782ea5d5be4084a9c0d2128fdcd9c9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_1cb4651f7f58413b8b14640e8eab53c3", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_d319ddd23e5b4b7ab0b39732245d9dd8", + "IPY_MODEL_7a33dbd0855b4307becfe2033ac9263e" + ] + } + }, + "1cb4651f7f58413b8b14640e8eab53c3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "d319ddd23e5b4b7ab0b39732245d9dd8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_1c28a2e0529848858db8f5e87c06fdd5", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 1648877, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 1648877, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_842a2820f60d4a9280a0a978ca56a706" + } + }, + "7a33dbd0855b4307becfe2033ac9263e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_d251d2b92134444d853c3bc8309d6288", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 1649664/? [07:06<00:00, 3868.08it/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_4f75b7bf77c841868384d733234fadef" + } + }, + "1c28a2e0529848858db8f5e87c06fdd5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "initial", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "842a2820f60d4a9280a0a978ca56a706": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "d251d2b92134444d853c3bc8309d6288": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "4f75b7bf77c841868384d733234fadef": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "1818af2ea04444378c71ca23130c9bd2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_f2c4924e07a448d0b993b8b924aaa62a", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_2f45f5df3a2b4244877927031aff2b05", + "IPY_MODEL_7388289568f041a2861c1858dfb90abb" + ] + } + }, + "f2c4924e07a448d0b993b8b924aaa62a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "2f45f5df3a2b4244877927031aff2b05": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_e96eb472c67c4f7f8cabef30d30240e3", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 4542, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 4542, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_a0e92cab73db4dc6916c8a048eb83be1" + } + }, + "7388289568f041a2861c1858dfb90abb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_e7c31a095d0b4fe5b762bff439bdcc93", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 5120/? [00:15<00:00, 336.88it/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_f9b833376de04208a2af95dbebb33285" + } + }, + "e96eb472c67c4f7f8cabef30d30240e3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "initial", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "a0e92cab73db4dc6916c8a048eb83be1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "e7c31a095d0b4fe5b762bff439bdcc93": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "f9b833376de04208a2af95dbebb33285": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + } + } + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Xi-TdaMuyRrm" + }, + "source": [ + "import numpy as np\n", + "import random\n", + "\n", + "import torchvision.transforms as transforms\n", + "from torch.utils.data import DataLoader\n", + "from torchvision import datasets\n", + "from torch.autograd import Variable\n", + "\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "import torch\n", + "\n", + "import matplotlib.pyplot as plt" + ], + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "Pl4ugfeGymyZ", + "outputId": "2524499d-ade7-458b-d599-13e569b285ea", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 808, + "referenced_widgets": [ + "7852865bf1c347debef9e09770ab1130", + "c4d91d6707e4414784b6bba22c604ec9", + "97799fa5b652408684e659116b875a73", + "1b563eda8ea140e885ed5dd0e7928ab2", + "262401a52a6447669dc72856ad1463ff", + "78e03c92e78b44b9998f50cd62ebc4cd", + "4fe1ab86f34f421d912ab3ba7fb6ca9c", + "b13b88b0f1b9498881dd2c0f36fc3052", + "8f77425bd2d3422aa86a6104f21d57a5", + "41888726d40b40a68ae98c174cf7eda0", + "8463317a408e41708e17702ef1f2c8df", + "69284303eb4d43f2be4c17a84f694d68", + "b8018a87a5144750af0bee0b0262f4f1", + "1c5d42cc6c334c7687e9f3ae2fdcb61f", + "77277c0fbfbd42ceb3fcab8934bad29a", + "f33701338c3f420a985af78bc99e1b26", + "33782ea5d5be4084a9c0d2128fdcd9c9", + "1cb4651f7f58413b8b14640e8eab53c3", + "d319ddd23e5b4b7ab0b39732245d9dd8", + "7a33dbd0855b4307becfe2033ac9263e", + "1c28a2e0529848858db8f5e87c06fdd5", + "842a2820f60d4a9280a0a978ca56a706", + "d251d2b92134444d853c3bc8309d6288", + "4f75b7bf77c841868384d733234fadef", + "1818af2ea04444378c71ca23130c9bd2", + "f2c4924e07a448d0b993b8b924aaa62a", + "2f45f5df3a2b4244877927031aff2b05", + "7388289568f041a2861c1858dfb90abb", + "e96eb472c67c4f7f8cabef30d30240e3", + "a0e92cab73db4dc6916c8a048eb83be1", + "e7c31a095d0b4fe5b762bff439bdcc93", + "f9b833376de04208a2af95dbebb33285" + ] + } + }, + "source": [ + "# Image processing\n", + "transform = transforms.ToTensor()\n", + "\n", + "# MNIST dataset\n", + "mnist = datasets.MNIST(root='../data/',\n", + " train=True,\n", + " transform=transform,\n", + " download=True,)\n", + "\n", + "# Data loader\n", + "dataloader = DataLoader(dataset=mnist,\n", + " batch_size=32, \n", + " shuffle=True)" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\n", + "Failed to download (trying next):\n", + "HTTP Error 503: Service Unavailable\n", + "\n", + "Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz\n", + "Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz to ../data/MNIST/raw/train-images-idx3-ubyte.gz\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7852865bf1c347debef9e09770ab1130", + "version_minor": 0, + "version_major": 2 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=9912422.0), HTML(value='')))" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "\n", + "Extracting ../data/MNIST/raw/train-images-idx3-ubyte.gz to ../data/MNIST/raw\n", + "\n", + "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz\n", + "Failed to download (trying next):\n", + "HTTP Error 503: Service Unavailable\n", + "\n", + "Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-labels-idx1-ubyte.gz\n", + "Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-labels-idx1-ubyte.gz to ../data/MNIST/raw/train-labels-idx1-ubyte.gz\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8f77425bd2d3422aa86a6104f21d57a5", + "version_minor": 0, + "version_major": 2 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=28881.0), HTML(value='')))" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "\n", + "Extracting ../data/MNIST/raw/train-labels-idx1-ubyte.gz to ../data/MNIST/raw\n", + "\n", + "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz\n", + "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw/t10k-images-idx3-ubyte.gz\n", + "Failed to download (trying next):\n", + "HTTP Error 503: Service Unavailable\n", + "\n", + "Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-images-idx3-ubyte.gz\n", + "Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw/t10k-images-idx3-ubyte.gz\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "33782ea5d5be4084a9c0d2128fdcd9c9", + "version_minor": 0, + "version_major": 2 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=1648877.0), HTML(value='')))" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "\n", + "Extracting ../data/MNIST/raw/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw\n", + "\n", + "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz\n", + "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1818af2ea04444378c71ca23130c9bd2", + "version_minor": 0, + "version_major": 2 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=4542.0), HTML(value='')))" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "\n", + "Extracting ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw\n", + "\n", + "Processing...\n", + "Done!\n" + ], + "name": "stdout" + }, + { + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.7/dist-packages/torchvision/datasets/mnist.py:502: UserWarning: The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:143.)\n", + " return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)\n" + ], + "name": "stderr" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "oXh5tGrQ3W3n" + }, + "source": [ + "img_shape = (1, 28, 28)\n", + "latent_dim = 100\n", + "\n", + "num_classes = 10" + ], + "execution_count": 3, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "eBkFRSMeyuLW" + }, + "source": [ + "class Generator(nn.Module):\n", + " def __init__(self):\n", + " super(Generator, self).__init__()\n", + "\n", + " self.label_emb = nn.Embedding(num_classes, num_classes)\n", + "\n", + " self.model = nn.Sequential(\n", + " nn.Linear(latent_dim + num_classes, 128),\n", + " nn.LeakyReLU(0.2, True),\n", + "\n", + " nn.Linear(128, 256),\n", + " nn.BatchNorm1d(256),\n", + " nn.LeakyReLU(0.2, True),\n", + "\n", + " nn.Linear(256, 512),\n", + " nn.BatchNorm1d(512),\n", + " nn.LeakyReLU(0.2, True),\n", + "\n", + " nn.Linear(512, 1024),\n", + " nn.BatchNorm1d(1024),\n", + " nn.LeakyReLU(0.2, True),\n", + "\n", + " nn.Linear(1024, int(np.prod(img_shape))),\n", + " nn.Tanh()\n", + " )\n", + "\n", + " def forward(self, z, labels):\n", + " z = torch.cat((self.label_emb(labels), z), -1)\n", + "\n", + " img = self.model(z)\n", + " img = img.view(img.size(0), *img_shape)\n", + " return img" + ], + "execution_count": 26, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "xQmBl3JHz_3J" + }, + "source": [ + "class Discriminator(nn.Module):\n", + " def __init__(self):\n", + " super(Discriminator, self).__init__()\n", + "\n", + " self.label_emb = nn.Embedding(num_classes, num_classes)\n", + "\n", + " self.model = nn.Sequential(\n", + " nn.Linear(int(np.prod(img_shape)) + num_classes, 512),\n", + " nn.LeakyReLU(0.2, True),\n", + "\n", + " nn.Linear(512, 256),\n", + " nn.LeakyReLU(0.2, True),\n", + "\n", + " nn.Linear(256, 128),\n", + " nn.LeakyReLU(0.2, True),\n", + "\n", + " nn.Linear(128, 1),\n", + " nn.Sigmoid()\n", + " )\n", + "\n", + " def forward(self, img, labels):\n", + " img_flat = img.view(img.size(0), -1)\n", + " data_in = torch.cat((self.label_emb(labels), img_flat), -1)\n", + " validity = self.model(data_in)\n", + "\n", + " return validity" + ], + "execution_count": 27, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "dCzmMX4Etdbr" + }, + "source": [ + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")" + ], + "execution_count": 28, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "LcrCOUZj0Bwv" + }, + "source": [ + "# Loss function\n", + "adversarial_loss = torch.nn.BCELoss()\n", + "\n", + "# Initialize generator and discriminator\n", + "generator = Generator().to(device)\n", + "discriminator = Discriminator().to(device)\n", + "\n", + "# Optimizers\n", + "optimizer_G = torch.optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))\n", + "optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))\n", + "\n", + "# Epoch\n", + "num_epoch = 20" + ], + "execution_count": 29, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "1Sw2cMFj3nCa" + }, + "source": [ + "d_loss_arr = []\n", + "g_loss_arr = []\n", + "\n", + "for epoch in range(num_epoch):\n", + " for i, (imgs, labels) in enumerate(dataloader):\n", + "\n", + " # Adversarial ground truths\n", + " valid = Variable(torch.FloatTensor(imgs.size(0), 1).fill_(0.9), requires_grad=False).to(device)\n", + " fake = Variable(torch.FloatTensor(imgs.size(0), 1).fill_(0.0), requires_grad=False).to(device)\n", + "\n", + " # Configure input\n", + " real_imgs = Variable(imgs.type(torch.FloatTensor)).to(device)\n", + " labels = labels.to(device)\n", + "\n", + " # Train Generator\n", + " optimizer_G.zero_grad()\n", + "\n", + " # Sample noise as generator input\n", + " z = Variable(torch.FloatTensor(np.random.normal(0, 1, (imgs.shape[0], latent_dim)))).to(device)\n", + " gen_labels = Variable(torch.LongTensor(np.random.randint(0, num_classes, imgs.shape[0]))).to(device)\n", + "\n", + " # Generate a batch of images\n", + " gen_imgs = generator(z, gen_labels)\n", + "\n", + " # Loss measures generator's ability to fool the discriminator\n", + " g_loss = adversarial_loss(discriminator(gen_imgs, gen_labels), valid)\n", + "\n", + " g_loss.backward()\n", + " optimizer_G.step()\n", + "\n", + " # Train Discriminator\n", + " optimizer_D.zero_grad()\n", + "\n", + " # Measure discriminator's ability to classify real from generated samples\n", + " real_loss = adversarial_loss(discriminator(real_imgs, labels), valid)\n", + " fake_loss = adversarial_loss(discriminator(gen_imgs.detach(), gen_labels), fake)\n", + " d_loss = (real_loss + fake_loss) / 2\n", + "\n", + " d_loss.backward()\n", + " optimizer_D.step()\n", + "\n", + " # Save loss\n", + " d_loss_arr.append(d_loss.item())\n", + " g_loss_arr.append(g_loss.item())" + ], + "execution_count": 30, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "ckHzupyoHbPx", + "outputId": "7d98c6e9-df0b-47e8-f7bf-4a6dc6bfb307", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 265 + } + }, + "source": [ + "# Plot loss of Generator and Discriminator\n", + "\n", + "plt.plot(d_loss_arr, label=\"D loss\")\n", + "plt.plot(g_loss_arr, label=\"G loss\")\n", + "\n", + "plt.legend()\n", + "plt.show()" + ], + "execution_count": 31, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3yUVdbA8d9NBxICJKEkgQQIoUOA0EQQUZCi4rq6lrW7sti3ubvvrq+7+m5z1S2WVdldu2tZC4JgwUZVpIceWgJJgBRSSEif+/5xZyCElEmmPDOT8/188kky88zzXIbJmTv3nnuu0lojhBDC/wVZ3QAhhBDuIQFdCCEChAR0IYQIEBLQhRAiQEhAF0KIABFi1YVjY2N1cnKyVZcXQgi/tGnTpkKtdVxT91kW0JOTk9m4caNVlxdCCL+klMpu7j4ZchFCiAAhAV0IIQKEBHQhhAgQlo2hN6W2tpacnByqqqqsboplIiIiSExMJDQ01OqmCCH8jE8F9JycHKKiokhOTkYpZXVzvE5rTVFRETk5OfTv39/q5ggh/IxPDblUVVURExPTIYM5gFKKmJiYDv0JRQjRfj4V0IEOG8wdOvq/XwjRfj4X0IUQPqyuGja/CqdOWN0S0QQJ6I0EBweTlpbG8OHDGT16NE888QQ2m+2c47KyshgxYoQFLRTCIvl74J8XwZJ7YP1zVrdGNMGnJkV9QadOndi6dSsA+fn5XH/99ZSVlfHwww9b3DIhLKI1bPgXfPoghEVCZG/IkVXevkh66C3o2bMnixYt4umnn6alnZ2qqqq49dZbGTlyJGPGjOHLL78EYOfOnUyYMIG0tDRGjRrFvn37qKioYN68eYwePZoRI0bw1ltveeufI0TblefDf74Hy38GyefDnesg9RLI3WQCvfAprfbQlVIRwCog3H78O1rr3zQ6Jhx4BRgHFAHXaK2zXGnYw0t3siuvzJVTnGNYfFd+c9nwNj1mwIAB1NfXk5+fT69evZo85plnnkEpxfbt29mzZw+zZs0iMzOT5557jvvvv5/vf//71NTUUF9fz/Lly4mPj2fZsmUAlJaWuvzvEsIjMj+FD+6CqjKY8xhMuAOUgoRxsPllOHEQYgZa3UrRgDM99GpghtZ6NJAGzFZKTWp0zO1AsdY6Bfgr8Kh7m+nb1qxZww033ADAkCFDSEpKIjMzk8mTJ/OHP/yBRx99lOzsbDp16sTIkSNZsWIFv/jFL1i9ejXR0dEWt16IRmorYdnP4D9XQ2QvWPAVTFxggjlAYrr5nrvJqhaKZrTaQ9dmrKHc/muo/avxZ635wG/tP78DPK2UUtqFHajb2pP2lIMHDxIcHEzPnj3b/Njrr7+eiRMnsmzZMubOncvzzz/PjBkz2Lx5M8uXL+fBBx/koosu4qGHHvJAy4Voh2Pb4d0fQMEemHQ3XPQQhEacfUzcEAjtYsbRR33PmnaKJjk1KaqUCgY2ASnAM1rr9Y0OSQCOAGit65RSpUAMUNjoPAuABQD9+vVzreVeUFBQwMKFC7nnnntazA+fOnUqr7/+OjNmzCAzM5PDhw8zePBgDh48yIABA7jvvvs4fPgwGRkZDBkyhB49enDDDTfQrVs3/vWvf3nxXyREM2w2+OYf8PnD0Kk73PAepFzU9LFBwRA/RnroPsipgK61rgfSlFLdgPeVUiO01jvaejGt9SJgEUB6erpPzqhUVlaSlpZGbW0tISEh3HjjjfzkJz9p8TF33XUXd955JyNHjiQkJISXXnqJ8PBw3n77bV599VVCQ0Pp3bs3v/rVr9iwYQMPPPAAQUFBhIaG8uyzz3rpXyZEM8qOwuKFcPArGDwPLn8KusS0/JiEsSZ1sa4aQsK90kzROtXWURGl1EPAKa314w1u+wT4rdb6a6VUCHAMiGtpyCU9PV033uBi9+7dDB06tE3tCUTyPAiv2b0UltxrAvPsP8LYm8+Mlbdk1wfw9k1wxxdmklR4jVJqk9Y6van7Wp0UVUrF2XvmKKU6ATOBPY0OWwLcbP/5KuALV8bPhRAeVl1uAvlbN0C3JPjhKhh3i3PBHM4E8RwZdvElzgy59AFeto+jBwFva60/VEo9AmzUWi8B/g28qpTaD5wArvVYi4UQrsndBO/eYdIOz/8xTP8VhIS17RxdE8wCIxlH9ynOZLlkAGOauP2hBj9XAVe7t2lCCLcrzoIX5kCXOLh5KfSf2r7zOPLRc2XFqC+RlaJCdCRrnwQ03P5J+4O5Q+I4KNoPlcVuaZpwnQR0ITqKk8dgy2uQdj1EJ7p+Psc4eu5m188l3EICuhAdxddPg60WpvzIPeeLHwMoCeg+RAJ6I8ePH+f6669nwIABjBs3jsmTJ/P++++fc5yUzxV+5dQJ2PACjLgKerhpe8OIaIhNlXF0HyIBvQGtNVdccQXTpk3j4MGDbNq0iTfffJOcnByrmyaEa9Y/D7UVMLXlRXJtlpgulRd9iAT0Br744gvCwsJYuHDh6duSkpK49957W3yclM8VPq36pFnVOeRS6OnmBWsJY6GiAEoOu/e8ol18d4OLj35pCgW5U++RMOdPzd69c+dOxo4d2+bTSvlc4dM2vgBVJe7vnQMkNKi82D3J/ecXbSI99BbcfffdjB49mvHjx7d4nJTPFT6rtgrWPQ0DLvTMEv1ewyEkQhYY+Qjf7aG30JP2lOHDh/Puu++e/v2ZZ56hsLCQ9PQmyya0SsrnCstteRUq8mHqC545f3Ao9BktAd1HSA+9gRkzZlBVVXVWBcRTp061+jhH+Vyg2fK58+fPJyMjg7y8PDp37swNN9zAAw88wObNkvIlPKS+1iwk6jvRbB/nKQnjIG+ruZ6wlAT0BpRSLF68mJUrV9K/f38mTJjAzTffzKOPtrwB01133YXNZmPkyJFcc801Z5XPHTFiBGlpaezYsYObbrqJ7du3n54offjhh3nwwQe99K8THc72/0LpYZj6U+eLbrVHwjioq4T83Z67hnBKm8vnuouUz22ePA/CZbZ6eGaiGd9euNqzAf3EIXgyDS79K6Tf5rnrCMDF8rlCCD+0eykU7TOZLZ4M5gDdk6FzjIyj+wAJ6EIEGq1h9RMQkwLD5nv+eo7Ki1Ib3XI+F9A7+r4YHf3fL9xg/2dwLMPUOg8K9s41E9LNxtLVJ71zPdEknwroERERFBUVddigprWmqKiIiIiI1g8Wojmrn4DovjDqGu9dM2EcoCFvi/eu2R42G3zxeziaYXVLPMKn8tATExPJycmhoKDA6qZYJiIigsREN5Q2FR1T1lo4/DXMeczkiHtLgn2Fde4m6D/Ne9dtq/XPwqo/Q0k2XLnI6ta4nU8F9NDQUPr3d1MlOCE6otVPmN2Ixt7o3et27gE9BkCOD1deLNwHnz8CKNj/uemtB/nUIIXLAutfI0RHlrsZDnwOk++G0E7ev35Cuu/WRq+vg/cXmudl1v/BqUI46uPDQ+0gAV2IQLHmL6ZGefrt1lw/YRyczIOyPGuu35J1T5q67XMfh9HXAQr2fWZ1q9yuYwZ0m83qFgjhXvl7TO75hB9CRFdr2pDYoPKiLzm+C776o0nhHPFd6BJrdlvaLwHd/+VshD8mQNEBq1sihPus+SuEdoaJC1s/1lN6jYCgUN8aR6+vhfd/COFdYd5fziyyGjTT9NhPnbC2fW7WMQN67SnYvcTqlgjhHicOmbot6bdBlxjr2hEaYfYc8KUe+uonTE7+ZX8zPXOHlJmgbXDgC+va5gEdL6CXZJvvmZ9Y2w4h3GXdk2YB0eR7rG6JvfLiFlNLxmp5W2HVYzDyezD0srPvSxgLnboH3LBLBwzo9q2yjqwPuI9bogMqOwpbXoO070PXPla3xoyj15RDYaa17airhsV3QudYmNNEtdSgYBg440z6YoDoeAG9OBui+piPW/s/t7o1wh/50krmr582veEp91vdEsOxK5LV4+hf/Qnyd8HlT5oc+aakzDSbfxwLnFWjrQZ0pVRfpdSXSqldSqmdSqlzXjlKqelKqVKl1Fb7l29uwaO1GXIZcql558782OoWCX9Tmgt/GwVb37C6JeYT5sYXYeRV0MNHFuT1GGhSJ60cR8/ZCGv/Bmk3QOolzR+XcpH5vn+Fd9rlBc700OuAn2qthwGTgLuVUsOaOG611jrN/vWIW1vpLpXFUF1mXvypl5j/yPo6q1sl/EnGm2bTiA9/bP2GDuufg9oKU4TLVwQFQfxYk0FihdpKs4AoKh5m/6HlYyN7mu3zAigfvdWArrU+qrXebP/5JLAbSPB0wzzCMSHaLQkGzYKqUsj51to2Cf+hNWT816TnhUfCf2+Bmta3KPSIqjIT0IdcCj19bDOUxHST+23Fc/PF70wd+PlPmU8KrUmZaWJAZbHn2+YFbRpDV0olA2OA9U3cPVkptU0p9ZFSangzj1+glNqolNpoSQGuYntA755kJkSCQmTYRTjv+A4o2A3jboEr/wkFe+GjB6xpy8YXTIdk6k+suX5LEsaBroej27x73ex18PUzJn1z4AznHjPInr548CuPNs1bnA7oSqlI4F3gR1rrskZ3bwaStNajgaeAxU2dQ2u9SGudrrVOj4uLa2+b2+90D72fWU2XNEXSF4XzMt42nYDhV8LAC81enVteg21vebcdtZUmcA248MwkpC9xtMmb4+g1FbD4LvO3PfP/nH9cQrrpyQfIsItTAV0pFYoJ5q9rrd9rfL/WukxrXW7/eTkQqpSKbXyc5YqzIaLbmY9iqbNNUf7iLEubJfyAzQY73oWUi88s3pn+P9BvshlPL9zvvbZsec1kZ0z7mfeu2RaRPSG6n3fH0Vf8BooPwRX/MMNhzgoOMW+M+z/zreyldnImy0UB/wZ2a63/0swxve3HoZSaYD9vkTsb6hYl2Wa4xcExA575qTXtEf4jey2U5cLIq8/cFhwC3/03hISb8fTaKs+3o6oM1v4d+k40nzB9VeI47/XQD34FG/4JE++E5PPb/vhBM6H8mBlS83PO9NCnADcCMxqkJc5VSi1USjkKR1wF7FBKbQOeBK7VvrjtUHG2mRB1iBlo9l2UcXTRmoy3ICwSBs89+/boBPjOc3B8O3z6a8+24dQJeOVyOHkUZvyv5zd/dkXCOLOIr9zDc2VVZfDBPSZd8qJ2ZkunXGy+7/NS+uKJgx77NOBMlssarbXSWo9qkJa4XGv9nNb6OfsxT2uth2utR2utJ2mt13mkta6w2cwLrGEPHcywS9ZqqC63pl3C99VWwa4lJqMkrPO596deAufdCxv+BTubnD5y3clj8OJckz1yzWvQf6pnruMuCV6qvPjpr80np+881/T/jTOiepsaNN4oA1BzChZdCB//0iOn7zgrRcuPQ3312T10MOmL9TVwaKU17RK+b9+nUF0Ko65u/pgZD5kgtuReUyzLnUoOw4tzzPfvvw2D57j3/J7QZzSoYM+Oo+9bAZtfMW+mfSe4dq6Ui005kKpS97StOTvegaqSc2vLuEnHCeiODJfuyWff3m+yKa0pwy6iOdvfhi49of/05o8JCYOrXgAUvHMr1NW459qF++GFOVBRBDcthgEttMGXhHWGXsM810OvLDZvnnFDYPqvXD9fykyw1cFBD3bstIb1i6DncI/Nf3ScgF7cYFFRQyFhJmc189OAKtIj3KSyxKS2jviumQRtSfckmP+0qTb42W9dv/axHfDibKirgls+dL0X6m0J9olRT/xdffRLKM83Qy2hEa6fr+8E07HzZBmAw9+YuZYJd3hs/qPjBHRHlcVu/c69L3W2meU+5uWFEML37V5ihuRaGm5paNjlMGEBfPMM7Fne/uvmbISX5poNI279CPqMav+5rJKQboYwThx073n3LDMlGKb+1Ow85A7BoebTzz4Ppi9++7xJmR71Pc+cnw4V0LMgsnfT7+aDZgJK0hfFuTLeNhkU8WOdf8ys35kx5MV3QsmRtl/z0Gp4Zb6p133bRxCX2vZz+AJPLDCqKIKlPzKTmNPcvEo35WKzJ6onavSU5ZktAsfcCGFd3H9+u44T0Iuzz81wcegSa+pPyDi6aKg0F7LWmB5VWz4ih4TDVS+asrbv3m62QXNW5qfw+lUQnQi3fnzunI8/iRtsUj3dOTG6/Kdm/PyKZ81wqTs50hc9Meyy0f56GO/ZDbw7TkAvyT53/Lyh1EsgbzOcPO69NgnftuMdQJ+9mMhZMQPNtmdH1sOXv3fuMTvfhzevM4HwluW+sWGFK4KCzZCIu3roO94zz9H0X5geurtFJ5gJS3fno9dVw6YXTUZdjwHuPXcjHSOg19eZ3lZzPXQw4+hgUtSEZ5UdtboFzsn4rxkHjhnYvsePvArG3mw2cG4tx3nLa/DObeZ6Ny+1dm9Qd0oYB8e2m6DmivJ8WPZTM/Q1xYPlggddbCYvq0+675y7PoCKApi4wH3nbEbHCOhlOab6W0s99F4joGsC7JNiXR51bAf8Zajvz1fk7zYZCa5OYM3+E/QcBu/9sPk3svXPwwd3m0m5G99zruyrv0gYZyaVj7mwrF5rM25eU2GyWlrLNnJFysVgq4VDq9x3zm8XmXmYAU5WgHRBxwjoxQ2qLDZHKfOR6MCXrvcmRPMOfA5o2OWhFZXukvG2WRgz/ErXzhPWGa5+CWpPwXt3nL15staw6nH46OdmFep1b3p0wswSiY4Voy6Mo2e8BXuXwYwHzXCUJ/WdZMb93TXskrsZcjaYzKcgz4fbjhHQSxrUQW9J6myzwW32Ws+3qaPKtleFyPzEN3aGb4rNBtv/a0rkRrqhzHPcYJj3hCkxseoxc5vWJlf9i/+DUdfA1S+bydRA0zXe7OHb3nH0sjxY/nMTaCff7d62NSUkzHxSclf1xW//CaFdIO0618/lhI4R0IuzTW+ra2LLx/WfBiERUiPdU2z1kP21SR89VWj9RsLNOfINlB6BkW7MF067HkZfZzYvPvgVLP+Z2fcy/Ta4wsPDCFZLGNe+/2utzWrQ+hpTFjco2P1ta0rKxeb/v2Cva+epKDQll9Ou89owWscI6CXZZga7tT+asM4mqGd+HBC1kX3O8R2mJsq0n9l3i/rI6hY1LeNtCO0MQ+a597xzHzfVPV/7rinkdd59MO8vXvkobqmEcXDigKkW2RabXzE95ZkPt39iuj1Opy+6WKxr88umftT4O1xvk5MC/JVk17hsbktSLzEbXhTu82iTOqQs+1DW4DmQdB7s9cG8/7oaM74/ZF7bNkpwRnikGU/v1MOMB898xLdL4LqLYxw9b7Pzjyk5DJ/8GpKnejUgAtCtr6kR40o+en0dbHgB+l8APYe4r22t6BgBvfHGFi0Z5Nj0wgeDjb/LXmveWKMTTV3xgt3ur0zoqv2fmYUr7hxuaaj3CPhZplnl2BGCOUCfNECZCUJn2Gwm6wcN85+x5hNMysVmvqe9ZbX3LjfZdRM8n6rYUOAH9NpKUzq3W7Jzx3fra1IYZRzdvWw28wfi2FHGkffva2+c29+GzjFmQtRTOkogd4joanq8zo6jb/y3SRuc9TvnO2LuNmimGbvPWt2+x3+7CKL7er3UceAHdEdRrra8MAbNgsNfm0p7wj0K9kDliTNlQ3v0N3/ke31oHL2qzLRn+JWmWJNwH0flxdbmpooOwIqHYOBFMO4WrzStSf0mm+yU9oyjH99l3gjG3+69iVy7wA/ozZXNbUnqbLMQ6cDnnmlTR+RIBU0678xtqbPN7Z7eVMBZu5eaUrUerIbXYSWOM5lNjhTiptjqzVBLUChc/pS1n2RCwk2CxL4VbU+Q+HaRyZYbe7Nn2taCwA/ozuagN5SYbiauZNjFfbLXmpW4DYtNDZ5rNhXwxtZfztj+tmlf4nirWxJ4nKm8+M2z5pPxnD+ZrDSrDbrYxI+i/c4/prLELIQacRV07uG5tjWjYwT0kAiI7OX8Y4KCzbDLvhW+u/jFn2htMlySppzd60pMN+PVvpDtcvKYGbcd2cbKisI5PYdBSCfIaSagF2TC549A6hyTr+8LUmaa721ZNbr1dbMqeIKXM3PsAj+gF2ebJf9t/SNNnWXGfH118Ys/KdoPFflnD7eA/Y3zElMQrb7OmrY57HgXtE2GWzwlONTUiG+qh15fB4sXmnUgl/3dd95QuydBbKrznyBtNrMytO9EiE/zbNuaEfgBvbWyuc0ZeJFZXeprWRj+yDF+7shwaWjwHLNp7pFvvNumxjLeNul1sYOsbUcgSxgHR7eeWx9+7d9MoJ/7OES14ZO0N6RcbGri15xq/dgDn0PxIa+nKjYU+AHd0UNvq07dTI9SxtFdl7XWbLIck3LufQNnQHCYtdkuBZkm0Ejv3LMSx5lJ5/xdZ247tsOUQxg23+zb6mtSLjarPbPWtH7s+ufN0O7Qyz3frmYEdkCvKjW9v/bmsqZeAvk727eNmDC0Nj305ClNf5QOjzSrAa0M6NvfBhXkmwElkDgmRh3DmHU1ZqglItqUQPCVoZaGkqaYMhCtDbsUHTArS9Nvc/9OSm0Q2AG9PSmLDTlWjUqN9PYrzoKy3DP5500ZPMfU+rCi3ILWprJi/2kQ1dv71+9IuiVB59gzK0ZXP242v7js72YbSF8UGmE6HK2VAdjwL1OfyMrceQI9oLcnZbGh2EHQvb8Mu7jCUS63pYDuWDVqRS89Z4N50xl1jfev3dEoZV9gtBHytpha8KOugaGXWt2ylqVcDCcOml54U6rLYcvrMOwKyzsFrQZ0pVRfpdSXSqldSqmdSqn7mzhGKaWeVErtV0plKKXasEW6B7naQ1fKBJtDq5ybFPGWgkz/qQaZvdbk9Me1UKCoW1/oNdKagJ7xtklrHeLjQSVQJKabsrTv3gGRPWHOo1a3qHWDWqm+mPGWqSJq4WSogzM99Drgp1rrYcAk4G6l1LBGx8wBBtm/FgDPurWV7VWSDeFdoVP39p8jdZaZyHHnllSu2LcCnhkPi+9s227yVslaYyaXWyuwNHi2yXRpa4lVV9TXws73zJBPRFfvXbcjSxgLaCjaZ1aDuvK36S09Bpgt5JoK6FqbVMU+o6HvBO+3rZFWA7rW+qjWerP955PAbqDxMq75wCva+AboppSyfstyR9lcVyZbkqaYLal8JX1xx3tmafS2N+CN68w+i76qNMe8qbY03OIweI7JA3f3justOfAlnCryXGVFca6EcRAcDmNuNAWw/MWgmXBoNdRWnX171mpTNXTCAp+Y1G3TGLpSKhkYA6xvdFcC0DAVJIdzgz5KqQVKqY1KqY0FBQVta2l7tKVsbnNCwk3lvcxPrB/mqK81ZTlHXm0mkg58Di9fBhVF1rarOY7x82QnAnqfMSbla+9yz7apoYy3TA/RsaGB8LxO3eHub+DSv1ndkrZJuRjqKiG7Ufrit4vMkKKPZEg5HdCVUpHAu8CPtNZl7bmY1nqR1jpda50eF+eGvRpbvpiptNje8fOGUmfDyTwzI2+lrNUmDXPoZWY2/ZrX4PhOeGHWmfkCX5K1BsKjTTni1gQFmTTR/Z+bdDZPqy43bx7DrrA0zaxD6jHA/7bcSz7fzLXsazDsUnIE9iyDsTdBaCfr2taAUwFdKRWKCeava63fa+KQXKBvg98T7bdZp6LA1FRwRz3l0zUdLM522bXElPR01OoeMg9uXGz+rf+eZRZp+JLstdBvkvMlRAfPhZqT3tmke88y8/qQ7BbhjNBOJqg3HEff+IL5Pv52a9rUBGeyXBTwb2C31vovzRy2BLjJnu0yCSjVWh91YzvbztUMl4aiekH8WGvTF231Jgilzjq7N5A0GW77xATNF+eYcT5fcPK4qeHizHCLQ/8LTC/IG9ku29+G6H6m7oYQzkiZaSZzi7PMWPrml00npD0r0T3EmR76FOBGYIZSaqv9a65SaqFSaqH9mOXAQWA/8E/gLs80tw1czUFvLHW2WeFWUeie87XVkW9Ngauhl517X8+hcPunENUHXrsSdi72fvsaO13/vIn6Lc0J6wwDppvNoz05X1FeYCZER14V+Bs0C/dxzLXsW2Gyo04V+USqYkOtDmRprdcALU7faq01cLe7GuUWjoDurnfP1Evgqz+Y/8w0C8p77l5isgMGzWr6/uhEuO1j+M818N9boOIxy0p4Aiagh3Yx6VxtMXiOySjK3w29GmfHusnO98wGJlK7RbRFzEBTL3//Z6bcctwQs8LYhwRu96Q4G7rEQVgX95yvz2iI7G1N+qLWZjedgTMgPKr54zr3gJs+MJ8mlv8MvviddZk5WWuh38S2T36dXjXqwWyXjLfMQqaeQz13DRF4lDLDLvtWmGJuE+7wiVTFhgI3oJe0s8pic5Qy49cHvvBOFkZDeVug9EjTwy2NhXU22S9jboRVj8HS+7xfa7yiyOTmOpN/3lhUb4gf47k3zrwtplTrqKs9c34R2AbNNJ/uwrvCqGutbs05AjegF7ezDnpLUmdDdZnZJsubdi81tdmd3UE8OMSswpv2AGx+Bd6+0bulCw478s/bMH7eUOocM19Rnu++NoHJ419yr8l3t2C/RxEAks83wXzsTaZSqI8JzIBuqzerFN01IerQ/wIzjr3vU/eetyVam/Hz/lPbtkehUjDjQbNpwN6P4NUrvLesPmutyVaJH9O+xw+eA2j3ZxWte8qsJZj7uKl3L0RbhXWBezbAxb+1uiVNCsyAXpYHtlr399DDI807tDfH0Qv2mPQ/Z4ZbmjLhDrj6JTPU8OIc80bnadlrzUbLIeHte3zvkdA10b3Pc9EBs5HC0MtgmHUbEIgAENXbbKnngwIzoLs7ZbGh1NkmwBbsdf+5m7J7KaBcqwY4/Aq44V3zRvfvWSaDxFMqS0wvuL3DLWCfr7jEzFc0rp3RHjYbLLnPfGqY+7jr5xPCRwVmQHfnoqLGhs03xbE2/Mv9527K7iVm8YurdZb7T4Nbl4OtDl6Y3XxtZ1cd/gbQ7ZsQbWjwXLOS0x1VLje/bGpwzPo/y+tVC+FJgRnQS7IBBdF9Wz20zaJ6mQUpW143vVFPOnHI9HbbO9zSWO+RZlVpfQ2s9FAd6uw1Zo/QxHTXzpN8vsljz3Rx1WhZHqx4yOw6M/Ym184lhI8LzIBenA1dEzxXdGnSXVBbYXp+nrR7qfnuroAO0KM/jP+B2XbNE1u+Za8zJYUN6/MAAB5+SURBVFJdLVYUGmFq1uz9uP259FrDsp+ZN7DL/u5zOcNCuFtgBnR3lM1tSZ9Rpse3fpFnc7x3LzELmtz9bznPPp686jH3nrf6JORtdX24xWHwXFPl8ui29j1+1wewdxlc+Cuzyk+IABeYAd0TOeiNTboTynJM0PWEsjyz3+VQD2RkRMZ5ppd+ZL1ZdJF0nnvON2gWoNqX7XLqBCx/wLwhTvKtqhRCeErgBfS6ajh51LM9dDDZLt37wzce2m1vzzLz3RMBHTzTS89aaxZAuauCYWScSX9sT/XFT//XFE+6/Gn/q70tRDsFXkAvzQG053voQcEwcSHkfGtWNbrbrg8gdjDEpbr/3OCZXnr2OrOYyJ0r6AbPNnUzyvKcf8yBL2HrazDlPjM8JkQHEXgBvTjLfPd0Dx1gzPfNMuBv/uHe81YUmcU5nl4A485ees0pUyOlLfXPnTF4rvnu7LBLzSn48EdmU98LfuHetgjh4wIvoLu7bG5LwqNMKtzOxe5dgbl3mdkw2Z3ZLU1xZy89Z4NZneuuCVGHuCHm09ZeJwP6l783b+qXP+kz24IJ4S2BF9CLs83Cn6g+3rnehAWANpvFusvupeYNqbcXhgum3G966Sv/7Np5steBCjJbzrmTUqa2y8GvoKai5WNzN5lPS+NucW2lqhB+KvACekk2dOvr/D6WruqeZHrSm15qPeA4o6rUBK+hl3snb7pLrKn3suMdKMhs/3my15qFSxHR7mubw+A5UF9tnpfm1Nea5f1desLMR9zfBiH8QOAFdG+kLDY26S4TiLf+x/VzZX5qFsJ4KrulKa6OpddVmyGXtmw31xb9zjNzFS1lu6z9OxzfAfOe8MybihB+IPACuqcXFTWl70SzifT650whKFfsXmJ2Rkoc7562OcPVXnruJqircl/+eWMhYZBykSmn29TzW7jPDBkNmw9DXShiJoSfC6yAXl1uco+93UNXCibfbaow7l/R/vPUnDL7FQ691PubF7vSSz+9IbSHAjqYTS8q8iFv89m322xm04rQTjDHzStfhfAzgRXQPVk2tzXD5kNUvGspjAc+NxUGPZ3d0hRXeulZa6Hn8LZtwNFWg2aaRUuNh102vWh2kLrk96ZwmhAdWGAF9NNlc5O9f+3gUBMQD34Fx3e27xy7l0Kn7p4bi27NefdBSCdY1YaMl/paOPKtZ3vnYN4s+k06O6CX5sKK35idpNK+79nrC+EHAiugW9lDB5MuF9Kpfb30uhqTaz14nnVL1R299O1t6KXnbTWVJ929oKgpqbMhfyeUHLZXUvypqe8ulRSFAAItoBdnmxranWOsuX7nHpB2HWT8F8oL2vbYQ6ugutSa4ZaGzrsXQjs730s/PX7uhYDuWDW692PY+Z6plT7j16YksBAiwAK6I8PFyt7axDtNzvTGF9r2uN0fQFgUDJjuiVY5r6299Oy1EJsKkT0937bYFIhJgYy34KNfmLoxE+/0/HWF8BOBFdCtyEFvLC4VUmaaLerqqp17jK3eVFdMnWU2drCas710W73Zcs7T4+cNpc6G3I1QWQyXPyWVFIVooNWArpR6QSmVr5Ta0cz905VSpUqprfavh9zfTCdobU0OelMm32VS7Ha869zxh7826ZbeXEzUEmd76ce2Q3WZdydxHZtlT7nfrEwVQpzmTA/9JWB2K8es1lqn2b+sWXddWQw15db30AEGXAhxQ+Hrfzi3fdquJSYHPOViz7fNWc700r2Rf95Y0mS49WOY/ivvXVMIP9FqQNdarwJOeKEtrnGUzfVGlcXWKGV2NDq+HbLWtHyszWbSFQde5N464q5yppeetRa6J0N0glebRtJkGWoRognuGkOfrJTappT6SCk1vLmDlFILlFIblVIbCwramAXSGqtTFhsb9T2TbdNaCmPeZrNvpqdrn7fHefeZXvrKR8+9z2aDw+usy5kXQpzDHQF9M5CktR4NPAUsbu5ArfUirXW61jo9Li7ODZdu4PSiIh8J6KGdIP02sxCm6EDzx+1eAkEhkHqJ99rmrC4xMHGBmQso2Hv2fQW7zTCXN/LPhRBOcTmga63LtNbl9p+XA6FKqViXW9ZWJdlmlWVEV69fulnjf2CC9frnm75fazPc0n+aabsvmmwfS29cLz3Li/nnQginuBzQlVK9lTKJ30qpCfZzFrl63jbzhZTFxqJ6w4jvwpbXoLLk3PuP74QTB30nu6UpzfXSs9dA10TfmLMQQgDOpS2+AXwNDFZK5SilbldKLVRKLbQfchWwQym1DXgSuFZrZ1I73MxXUhYbm3yXWRq/5dVz79u9FFAwZJ7Xm9UmjXvpWpsdipKnyJJ7IXxIq6kCWuvrWrn/aeBpt7WoPWw2U9/DsTTcl/QZbSYO1z9vVjU2zM7YvcSk/HljlaUrHL30NX+DC34OKKgokOEWIXxMYKwULT9mdvnxxR46mBTG0iOw58MztxXuh/xd1tducdbkeyGsi+mlZ9tTMWXfTiF8SmAEdCvL5jpj8ByTr90whXHPUvN9iJ/ssNMlxmyIveNd2PwqRPaCHgOsbpUQooHACOi+loPeWFAwTFwIR9ZDziZz264lZtu6bn2tbVtbTL7H9NLzNpvhFhk/F8KnBEZAd/TQo304OI65wWx0/M0/oOSICYr+Mtzi4Oilg+SfC+GDAmP9dEk2RPXxjUqFzQmPgrE3mY2ku/Yxt/lyumJzptwH1Sdh2HesbokQopHA6aH7Wg56UyYsAG2DdU9Bz2Gmvre/6dQd5j1ueutCCJ8SGAG9JNs/Frh0TzozCepvwy1CCJ/n/wG9vhbKcn13QrSx838MXRNg5PesbokQIsD4/xh6aY4ZxvCHIReAhLHwk11Wt0IIEYD8v4fu6ymLQgjhJf4f0H2tbK4QQljE/wN6STaoYDMuLYQQHZj/B/TibIhOlC3JhBAdnv8HdF8tmyuEEF7m/wHdXxYVCSGEh/l3QK85BRX50kMXQgj8PaCXHDbffbVsrhBCeJGfB3TJQRdCCAf/DuiSgy6EEKf5d0AvyYaQCN/fk1MIIbzAvwN6cZapsig75wghhJ8H9JLDMtwihBB2fh7QZVGREEI4+G9AryyBqlLpoQshhJ3/BnRJWRRCiLP4b0CXlEUhhDhLqwFdKfWCUipfKbWjmfuVUupJpdR+pVSGUmqs+5vZBOmhCyHEWZzpob8EzG7h/jnAIPvXAuBZ15vlhOJsCI82u9ALIYRoPaBrrVcBJ1o4ZD7wija+Aboppfq4q4HNKsmG7v08fhkhhPAX7hhDTwCONPg9x37bOZRSC5RSG5VSGwsKCly7qpTNFUKIs3h1UlRrvUhrna61To+Li3PlRGZRUfdkt7VNCCH8nTsCei7Qt8HvifbbPKc8H+oqpYcuhBANuCOgLwFusme7TAJKtdZH3XDe5kmGixBCnKPVnZWVUm8A04FYpVQO8BsgFEBr/RywHJgL7AdOAbd6qrGnnc5Bl0lRIYRwaDWga62va+V+DdztthY5oyTLfJeALoQQp/nnStHibOgSB2FdrG6JEEL4DP8M6FI2VwghzuGnAV3K5gohRGP+F9Bt9VCaIz10IYRoxP8Celku2Oqkhy6EEI34X0CXsrlCCNEk/wvop4rQwWHSQxdCiEb8LqB/02kql0e/w4mwJut/CSFEh+V3AT26Uyh7jlfw26W7rG6KEEL4FL8L6EP7dOXeGYNYsi2Pj3ccs7o5QgjhM/wuoAPcOX0gw/p05cHFOyiuqLG6OUII4RP8MqCHBgfx+NWjKTlVw2+X7rS6OUII4RP8MqADDIs3Qy8fbM3jk50y9CKEEH4b0AHuutAMvfz6/R2UnJKhFyFEx+bXAT00OIjHrh5FyakaHpasFyFEB+fXAR1geHw0d1+Ywvtbclmx67jVzRFCCMv4fUAHuPvCFIb26cqv3t8uQy9CiA4rIAJ6WEgQj189iuKKGh6RoRchRAcVEAEdzNDLXRem8N6WXD6ToRchRAcUMAEd4J4LUxjSO4pfvb+d0lO1VjdHCCG8KqACuhl6GU1RRQ0PfygLjoQQHUtABXSAEQnR3D19IO9tzuXz3TL0IoToOAIuoAPcM2OQDL0IITqcgAzoYSFBPHbVaArLa3jkQ/dlvRwoKOfu/2xm2EMf88flu6msqXfbuYUQwlUBGdABRiZGc+cFA3l3cw5f7HFt6CW3pJJfvJPBrL+u4ss9+Uzs34PnVx1k1t9WsjKzwE0tFkII1yittSUXTk9P1xs3bvToNarr6rn8qbWUVNbw6Y8vILpTaJseX1hezTNf7uf1bw4DcMOkJO66cCCxkeGsP1jE/7y/nYMFFcxPi+d/Lx1GbGS4J/4ZQghxmlJqk9Y6van7nOqhK6VmK6X2KqX2K6V+2cT9tyilCpRSW+1fP3C10e4QHhLMY1ePorC8ht+1YeiltLKWJz7dy7Q/f8nL67L4zpgEvnxgOg9ddiZoTxwQw0f3T+X+iwaxfPtRLnpiJW9vPIJVb5BtYbP5fhs9oby6jq1HSli6LY+8kkqrmyOE27XaQ1dKBQOZwEwgB9gAXKe13tXgmFuAdK31Pc5e2Bs9dIfHPtnDM18e4MVbx3Ph4J7NHldZU89L67J4buUBSitrmTeqDz+ZmcrAuMgWz78//yT/8952NmQVM2lAD/7wnZEMaOUx3lZcUcNHO46xZFsuG7KKGdwriqmDYjl/UCzjk3sQERpsdRPdpqK6jn355WQeP8l++/d9x8vJbRTEJ/TvwRVpCcwd2ZtuncMsaq0QbdNSD92ZgD4Z+K3W+hL77/8DoLX+Y4NjbsGHA3p1XT2XPrmGk1V1fPLjaecMvdTU2Xhrw2Ge/GI/BSeruXBwHD+dNZgRCdFOX8Nm07y18Qh/WL6b6job916Ywg8vGEhYiHXTFOXVdXy26zhLtuWxKrOAOpumf2wXLkiNY8+xMjZlF1NbrwkPCWJ8cg/OHxTL+SmxDOvTlaAgZVm7nVVRXXcmYDcTuMNCghgYF0lqr0hSe0WR0jOS3l0jWJlZwOKtuRwsqCA0WDF9cE+uSEvgoqE9A+rNTQQeVwP6VcBsrfUP7L/fCExsGLztAf2PQAGmN/9jrfWRJs61AFgA0K9fv3HZ2dnt+ge1x7YjJVz57Dq+OzaBP181GoB6m+aDrbn89bNMjpyoZEJyDx6YPZjxyT3afZ38sioe/nAXyzKOMqhnJH/67kjGJbX/fG1VVVvPV3sLWLotj8/3HKeq1kaf6AguGx3P5aPjGR7fFaVMsD5VU8f6QydYnVnImv0FZB4vByCmSxhTUkzvfeqgWPpEd/Ja+1tSXVfPpzuP88HWPHYfLTs7cAcHMSCuC6m9okjtFcmgXlEM6hlJvx6dCQlu+k1Va82O3DIWb81l6bY88k9WExkewuwRvbkiLYHJA2MI9oM3NtGxeCOgxwDlWutqpdQPgWu01jNaOq83e+gOf/54D//4ygy9VNfaeOLTvezLL2d4fFceuGQwF6TGnQ52rvpiz3H+d/FOcksquWFSP34+ewhdI9o2Keusunobaw8UsWRrHp/uPMbJ6jpiuoQxd2QfLhsdT3pSd6d63MfLqlizr5A1+wtZva+QwvJqAAbGdWHqoDjOT4ll0sAYIsNDPPLvaM7+/HLe/PYw727OofhULfHREYxL7kFqTxO4U3u1HLidUW/TfHOwiMVbcvl4h3kO46LCuWxUPFeMiWdkQrTbXhtCuMLjQy6Njg8GTmitWxyvsCKgO4ZeDhZWUG/TDIjrwk9nDmbOiN4eGWKoqK7jLysyeXHtIWIjw3n48uHMHtHbLYHBZtNszC5m6bY8lm8/SlFFDVHhIcwa3pvL0+KZMjDGpQCntWbPsZOs2VfI6v2FfHuoiKpaGyFBijH9ujF1UBxTB8UyKrGbR3qxVbX1LN9+lDe/PcK3WScICVLMHNaLayf0Y2pKrEeHhKpq6/liTz6Lt+Ty1d4CauptDIjrwvzRCVwxJp6kmC4eu7YQrXE1oIdghlEuAnIxk6LXa613Njimj9b6qP3n7wC/0FpPaum8VgR0gB25pTyydBdXjUvkyrEJLgU9Z23PKeWX72WwM6+Mi4f24pH5w4nv1ol6m6aqtt581dmoqq2nutZGVV39mZ9r6+2/26i2H3e8rIpPdhwjr7SK8JAgLh7ai8tGxzN9cJzHxn+rauvZnF3M6v2FrN5XwM68MrSGrhEhp4dnpg2Ko2+Pzi5dZ8+xMt789gjvbc6hrKqO5JjOXDuhH98dm0hclPfTQktP1bJ8x1EWb8ll/aETAKT17cZlo+OZN7IPvaMjvN4m0bG5FNDtJ5gL/A0IBl7QWv9eKfUIsFFrvUQp9UfgcqAOOAHcqbXe09I5rQroVqmrt/Hi2iz+siKTmnobQQpq69uXPhgSpJg6KJbL0+KZOay314dAAE5U1LDWHtxX7yvkaGkVAMkxne1j73FMHhjj1DBTRXUdH2bk8ca3R9h6pISw4CBmj+jNtRP6MnlAjM8MdeSVVLJ0Wx6L7WP4AOOTu3PpqHjmjOhNz66eC+71Ns22nBJW7i1g8+FiJg2I4YaJSUR39swwnr+oq7dRUV1PeU0d5VV1lFfbv6rqqKiu46Tj55o6TtpvO1VTz5SUGK4d349OYf43Ae5yQPeEjhbQHY6cOMUb3x5GAxEhwUSEBhERGkx4iPkeERpEeGhwM/fZ7w8J9qnJOq01BwoqWL2vgDX7Cvn6YBGnauoJDlKk9e3GVPvk6ujEbmd9ItqeU8obGw6zZGse5dV1pPSM5LoJ/bhyTALdu/h2GuGBgnKWZRxlWcZR9h4/iVIwsX8P5tmDuzsWmeWXVbEys4CVmeZNs7SyliAFybFdOFhQQeewYK4d34/bp/YnoZtvTFw7y2bTp4Pwyao6yqtrKas6+/eT9p8b/15efSY4V9Y6V34jPCSIqIgQuoSHEKQUhwor6NEljNvP788Nk5LavOjQShLQhVfV1NnYcriY1fbx94ycErSGqPAQJg+MYXh8NCt2H2NHbhkRoUHMGxnPdRP6Mi6pu8/0xtsi8/hJPsw4yocZeRwsqCBIwXkDY5k3qg+zh/d2+s2ptt7GpuxiVmYW8NXegtOfAuKiwrkgNY4LUs3EdPcuYew+WsY/Vx1kybY8NHDZqD4smDaQYfFdPfgvbZ+aOhvbc0vZmHWCDVnFbD1STFFFDa2FHqUgMjyErhGhRIaHEBkRQlRECJHhZ753CT/zu+Nnx7GOn7uEhxDaaGh1Q9YJ/vHlfr7cW0BUeAg3Tk7itvP7+8VqbwnowlIlp2pYd6CI1fsKWJVZSG5JJUP7dOW6CX2Zn5bgV72jljgmkpfZg3tW0SmCgxRTUmK5dFQfLhnW+5whkpziU6YXvreAdQeKKK+uIyRIMS6pOxcMNkF8WJ+uzb7R5ZVU8sKaQ7zx7WEqauqZOiiWH04byJQU64aqSitr2Xy4+HQA33akhOo6GwADYrswNqk78d060fV0cA49HayjGvzeOTTY4+shduSW8uzKAyzffpSw4CCum9CPO6YN8OlPPBLQhc/QWlNyqpZunUP9sjfuLK01O/PKTvfcc4orCQ1WTB0Ux4whPTlUWMHKzAL255vc/4RunU4H8PMGxhDVxhTX0spaXl+fzYtrsyg4Wc3w+K4smDaAeSP7eHziP6+kkg1ZJ9iYVcyGrBPsPX4Src1cz/CEaMYndSc9uQfjkrpbMrHtjAMF5Ty/8gDvbc4F4DtjElg4fWCrq8StIAFdCAtprcnIKeXDjDyWZRwlr7SKsJAgJvbvwQWpcUwfHMfAuEi3vMFV19WzeEsui1Yd5EBBBYndO3H7+f25ZnxfOoe5NnnueDPOLalky5ESNtqDuGOBV5ewYMYmdWd8cg/Sk7uT1reby9f0ttySSv656iBvbjhMdZ2NuSP6cOf0gW1aNe5pEtCF8BE2m+ZgYTkJ3Tp7NMPCZtN8viefRasOsCGrmOhOodw0OYmbz0tucpzYZtOcOFXDsdIqjpZWcay00v69irzSytO3O4ZOAHpGhZ8O3uOTezCkd5RX0oC9obC8mhfXHuKVddmcrK5j+uA47r4wxaVV5O4iAV2IDmxT9gmeX3mQFbuPExocxJVjEojuHMrREhOwj5ZVcry0mpp621mPCwlS9OoaQZ/oCHpHO753ok90BCPio+nbo1NAD5uBGcp67Zts/r3mECcqapiQ3IO7Lhzo1lXlbSUBXQjBgYJy/rX6EO9uzgEwAbrr2YH6TOCOILZLuF8UafOGypp63txwmEWrDnK0tIrYyHDOT4nhvBRT0C7ei5OoEtCFEKfV1psSDoHeu/aEmjoby7bn8eWeAtYdKKSwvAYw2TtTUmKZkhLD5AGxHl3wJQFdCCHcTGvN3uOm3tHa/YWsP3SCUzX1BCkYmRBtD/CxjEvq7taSHBLQhRDCw2rqbGzLKTkd4LceKaHOdma/gSn24Zlh8V1dWuktAV0IIbysvLqObw8VsWZfEesOFLLn2EkAojuFcs+FKdwxbUC7zttSQPevJFEhhPATkeEhzBjSixlDegGQf7KKrw8UsXZ/Ib08VKVTAroQQnhBz6gI5qclMD8twWPXCIxVAEIIISSgCyFEoJCALoQQAUICuhBCBAgJ6EIIESAkoAshRICQgC6EEAFCAroQQgQIy5b+K6UKgOx2PjwWKHRjc9zN19sHvt9GaZ9rpH2u8eX2JWmt45q6w7KA7gql1Mbmahn4Al9vH/h+G6V9rpH2ucbX29ccGXIRQogAIQFdCCEChL8G9EVWN6AVvt4+8P02SvtcI+1zja+3r0l+OYYuhBDiXP7aQxdCCNGIBHQhhAgQPh3QlVKzlVJ7lVL7lVK/bOL+cKXUW/b71yulkr3Ytr5KqS+VUruUUjuVUvc3ccx0pVSpUmqr/eshb7XPfv0spdR2+7XP2e9PGU/an78MpdRYL7ZtcIPnZatSqkwp9aNGx3j9+VNKvaCUyldK7WhwWw+l1Aql1D779+7NPPZm+zH7lFI3e7F9jyml9tj/D99XSnVr5rEtvh482L7fKqVyG/w/zm3msS3+vXuwfW81aFuWUmprM4/1+PPnMq21T34BwcABYAAQBmwDhjU65i7gOfvP1wJvebF9fYCx9p+jgMwm2jcd+NDC5zALiG3h/rnAR4ACJgHrLfy/PoZZMGHp8wdMA8YCOxrc9mfgl/affwk82sTjegAH7d+723/u7qX2zQJC7D8/2lT7nHk9eLB9vwV+5sRroMW/d0+1r9H9TwAPWfX8ufrlyz30CcB+rfVBrXUN8CYwv9Ex84GX7T+/A1yklGr/dtptoLU+qrXebP/5JLAb8NzeUp4xH3hFG98A3ZRSfSxox0XAAa11e1cOu43WehVwotHNDV9nLwNXNPHQS4AVWusTWutiYAUw2xvt01p/qrWus//6DZDo7us6q5nnzxnO/L27rKX22WPH94A33H1db/HlgJ4AHGnwew7nBszTx9hf0KVAjFda14B9qGcMsL6JuycrpbYppT5SSg33asNAA58qpTYppRY0cb8zz7E3XEvzf0RWPn8OvbTWR+0/HwN6NXGMrzyXt2E+dTWltdeDJ91jHxJ6oZkhK194/qYCx7XW+5q538rnzym+HND9glIqEngX+JHWuqzR3ZsxwwijgaeAxV5u3vla67HAHOBupdQ0L1+/VUqpMOBy4L9N3G3183cObT57+2Sur1Lq10Ad8Hozh1j1engWGAikAUcxwxq+6Dpa7p37/N+TLwf0XKBvg98T7bc1eYxSKgSIBoq80jpzzVBMMH9da/1e4/u11mVa63L7z8uBUKVUrLfap7XOtX/PB97HfKxtyJnn2NPmAJu11scb32H189fAccdQlP17fhPHWPpcKqVuAS4Fvm9/0zmHE68Hj9BaH9da12utbcA/m7mu1c9fCHAl8FZzx1j1/LWFLwf0DcAgpVR/ey/uWmBJo2OWAI5sgquAL5p7Mbubfbzt38BurfVfmjmmt2NMXyk1AfN8e+UNRynVRSkV5fgZM3G2o9FhS4Cb7Nkuk4DSBkML3tJsr8jK56+Rhq+zm4EPmjjmE2CWUqq7fUhhlv02j1NKzQZ+DlyutT7VzDHOvB481b6G8zLfaea6zvy9e9LFwB6tdU5Td1r5/LWJ1bOyLX1hsjAyMbPfv7bf9gjmhQsQgfmovh/4Fhjgxbadj/nonQFstX/NBRYCC+3H3APsxMzYfwOc58X2DbBfd5u9DY7nr2H7FPCM/fndDqR7+f+3CyZARze4zdLnD/PmchSoxYzj3o6Zl/kc2Ad8BvSwH5sO/KvBY2+zvxb3A7d6sX37MePPjtehI/MrHlje0uvBS+171f76ysAE6T6N22f//Zy/d2+0z377S47XXYNjvf78ufolS/+FECJA+PKQixBCiDaQgC6EEAFCAroQQgQICehCCBEgJKALIUSAkIAuhBABQgK6EEIEiP8HJkBNlRniTkUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "8Ug-B9L04Omb" + }, + "source": [ + "# Generate image from Generator block\n", + "\n", + "z = Variable(torch.FloatTensor(np.random.normal(0, 1, (50, latent_dim)))).to(device)\n", + "labels = Variable(torch.LongTensor([i for i in range(10)] * 5)).to(device)\n", + "\n", + "# Generate a batch of images\n", + "gen_imgs = generator(z, labels).detach().cpu().numpy()" + ], + "execution_count": 32, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "tZ-teg2rHbPy", + "outputId": "a29ad1e7-92a9-4174-fc29-ba38d543bb02", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 303 + } + }, + "source": [ + "# Plot the result\n", + "\n", + "plt.figure(figsize=(5,5))\n", + "\n", + "for i in range(50):\n", + " plt.subplot(10, 5, i + 1)\n", + " plt.axis(\"off\")\n", + " plt.imshow(gen_imgs[i][0], aspect='auto', cmap='gray')\n", + "\n", + "plt.subplots_adjust(hspace=0, wspace=0)\n", + "plt.show()" + ], + "execution_count": 33, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASUAAAEeCAYAAADM2gMZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eZBeZZk2fp3znvPua7+970vSCdkTSAySsMsmiMENYaa0nIxbCSNawtSUZVE1My6gRelQzqDOiMDooLIIyKJAZEkIJBCyL72k093p9d335Sy/P9rrzmkc8fv4/vj5R06VZZF0+j3vOc9z39d9Xdd9P4pt2zh7nb3OXmevv5ZL/f/7Bs5eZ6+z19nLeZ0NSmevs9fZ66/qOhuUzl5nr7PXX9V1Niidvc5eZ6+/qutsUDp7nb3OXn9V19mgdPY6e529/qou7d3+ctu2bbau62hpaUEkEsHatWuhKAoOHToEy7LQ398PRVEwMTEBwzDgcrngcrng8/lgmiZmZ2fhcrmwbNky+P1++Hw+1Go1DA0NweVyYe3atXC5XJiYmIBt22hubka9XsfBgweRTCZx5MgR+P1+3HjjjYjH4/B6vahWqzh27BgMw0A8HgcAJBIJAEA8Hke9XseRI0dQq9Xg9XrhdrsRi8Wg6zo8Hg8AoFwuw7ZtnD59GgBgGAYMw0Aul4NlWQgGg1BVFbVaTf5eURQEAgEAQKVSgW3b0DQNqqrC7XYDAEzTBACoqgrLsmBZFgBAURRYloVSqQTbtuXn+bNutxsulwu6rkPXdQQCARiGgdHRUdTrdfl7j8cDRVH+5H5yuRwMw0ChUAAA+P1+KIoC0zShaRqCwSAAIJ/PAwB8Ph8URUG9Xv8/WiSmaUJRFOi6DlVV5fvk83kYhoFarQbLsuS+wuEwVFWV51oqlaAoCiKRCLxeL5qbm2HbNqanp2GaptxfLpeDbdvyPW3bhqIo0DQNmqahoaEBAJBMJmEYBqLRKGzbRqVSWVjMmgZd1xGJRKAoCsrlMmq1GnK5HBRFQUNDA1RVRaFQgGmacLlcsG0bpVIJLpcLsVgMmqbB5/MBAIrForxT27ble9brdbhcLjQ0NEBRFFk3iqJAVVWEw2G4XC6oqir3Z9s2bNuGYRjIZrMwTRO6rsu/cblcCAaD0DQNHo8H4+PjUBRFngV/v6Zpsob5rBVFQaVSgWEYKBaLAIBoNApd1+Hz+WDbNvL5PCzLgqqewSGqqsLv98vaME0ThmGAe97lcqFUKqFer6NUKsm75hqyLAvZbBaapqGnpweqqmJubg62bSMajUJRFNRqNZimiWq1CsMw5D5+/vOfK39uvSnv5lN6+OGH7Xq9jtnZWRiGAU3T4Pf7sWLFCtRqNbzwwgsol8toamqC3+9Ha2srisUinnnmGeRyOQCA2+1GZ2cnIpEIVq5ciXA4jI6ODgQCAXR0dCCfz+Phhx/G+Pg4Xn31VXg8Htx0002IRCLI5XKYm5vDgw8+iEqlgg0bNqCxsRErV65Ea2srLrvsMpimiUcffRTJZBKFQgGWZcHtdsPtdqOvrw8ejwe6rqNcLmP//v1wuVw4//zzEQwG8fjjj8uCcwYNLobOzk64XC5ZnPw5bgK32y0vuVar4dSpUzBNc9FCcLlcaGpqgsfjkWA9Pz8vC8Tj8aC7uxsejwculwsAUK/XYRgGMpkMarUa8vk8VFVFPB6Hy+WSRc7gx00VjUahqqoEG96boiy8fwYNTdNg2zbK5TIAIBAIwDRNzMzMAAAaGxuhqioqlQosy4Jt2zBNU4JaLBaT323btgTO3t5eeDweaJq26HlEIhEAQDablQWuKApisRhs28bMzIzcs9vtRnNzs2w+frZlWfL/fE/nnnuufA8GD/4bvivDMOR9WZYFXdfR3NwMRVEWvVfTNCW4cw14vV75nkyy3GRerxerV6+Gx+ORPyuXyxIYmHyYTFwuF7xeLwzDwOTkJBRFQVdXFzRNQzabhWVZ8Pl8MAwDExMT6O/vl/XB9VWpVDA9PS2Bw+12y+Z3JiR+FoMXAHi9Xgn0zsAaDAbhdrsRiUQkqFcqFRw8eBCmaaKpqUmSpWmaSCaTci+6rqO9vR2KoiCRSMAwDHi93kUB2TAMuS8+w3q9jgcffPDPBqV3RUpHjhyRyO92u5HP55FMJrFnzx6YpglVVQWNaJqGYrGIZDKJo0ePIp/Po7W1FaZp4qWXXkJjYyO+8Y1vAAB+//vfQ9d1XHTRRYjFYti+fTt0XYff78f8/Dzuu+8+DA0NSRa966674HK5cPToUSQSCfz85z9HLBbDihUr0NDQgIGBAcRiMRw+fBjpdBr79+8HAMzMzEim4QO1LAuZTAaapsmLCYfDi4JMNBqFZVmYnp5GrVZDtVqFy+VCa2urBKlarYZarQZd19HV1YVQKITBwUFomob29nZYloXh4WFYloXGxkZYloXx8XEYhiEZ0e/3wzAMHDx4EJZlIRaLwefzobOzE5qmIZ1Oo1aryeKu1WqCqLhQLctCKBSSoGSaJqamplCr1dDb2yub2DAMVKtVyVpcqG63G4FAAKqqSrDy+Xzy3/z3lUoFuVwO9XodiURCkItt27LJiJK5MFtaWmDbNgqFAiqViiAcl8slKNMZbBsaGgTRGoYhG9Dj8cga4/3Zti0IyO12w+PxIBwOwzRNQe5er1eeFQMPURc3KBEvEYsT3Rw+fBiWZaGtrQ2WZWF0dBSKomBwcBDRaBRerxcej0dQT1tbmwQL/v5SqYTDhw+jUqnI8162bBkAYH5+Xr6fx+NBY2MjTNOU9cVkQqTEz2CCIboHFlCi2+1GPB6HqqoSwBmM8/m8oFWufcMwkE6nYZomTpw4AV3XMTAwAI/Hg4GBAdRqNUxPT6NcLmN+fh6apmFwcBCRSASpVAq2bSObzcLtdqOjo0MCfb1el9/rcrnke6iqisbGxncLOX85KDU0NCzKwJFIBNlsFkePHkW1WkVXVxdM08Szzz6LarUqmZuR+tixYwgGg7jpppvQ0dGB5uZmVCoV7N+/H4FAADfeeKNE2uHhYdx4442YmJhYlCk7Ojqwbds2+Hw+HD16FLVaTbLX7OwsJicn8bWvfQ1TU1OLMpvf70c0GoXH40E+n5fFHIlEcMEFFyAUCmHHjh3ywp0IiJufwYrwnAuAi6ter0PTNHi9XkGKXq9XoPO6desECQHA1NQU0uk0Xn/9daTTaUxOTqJer0v2Ghsbk8AYCoUECYyNjaFer0uw4EZj9slkMoKcuIh1XZdgwfIgFAoBgEB8XdclqDAos3zxer0S1I4dOyblMJGNpmno6upCLBbDRRddBJ/Ph2AwKIuQ5U6lUsH4+DgKhYIgiLa2NiiKgnQ6Ddu20dfXB0VRkM1mUSqVUCqVAADhcBiGYUh5ToTGwJHNZmWt6rou5Vi9XpeSk2iAwZHPghuyUqksKmPdbjfa29vl87gPvF4vtm3bhlAohHPOOUfoCKJb0zRRKBRQr9dRLBZRLBYxPDyMSqWCQCCwqMxLpVLQNA3xeByBQEBQDNdpU1MTMpmMlPamacoz4Nry+/2wLAvlcln2HAAUCgVomiZlXalUkgRaq9UwOzsrpT9LbLfbjcHBQaiqipmZGZTLZaRSKamOvF4v1q1bB5/PJ783Ho+jVqvJz5fL5UVBk2je+TlETn+pi+Rdy7fNmzfb0WgUH/zgBxEOh1GpVFCpVDA6Ogq3242LLroIbrcbU1NTmJqawoMPPohMJgOv14u+vj58//vfR09PD3w+H4aGhnD99dejWq3iO9/5DjweD+6//34EAgHcfffd6OjokHqVtTYRTiaTwfHjx/G3f/u30HUdTz31FCzLwvXXX4/h4WEAgMfjQV9fH7q6uvCFL3wBbW1taGxsRCqVwr333gvDMHDVVVfB5XJh586dkr25WcmVEIY7s0yhUICiKGhqapKX78zsDHZbtmxBOByGz+cTboCbgWXLzMwM7rvvPpw6dQr79++HZVlYsmQJIpEIli5dKlCfm4mbnFC+WCzi1VdfRbVaRWtrqwQoBlYmD6IRZklgoUzjpuCCYZBSVVU2falUgmmagqrGx8fhdruxdetWRKNRhMNh+P1+9PX1Qdf1P0Fera2tsG0bc3NzEiAqlQqGh4cxNzcnyeDSSy+F1+sVSM9nDmAR19Pa2gpgAfkyiJCDNE1Tvg+DBINtsViEruvo6+uDz+dDIBBApVLBm2++iUKhgFqthmAwiEsvvRSBQECyPLmyarUqGzkcDuPGG29EU1OToA0GSLfbLe85m83i5ZdflgALAKFQCH6/H52dnQAWklO1WpXvwrIRgKxDJg6+U2dgJT9m27agT6LAlpYWAMDc3BwMw1hUsjLp1Go14XFbW1slIVqWhXg8LsEsEAjg8ssvl3der9cxMjICAOju7hbOiSVyJpPB7373O1SrVSxZsgSapiGTyQivSCpD0zTceeed7618W758Ofx+PzRNQz6fx65du6CqKi644AK4XC688MILsG0b/f39Ur8HAgFs27YNbW1tmJycRKlUwurVq6HrusDdJUuWoL+/H9dee628XAaWd14ulwvxeBznn38+Dh8+LLW6oig4cuSIBDsA+K//+i/09PSgVquhUChgx44dyGQyaG5uRi6Xw/333w8AGBgYQDgcFk4hmUzKiwuFQpLJAaBUKgmxz1KHpDvLrZaWFskizjIjlUqhXC5jZGQEqVQKu3fvxszMDF555RVUq1X09/cjGAyiq6tLNo3X6xVOp1arQdM0tLW1oVwu4+WXX0ahUJC/5z0ycDF4vZOHcaJYIj6WTQCkrCXBOz8/DwDy/drb2+Hz+dDa2opYLIbOzk54PB54vV5omiaQnBuJHFgoFFpE9BYKBUHYlUoFr732Gmq1mqAC/l6WWCTAp6amYJqmlDSRSASqqgpCZCDq6OiQ8tq2bcRiMVSrVbz22mtwuVxYs2YNgsEgzjvvPIRCIWzYsAG6rmN6ehrVahU+nw/5fB4nTpxAJpOR0iWXy6GxsRFzc3OLkGAikYCqqujo6Fh0P1u3boXL5YLb7YZlWUgmk0ilUtixYwcqlcqiIKsoipT7J0+eBAB0dXXJ72JQn5+fF2qBicDtdmNgYAD1eh0nTpwQNMrEQDRaq9Vw/PhxuN1unHPOOQiFQti4caOIHbZto6urC5ZlSYJieerz+VCtVoXK6erqknKTpWaxWMTx48dRKBQQDAYRDodFhJiZmRGwUa/XJfi92/WuQam9vR2VSgU7duxAvV6XUueJJ56AoiiIRqPw+/3C/AeDQcRiMXzxi19EtVrF9ddfD1VV8eSTT2Lp0qXYv3+/ELiEnE414H+7yGkAC4z/8PAwrr32WrhcLjz11FMYHBzEkSNHcOrUKXzlK1+Bqqr43ve+B7fbjV/96lcYHx9HtVpFJBLBFVdcAb/fL9Gb2cZZ+tTrdSH2mpubUS6XceLECZRKJczNzcHtdqNUKiEWi2HVqlWitHCRVatVDA8PI5FISBBxuVzw+/1Yt24d/H4/hoaGkEgkcPToUXg8HgQCAUSjUcRiMQSDQaxcuRLVahWPPvqobAgin2AwiFwuB5fLhfb2dkGVDK68f5fLJQiJpTCzGhcFeZcVK1ZIMGGZBiwgn0AggE2bNiESiWDJkiXw+Xyy2XK5nHxfpzJDLiEajSIQCGDp0qWIRqOihm3duhW5XA7PPvsscrmckLUsSViCkKMJBoPCUxDhuVwuKZ+pqlUqFSiKIqiCvEZ3d/eioEz0Pjs7KwT37OwsHn74YZTLZQwODqK1tRU333wzdF3HW2+9BV3XsWbNGgQCASQSCaTTabzyyitQVRWXXnopGhoa0N/fLyiNz4FBxePx4LLLLkOpVJLPbW5uFuIbADZs2ADDMIT2YAlMJEJlUlVV4fVCoRB8Ph9WrVqFWq2G8fFxKatqtRpSqRR0XReAQX7S5/MJf+fz+dDV1YWZmRncdtttmJ+fR19fH7q7u3HLLbegqakJ7e3tf4LECoUCksmkBEJd1+W+VqxYAbfbLZwsxQki+/cclIaGhhCNRnHjjTdKfc+yJZ/P4/HHH4eu6/jQhz6ElpYWfP3rX0c6ncZDDz0ERVGwa9cuhMNhJJNJzMzMoLGxUdQVZ9BhTU/JmRcVlWAwKA/81KlT8rP8GWaN66+/HvPz8/jmN7+JZDKJAwcOoF6vo6urC83NzWhpaYGu61IGEHZTJaMVYGpqCoZhCNlOpMENTy7g5MmT8Pv96OnpQbVaxSuvvIJisQiPxwO/34+bb75ZyjK32w3DMFAul7Fp0yZks1mMjIxgdnYWv/3tbwEAl19+OVwuF6anp2Uxu91u4TTIY506dWqRFO/3+6GqqlgJuIDD4TBs20a1Wl2EKBoaGuB2u9HV1QUAgmiTySRs216ERBi8Q6EQZmZm5Pdks1k888wzSKVSyGaz0HUdy5YtQzwex4YNGxCJRNDa2ioIUNd1bN26Vd5ZpVJBb28v0uk09u3bJ9wLy14nd1Qul1GtVkVWJiKLx+MSHBloueHIGVmWhebmZqiqivn5eRQKBfT398Plcklpu2PHDhQKBfT29ko5Vq/X8fbbb6OpqQk33ngjQqEQLMvC/Pw8/vu//xvJZFJ4x0Qisai8J7cFQFAHA24qlcL+/ftRKBSg6zrq9TomJiYkaJIOqFarizgj8lL5fB4ejwfLli2Dy+VCJpPB3NwcTp8+Ddu2JdHu27cPpVIJmqZJsmtra8P69esRCoXENlEqlUQ8mp6eFjUuFAqhWq3if/7nf9DU1CSiFMtHVVXh8/nQ0dEhKrlhGMIpzc7OQtd1hEIhKZuZtIjw31NQIqp57rnnROHIZrN44oknkMvlJAt+7nOfE8QQj8fxuc99TiRVRVGEY2AQcnJHY2Nj2L59OxRFwU9/+lP09PQAgJBi+Xweu3fvhqqqOO+887B161YcP34cExMTuPXWW6EoCu6++25UKhV8+9vfhqZpeOSRRxCLxSTz9ff3o1wu4+mnn0Y6nZYMunHjRmiahqamJgAQboTcC+vgjo4OQSKEquFwGJs3b5aXTchcrVaRSqVgWZYEp4aGBtloVPymp6eFG7r99tsRDofFh3Xo0CHhQ1wul7zgzs5OkeZN0xROiISvz+eDx+NBqVQSXwvtDeTOWIKaponTp0/L7wkEAmhsbBTEQsify+Xw0EMPwe12S1IJhUIoFos4dOgQAGDLli2IxWLo7e2F3+9HJBKB3+9HMBgUEYAJx7Is4Wry+Tzm5uawc+dO5PN5UeGICqkkOS0QVAUBIJVKLfJ5lUolqKqKarUqlgN+HjkzXdcxMTEBr9cr72tychKWZeEDH/gA2tvbsXnzZtRqNTz66KOYmJjAyZMnUalU8JOf/ATz8/OLkHtbWxvC4TAaGhokwfK5U8AgR8X7z2azyGQygqTm5+dlffA5EWE7PVe6rqOnp0fKN8uyZN1UKhWUy2VMTk5Kwm1vb8fnP/95dHR0iF2D74Bq6GOPPYZ8Pi8J7OWXX0YymcTbb78tgb67uxvr1q1DPB6XtcR7HB8fF/6MvBgRHu0WVPVM05SE+56D0po1a+TB5PN5/P73v0cikZAs98Mf/hC6ruO2227D3NycKFB/93d/9ycPgi9pfHwct912GyzLwte//nUEg0F88pOfhGVZmJubQ61WE7VqYmICAHDFFVcsMhwCQE9PD37zm98seghEHO3t7UgkEhgbG8Po6Ch+8IMfwOv14m/+5m8QDofFF8Oyk+UkszSNYCzH+MBZtpTLZTEBRqNRTE5OymZxEsaEyER/XBD5fB7z8/PYv38/KpUK2traUKvVBLnMzs4ikUjI9+/o6IDX65WAxnKH3FEwGIRlWUin0yIVO4Os87N1XZcFUywWhUgmoimXy9izZ4/A7VqthjfeeAP1eh3d3d1obGzExRdfjHA4jJaWFvj9flx11VUIBAI4ePAgisWicF7cdMlkUlScarWK48ePY2ZmBk8++SSy2Sxs24bf75dyk4iO6CCTyQj3QtOrE0nST+ZUTyuVCvbt24d6vS7cWEdHB3w+H4rFIqrVqhDb/f39Uhpns1l873vfQ71eRzweR6VSwW233YZSqSR8DlVpEtCRSAShUAiapqFareLEiRMwTVOCaq1WEwK8XC6jp6cHPT09yGazqFQqws+QoyL/apomxsfHoaqqiBrpdFpKWq/Xi6amJinJGezcbjfe9773oaWlBcuWLUMsFhM0TZ5qamoKJ0+exCOPPILTp0+jUqmInSUajQoJn8/n0djYKIiHfGmhUEAqlcLo6KhUGnx3fC4AxGs3NDS0yBj7noPSunXrhKkvlUpiltq2bRs6OzuxbNkyWJaFyy+/HABw3XXXIRaLSTQlIc2LG/rQoUPioF2yZAmWL1+OU6dO4ZZbbkEqlcK5556Lnp4efOpTn0JjY6NsPsJ2llnAgvR44sQJAMDSpUvhcrmQTqcBAF/60pdETUun03jmmWcwNjaGeDwOTdNEuaPvhVmOqlk+nxc+yjAMjI+PwzRNIXBnZ2dFxavX68hkMggGg7j66qsRCAQEkTmNgW63G8FgEKFQSBYeA2Qul0OxWJTf29HRIT9P35SmaRgYGIDL5RIFiR4UcgZ0zTr5LAYJYIGQJgqlUdBZnq5fvx7lchlPPvkkCoUC1q9fD8uyMDk5iUwmI8GMZsHDhw+joaEBHR0d0DRNuJ2enh65J6phyWQSu3fvRjKZhMfjEZc2gzp5EipLNKOStAUgVg0GaSpUTU1NEqy9Xi/OP/98VCoVTE5Oolar4dixYwiFQrjmmmtQqVTwn//5n0in0/B4PIhGo0LSdnd3I5/P45VXXoGiKLjyyivR1taGrVu3ol6v49FHH4VhGNi6dSvi8ThaWloWlZxMALlcTgyD1WoVTU1NwvM4lTFWEkR7+/btw9KlS0V6p42BSiOd0rqui1iTz+fF7BoOh3HhhReitbUV8Xhcnn+9XkehUMDExAT+5V/+BRMTE8hkMmLh8Xg8aGlpgaZpKJVKaGhowKc+9SkBGG63WxT4+fl5pFKpReKDU+kliT4yMoJqtSrePHrC3nNQeuGFF8QZ3d7ejo0bNwKAOJTHxsYQDofxmc98RpAMPTJ0prJ8oypSLpflBp2tBL29vXjiiScwPDyMm266CQ899BDuuOMO9PX14ZFHHhGSdXZ2FnfeeScymQx6enrQ2tqKj3/84+IpGRoawg033ADDMPDv//7vaGxsxL59+1AsFtHa2irtGE6eheZDlpjT09OL/FaEoZFIBLVaDfPz88jn8xgaGoLf75egQ6TF50CEyJfB7xoKhdDX14c77rgDtVrtT8yAS5YsQbVaFaTAEoQ+KW56Er/cpHNzc4uyqtNOwE1CHgqA+M9YLvG9hsNhaJqGzs5O1Ot1DA4OIhgMinxMh/9ll12GcrmM559/fhGBzJI1Go0iHo9LecwFe+211yKRSOBnP/uZvBefzyeytdvtFp9PqVQSCZ50AMs5+mgikYgQ/oZhIJVKSXlCqZzI9o8tDoKEWltbpdyMRqPisPZ4PPjMZz6Der2ON998E3Nzc9K98NnPfhaRSATBYHCRz43o6/Tp04KunUIJnedEJdwXbHsh+mtpaUFnZ6fwg+Q16a4n+qpUKgIYRkZGUKlURA1saGhAc3OzJNh0Oo1kMomnnnpK1kkoFMLBgwdh2zbOO+88MfN6PB5cdNFFaG5uRnt7u5R27Aio1Wo4cOAAUqmUJOUTJ07A7/fj6quvhmma+OUvfykUD42/TBYsv99TUJqamoKmaSiXywJ/Q6EQent7EYlEcM4558A0Tbz22msAFtQD1reKoqCjowOZTAY/+9nPoCgKPvKRj8iCf6fqNjk5iX/6p3/C6OgoZmZmFm0WSuWlUgmpVAq7du2Coij48pe/jL6+PunfAbAouN1yyy0wDAN33HEHGhsbsXfvXti2jbVr18Ln82F+fl4+gw/bSaTyhdLRPDExAZfLhRUrVsDj8SCVSiGTyYgviEjrrbfegtvtlr4gbmoqF9VqVQIZ2zvIF2iaht7eXpRKJUxOTiKRSOCll16SgMKszlKBQY/Zh9YMXnRgAwvtIzRg8mfpyqd8y0DqcrmwevVq2XDshwoEAjjvvPNQq9Wwf/9+mKaJTZs2iaOfviC2K8zNzUlZQnsJ3ez9/f3IZDKyGbnR5ubmYFkWBgcHxVrBe3VyauRbaClgIGaPXSKRgGVZ4tAfGxtDrVZDvV4XYYBBIZvN4sSJE4jFYvjEJz4Br9eLt956C5qmYdu2bYjH4+jq6hJEwQDIJFUsFjE6OirJrlqt4uTJk8hkMjhw4ABM05R2q3Xr1kHXdczPz8s7ZCIjlzY9PQ3gTMsM75sl6jv7+3RdBz2FnZ2d0srFFpD77rsP09PTmJubQ6lUEtc70bjX60UoFML69evR0NCA5cuXi0BBI6ozADNB0IrAEo62gA0bNkBVF3rh6Hjn9/l/4pQ2b94snAtRTTqdxttvv41oNIre3l55sXS02vZCMx6RRzQaxfbt23HixAls3LgRU1NTWLNmDQYHBxfVl6VSCa+99hpUVcWOHTuwZMkSQS78mWAwiCVLluCee+7ByMgIPvnJT8Lv9+Phhx+GaZq44YYbkEgkcNVVV6G7uxs//vGPYRgGfv3rX6NQKIjjmi5X3jtNis4eqFqtJtmO0jORYiKRwNzcHMbGxkQRamxsxPbt2wEA99xzj/BC8XgcX/jCF9Df349YLAZFUUR1e+WVV2CaJpYuXYpIJIJ6vS4mUJoD+VmVSgVdXV1QFAXJZBKVSkUCjLOc5eZmewqRqnMTFQoF4Z5UVZVEQUTCgMzgS9S2bt064RVM08Ty5csle/LZcR0AC+oYFZhqtYq3335bSHhd13HllVeiVqvh9ddfR61WQ1tbm6y3XC6Ho0ePyj1SSCBK4HtxNuCyDYZkeW9vLxRFkeZR9h5Sxdq5cycsy8LKlSvR2NiID3zgA7BtG7/5zW9Qr9fR09MDr9eL3bt3o7GxUTYwS69arYapqSl897vfRS6Xw9q1a2HbtpDEvb29QqTTMsO9ommacGf0tnHD03LCz3Cuwd4/uuzZTN7S0iJ+NLfbvUh+53oIBAL46Ec/irm5OTz55AOfxvwAACAASURBVJOYnZ0V/jEYDKKxsRHbtm2T4O3xeNDW1iYiBdEpEVEmk8HExATS6bQ0tw8MDCAQCKCzs1O6EtgjqCiK0DDOPsf3FJTeeustAGdkzcsvvxyxWEyyRSgUQiqVwrPPPgtFUbBixQpEIhFZnPy3qqpicHAQQ0NDGB8fx+233458Po8jR45g7969uPXWW4XUHRwclM9/Z+1pWRYmJibwmc98Bpqm4YknnkBHRweOHj0KAHjttdeQSqXw7W9/GwcPHsS+ffsW3f/69evh9/vFw6HrurxgOq6pFvC+SSyz/YImPdM00d7ejkwmg3379qFQKGDv3r3weDxobW1FU1OTbKRt27ahtbUVmqbhxIkT+OxnP4vJyUksWbIEuq7jhRdeQDwex9///d9LhjMMA0eOHIFhGLj22mtRqVTw/PPPwzAMrFq1CoZhYOfOnSiXy8hkMvB4PMJ9UZ6l45mNyoTglNC5YOglIbJgiRmPxxGNRhEKhUR5rVQq0q6iKIqocczaDFIApBw4evSoBBkA6O/vR6FQwJ133gnDMHDFFVcgHA5jaGgIxWIRk5OTME1zEXdEjolcpKZpYtBjx3x3dzcURRH7APu1+vv7RSioVqsYGRmRznZu7FgsJsFtYGBASqFQKISPfOQjIl6wBGXySiQSyGQyyGQyGBsbQzQaxTXXXANd1wXRLVu2TIJ2rVbD6OioBBG2hFCZUlUVvb29GB4eFl8QkVetVsPY2Bi8Xi9WrVoFXdfFMJnP5xGJRLBx40Z0dHRIomJJOTExAdM0sX37dhQKBTzyyCPQdR3bt28XYYIiBO+Tn0sEx0TpcrkwNTWFer0uqDKRSIg7vVqtSlDNZDKoVCo4fvy4BM+/dL1rm8n27dttXdfFGu7soUqn07j//vtRrVaxadMm9PT04NOf/rSQyPRHMDqS+6CyMDw8jOuuu06aVtllPjg4iH/7t39Dd3e3QPfHH39cyj9yR++88vk8XnrpJSQSCZw4cQLJZBIvv/wygsEgvvrVryIajWJ0dBSGYUgn9XPPPSflC5GG2+1GW1sbTNPEyMiIdMBrmobm5mYEAgH09fXBMAy89dZbQjZ7vV6sXLkSoVBIAhJdz5wCQIXkmWeeQSKRwPT0tCAZ2gcAiOTsLB+JLgh/6/U6UqmUQHr2MxHGa5qGkydPLkJALDHZ0c1sRktBKBSS90OlJhgMYtOmTRJg0um0qJxXXXUVWltbsXLlSimxAQh6zGQyKJVKOH78ONLpNI4cOYJcLodkMgmfz4etW7dC0zQcP34c9Xod0WgU9XpdNkZbW5twkeRcyAMqioJly5bBMAwkk0kAWKSK8c/D4TA+/OEPiwDD0TfValUmSNChTyTGwEObi3MjOYM+LQB0hFNJO+ecc+B2u6Un7NixY0in0zh27Jj0+rGnzTlVgMHctu1FbnjyVRQnAoGAtHiNjIxIgvX5fILI16xZIwgRgFQCtONwPRChsYzmz76zSbtUKmF6eho//vGPxV1OrxsRFQCxJpw6dUoEIPLM9JApioL77rvvvbWZ8GEMDw/D6/Vi+fLlMqqhqakJv/jFLxAMBoUraGxsRC6Xw+OPP46xsTE8/fTTaGhowE9/+lOYpolrrrkGqqrigQceEA8Hg2KtVsOJEycwNDSE559/XurXpUuX4vHHH8fAwIC8MI5jcM504SZJJBIYGRmBZVlYvXo1WltbcfHFF0PTNBw6dAipVEqCEhcBORi2ddD/w8VIJeHAgQPiMSLKcs5suvDCC+H3+zE5OYlqtSp9gB0dHbI4QqEQPvjBD2JmZkZe8KlTp6QHi9xFsVjEY489hmq1iuXLlwv5Wy6XcfLkSZimiVgsJmqbs3F6fn5eCFNn0CXh7Xa7kcvlsGfPHlQqFZGXvV4vwuEwLrnkEinpaFodHx/H9PQ0bNvGhg0bRGGt1+vi/GZQYrCjWlMqldDc3IzBwUEpSTKZDJ599lmxl3i9Xpw+fRqqqmLVqlVQFAWpVAqlUknaXnp7e2UMDYUIp4ObvFJLSwvcbjdWrFgBn88n/iy+q+XLl6NcLuP06dMoFAo4fvw4fD4fLrnkEnFIk1ejeklZmyZAcj2zs7P44Q9/iEqlgosuuggdHR1Yu3btotlbExMTSCQSwo2x7HQ2fLNDQlVV8cdxM/Oz/H6/KMz0+8zPz0sw4aQKXdcFsbAfkKrowYMHAQArV65cZNJkCU53eVdX1yJ1zzRNlEoldHZ2CsUCQNYO0R8DfXd3t1gaWCb+pe4NXn9xnhIbMql06LqOWCyGXC6HJ598EslkEul0Gu3t7fjWt76F1tZW5PN5UW/YE8YbKhQKeOWVVzA8PIzvf//7MqOms7MT3/nOd2DbNr7xjW/A7/fjV7/6Ffr7+/+Pvsjo6ChuvvlmWJaF7373u+jt7UU0GhVndqlUQjabFQUik8mgo6MDwJngQ4TH2pplHcdCtLS0IBgMYunSpbBtG4cPH0YulxOXeVtbG6LRKNasWSOcG7OIZVni8crn85icnMRdd90lknswGITH40EsFsM111yDYDCISqWCYrGII0eOyLAtdt3bto3Ozk4oiiKblpuR8rRz9AhVHxLGdCObpikLsbOzE36/H4FAAOFwWOZOOaF9vV6XzcSyke0XzMa0YDz33HPIZDIol8vw+/0499xzYZomnnvuOSQSCZw+fVrUQK/Xi2XLlonaybEZlmWJy5jBghd5s66uLnE3kwtjacPyjVMMAMhGJEp8/vnnMTc3J0T3l7/8ZSl9GezS6TQee+wx5HI5UUuz2SxUVUVzc7NMh4jFYrj44otF0U0mk3jggQcwMzMjnQQMQnRar169Gi6XC2NjY9KzR08c+TmqVm63G36/H8uXLwewMF7INE0ZOJfP52VSgc/nw3nnnYdwOCxVC/lJevPoKmfTNVuK6PoPBoMolUp49dVXkUgkpMRmk3mhUIDP58P5558PRVFw4MABWJaFvr4+6ZmlTwuAILDvf//77w0pPfLII9A0DR0dHWK6K5fLePbZZ2FZFgYGBnDppZfii1/8osi+o6OjuPXWWwEAP/rRjxAKhTA8PAxFUSRIXX311QCAW2655X/93I997GN/9p6cSMlZdvX19eGll15axFldffXV4j4GFpBVuVyWLMa5PSToOYSL/iLnFD9FUTA6OirStaZpwp8Q/q9bt05GuSiKggsuuACRSER4NicxTtmaWSgYDOKjH/2oyLBUi1iaOX1SLINZEvL/OYeHpfaBAwckyDKh0GlPR3exWMSJEyeE2/D7/Xjf+96HWCwmHpdQKCSd6OyXAyANsCS/qYQ99dRTmJycxEsvvQTDMNDX1wev1ytlPGcLdXd3o1qtSkPwzMwMgsEgli9fLmbQWq0mpcH8/Dx0Xcc555wjCIDPkn4tohuqw8FgEIFAQOYVkS/kOmptbUVraysymQxeeOEFKfvm5+fxxhtvwLZtnHPOOahWq2IUpA1kfHwcfr8f3d3d4leKRCISUBKJBKrVKi655BLk83kpG98544kTN+mot21bSHmW7izvuJaeeeYZ2LaN9vZ2uFwunD59WtYyp21yzzY2NmLLli1iMJ6ensbRo0cXcag0wh47dgzt7e246aabFv3e3t5exONx5PN5pFIp8UutW7cOmqaJUr9x40ZBsxRV6MUyTVMI9ne73jUodXZ2iumNoxzC4TDuuOMOIYydalJPTw+amprwgx/8ACMjI7j++utlZhDbJJqamnDttdeip6cHV155JWZnZ/HhD38YqqouKtP+XECanZ3Ff/zHf2BkZAQvvvgivF4vPv3pTwu5XK/XsXbtWrjdblx44YUS6YvFIo4dOwaPx4PrrrsOLpcLe/fuFQTI/iI6azm3ybIWurxJ9hmGgR07dsDj8aCjowMtLS3YuHEjqtUqdu3ahWw2K1nht7/9Ldra2vC1r31NyGJO7PN6vfjSl74EXdelPYKEY7FYhGVZ0nYBQFCSbdvSY8WRHbw3ACKZO9tL6CHj5uU4Vv5u+lnYVEkuzO/3C+oismIQ5BA2IgVN01AoFJBOp3HgwAHMzMxIs/aePXugaZpwTywN6eni5mBw5cKl54m9kuRxEomEjMGgE9/JxySTSSlfIpGICDB8Vs62G8taGJLH3kj6wVKplDyj1atXA1iwraRSKemk7+/vRygUkgmU2WxW/s7r9UpDOx3kRO5UgN944w1UKhXpzctms1KGczqncwAhAJlSSf6NpTyTs3NeEY2opVIJ//zP/4xyuSwlNZERxxIxWV9wwQVobGyUiRec2cXWlpmZGRSLRbEDMdGSnuDv5VgfKsDkA8nPvtv1ruXbt771LZuLkcPZ6vW6wNWGhgZh/MPh8KJmPtoHuIjpTeHDGx4exkc+8hGoqopHHnlEyrShoSFs27YNiqLgsccek9EMAITHIfwNhUKYmprCHXfcAQD413/9V1QqFdx0002Ynp5Gb28vgsGgID1mHKfVgJneuTlYx79zLjF/rlwuQ1VVaZSNRqMoFot48cUXUS6XEQqF0NnZia985SuIx+NIpVIAFupvTpbky3LKvlSNKNm+8sorKJVKopIx6FD6JiHu9/v/5Hkz4/Lf0P9C6bxSqWBqakoaaTn7JhAI4LLLLkNLSwtWrVolvJ3TX0I+kIFyZmYGExMTuOuuu1CpVHDFFVdAVVXs3r0bhmFg6dKlME0Tb775JkzTFPmYvVROQYTtJHxfREIspagI2bYt/WZEEyznqI4ODw9D13VceOGFaGpqwurVqxEIBESad/bi0ZGfzWbx2muvQdM0XH755dB1HaOjo0in0zKJcsWKFYhGo2JbGRoagqqqWLlypSQezhAiWqhWq9JZf/LkSRiGIUE+kUiIfYbmVFoXWIaHw2ExttIpbdu22EQ4JofiSXd3txg/K5WKOOuj0SgikQg2b94MXdcxPj4OTdOEcqDvj+iU5siZmRkkEgk8/fTTyOfzkliXLl0KAMIpcbY3sJBIZ2dn5V05ja/33HPPe5vRfffdd9tcgGT+SSDato2DBw8KTGtubsbnP/95mSAAnHEMswfrnZuFgeG9XMlkEr/4xS/E7k+y89SpU/iHf/gH5PN5XHvttZIh/X4/1q9fD9M08fLLLyOfz0uZRF6DnAsfHB3dXHxsZ1myZAkURZGJkMy85M+2bNkisj5wJssRJQ0MDAhHwDKAAalUKuHAgQMolUoiKVNNYtAhUc+NSymenhE+V7ZwsOyi8Y6kNwMOfU+lUgnBYFCCEn1J7xwkx2AYCAQWjWrZtWuXBFGSzuSiqtWqWEnYi9Xd3Q3LskTl5HC8UCgk7RlEsvx855qhOZXJgSNMqGbx35GL4aTMDRs2CHI1DEPmNfHz6dSmekQnNhEBLRSnTp2Scpx+KAolDHpEsWyvymazi7g0WkyIlPi+OVKY/BV5Q25uNhlzj/GiR43mSxqeBwYG4Pf7BR3SFlMul5HNZrFjxw4Eg0H84z/+ozjN+Z2z2SxeeuklzMzMYM+ePQAWjNJMsvV6HTMzM7CsMxMZuHadk1XJ49m2jZ/85CfvjVNim4jT5Vsul7F7924EAgGcf/75koFyuRzuuusujIyMYOfOnWhra8Ojjz6Krq4unD59Wjild/bD8TIMQwbX09MDQHriAODuu+9GW1ubEG10SLOR9De/+Q2KxSK2b9+OWq2GQ4cOoVQq4bzzzoPP5xNOpqWlBU1NTdi7d+8iuZIOWJrV2Bs2NjYmBwmQn6CKxaDAutnr9eLo0aPCW3BSJ7MRe4QMw5DGzaamJqiqimQyKWoTgwQJagDCDfHic+SL58gR/rlzIqSzYZW9UCxFRkZGoOs6tmzZgmg0KtMmDx8+jEAggEsuuQSBQEBG1Q4NDSGZTOL1119HsViUDblixQoEAgHs2bMHmUwGk5OT0HUdGzdulNlUlNQZUBlcCO0VRfmToEJkBEAaYvl3LC0ZLOmX4ibg5ewVfOCBB2RyaiQSEU6MCJkO7507d0LTNFx33XVwu904ePCgmF45wqOxsRE333wzAoEARkdHBb0AkGRDpE20wsDT19cnvZo0d3L9EY3zcjakkwBnQlBVFS0tLQiHw3JCUCwWQzKZxAsvvCCEv6IszN1i4qWg0NLSgq9+9avo6uqSOe/Oee7kwSKRiDi1KRJRqOKa47hdKvLsqSQF4pyW+ueud0VK9957r03JnbW2y+WSzdnW1oZIJIL169fD7XaLE3fPnj1wuVzYtGnTIsf33NycqCGqqgp3Uy6XoWmajNh0HrUzNzeHe++9FzMzM0ilUmhpacGdd94pJCsJ3kwmgz/84Q9IJBIyb4id26xjGxoaUKlUsHfvXmmdYTaii5WqG7Mi/TZ88bZty7wlSq2c0tfU1CRojQoU/VnAAhTm9D9FURZ5OXw+H9asWQNN02Q8rFMWJgcCQDgnZiKWhyTkGUy5sdnUyU1J5YXBlcGKPE9XV5cELmfW5ckWTn+Tx+PB2rVrYVkW3njjDQkoHJIXCoWEuH777bcXNTAzGLG85/ty3he/o7MPkUY9tsGw7KanjI54HsXV2NgoaIUNupqmyUTUubk5MRnyfvL5PF588UW4XC5cd911CIfDUuZxBG21WhUrDN8R9wvLUJb3TOhU85jkGaTpcwIWpH2WSOQVOdmB/CODBxVKllxLliwBsAAoeL9er1c4oDfffBO5XE4UcqLHc889F5FIRHhZHnbAdbtnzx4YhiGjU+r1ugyTo5+N3ie2pABnekCdrTm2bePee+99b0iJc3za29tRKBTw6quvQlEUGePKruWnn34ahUJBvjCDB+VFVVUxMjKCT33qU4I6BgYGcP/996OlpUXG2l5yySXI5XJS/tA1fccdd6BQKOBjH/uYeIUaGhok83AAHY2YNN0RKZDApedk9erVwlU4OZ3Z2dlFEjo5H2apZDIpI0gppTNYcRMzU7LR1jlfh6MvOJEvk8lICweDHRET1S4uenZu00UNnDkyiX4kBgx2y9OqwCFsbW1tco+E7fwcEqzsWWOJwqzOYEHLAYNhNpuVeVfssmfA9nq9KBaLePjhh2EYhnQDcJOSwCaioRJJ5zY9MbwfBl8iDPb0sZTlzzNo8TmR72ACev/73w+XyyWjckzTRDQaxQ033ABN0yR49vf3o1gsYmhoCIFAAJ/4xCcQDAYxPT2NbDaLI0eOLEJlTU1NCAQC4vFhqUJekvJ4rVYTop4mY/4MgxatGwQNDQ0Ni9Q1IjUO8me3AQM0E8rQ0JAEt2g0iksuuURafvL5PCYmJjA9PS0zmNgXSNqDo0fonqdviQGLzbocgUy+2dkPSusAv9NfomzeNSi1tbWhWq3iwIEDYnLjOFgn40/InMvlRFVqa2sT0ouwvbW1VcYeMAu63W4h2datW4eTJ09i586dspldLhcee+wxGRNLiVfXdTnSiMPKVq1ahVwuJ3OWSJg/88wzkllbW1tx6aWXIhQK4cc//rEQnQBEXaNEzXqdAY2bnYPeGUxmZmbg9XqlV4pNyeRqqD52d3cLl+Tz+eRwTzqRiQoIm7k4yeE4SxWX68x5YrxvLiASvywVy+UyisWiIF2Snc7BZJSnAQhByyHxAwMD0DRNkG48HheVjw5eoiMGcj5PBjSqYC6XC0NDQ6jX65KwWFLQ6sENwVlCzc3NMiiuXq+Lo5oHPui6Dk3TZIoCVTYS6F6vV/gbYAFFsI/M6azevXs3SqWSBDE685ctWwa3243Z2VlMT0+L4sWDAN55fNH8/DxqtTPn3rF/zDlznfvC6Ranym0YhjxLllxMME5079zgTC6sPqjMssfUtm2ZEEni2rZtaQKnQs0kQYWzpaVlUXMzeUEGHVIeLLEZE/i7uB54f85S/M9d71q+PfXUUzYbFwGIB2FyclJ8FczOzvKHfS4c1nbq1CnkcjkcO3ZMImy5XMaRI0egKApWrVqF1tZWXHHFFQgEAiKr79q1C7qu4+Mf/zhUVcXTTz+NZDIpD4ynVASDwUWNmczyExMTi5Q7+onISfz617+G2+2Wnim6Y5nJSNo5VTsqCgAk4xOx0L/jvGjHd1oriMIYVJzuXy484MzRTizVnPOknEGJXf5stCVhT98OVTf2MZG7cI4nZUZnvxeJZionVFSILIn8LMsSro4/w140J0fHKQHcSCSA+XycnCLVUiInlqMsDVgKxONxeSdUz+hOJorg7wfOIDFufJZCLS0tqNfrcgBjd3e3IEaiBooDbDdiOczsz+fF/2ZZz+/FxORsteA6cKqrFJTIAVHA4Qwroitubq4PJ0dETor/nrYQIkoAixCRZVky44lrh/f2zrE+TrGB3/Gdz4LGUgCLjLbcM6qq4pvf/OZ7U9/uuOMOm5mIUjx9IU7JnJyQczFx8QKQ7O48uojd+VQC6IWgBYGTBxm16SNiGeH84jSUUVLu/eOsZSIaIgHnC2GZRyRCeZubmPfs/B6cEEhzJV801SZubr4cZkhuCAaVdx637VRcWIMz+DlVIQZdblBCZ/bAcdHwOff394sywsDJ4KwoipQA7+RyKFFzqgHLJ5oznQvOScbyc1k60WlNjpDvndyY8/O5DgAsOheOawlYPJcdgKBJp6prGIbcn7Mr3zDOnB/n9XplfQFnTIw8F45lJYMckw2DFA9yYHlLtZmqKP1XdGPzGTmTkTMI8cRkog9FUcRRzkFxXFMM9M6R0vzMer2O0dFRUcGYMFlukQoAICUu74toj7wh0SXXKEty/l6nK57fkZUNnxX5XlVVpSeW11133fXeOCXnLwYgblXeBDeJc8gZAOFh2CnMuTFOWz7dpoZhCITmImM5xdLE6Shmnc4ypF6vY2hoSGp6XdeFYHb2KDGIMhgqyoJD29l8yIyXSqXk55xIxKmCMTvpui6LlEHaaTZlkOGCIvFO30q1WpV74OmkPCSRA/BpYOQiJ6HozFpcKCQSnTIy2ysYjImAmGycx/fwvTsRnLMBFYD40Mgv0BA4ODgoZYVlWVJOBoPBRRwekRM3FBd8T0+PvCcnPeAM8iR3a7WaJCMeR0QTLP9HZZAXLQPc+M7SwzQX5jNVq1UMDQ3Jc+RzoRmSz4yqqmmaMqeKwWx+fh7lclkOFGhtbZXeOyIk+q0Y9PjOWJozETtLPMM4MziRaJ8AgfdLesCJQp0ggfYLEulLliyR03QACM9IgvzCCy+ErutyXDfbS5ykv1NVo4LJ9+xMtESBzpL1/zooMRISEvNmnOZFHhFkWZbMjXH2kFH1cgYUzlvx+XyoVCpIp9OyOZ2Zd2ZmRpALCU8+UL4YqkBOvwqDKcsQkn/MyHwwPOvK6bthi4Jt23JkEbMS+8CIOki0cyA9CWdnDc9gzt/HMsc0TQwODsrzNE0TQ0NDQmSzvAAgZQ/LJiIwJgtK/nzu3HRcqByL65wCwOxoWZYgHv4OGlk5doLvjciWA/t5QvLBgwcFnXDzseGU/01jn6qq2LRpE7xer3BSLG9Y9tBfxftnOcsSwTk6hZwgAxH/PREegz8A4Yg4aoUBf/Xq1TBNE3v37gUA4UL5nEnY0iTZ19cnKiWDJ5MGN55hGIuG2hHdECnx/XK/OIMnEYlzogPRJ8l8TqukF47PnPYSJpbOzk5Uq1W8/vrrME0Tq1evFn6QA/VIvuv6mYMJmOTefvvtM8Hij3wim8ABSDDjiTPOBmBn9cAEzQT5bte7lm+333677VwcfAGsC8m9OHurnDUxR3rSZOmMkAxKVIV4yoamabKI9+zZA9teGCClqiomJydRLBaFSOSmJZoZGBiQoVUMkvT7EHZbliWSPqGsU8ZkhnWWcVRouOibmpqEm2KjKOco8aA+ZvxarSb+o/HxcZkkmc1mRepmMGNz46ZNmxAOh+WwSGc9DgDpdHpRtmKZwYBOYx6DPNEtg6vT+s+FQpTIAMRNDyx2cDNoM+iwWdM0TfEpkYcgGmZ27+/vh2EszPRmyUxOz+VyiUWA2ZZBl+5iJzIDICUJg5CzXYViApUhWk5UVZV2G9IR/O4zMzMyooNGVlo4OJKGEzdVVcX555+PQCAgAZW0A8cmHz16VNY9h/cpyhnTLZ8t94WT3GbgZAAjumWA5jPg5ieRT+c3535TVOJ64zqYmppCpVJZdC4cR7voui6JaXh4GMViEel0Wng8y7JELFi5cqUEKZqUndQK0SnXJLmwBx544L1xSrfeeqvthJnM8uQgmCHItRAJMNMzeLApj5P7nJ/Jf6dpmljWOWycMvOmTZvkFAr27bA3ihmRi5FlGzkup/rH7MKyjhmZi4Hwny+AviQ6i8n79PX1IRgMovePUwCYWUh887mwU/0Pf/gDZmdnsWfPHmSzWRktQun0wgsvlOO+OcKF6hLHVVBdYg+faZoCmYneOFeI5TEDD70sznLFWU4SEXChs6Rylt1ckM5hcqdPnxaVEsCiDnW+Y5/Ph5UrV6Jer2PHjh3SHxYOh3HllVfC5/PJSBSeWUZ0wHnd3GAc/kZPzNzc3J9kYWfJxz9nef5OhYho5fjx49A0DevXr4fLtdCtT16GVg36zYi0SP6yU4DPkKUdk4WiKDJR89ChQzIMzjRN4Vn478ixcXqA04PlJMmJfun1UhRFjr9ytnJRqWRQ5HdmgNS0hS5+GmiBBeNyIBAQy01XVxds28bJkydlPlS5XMbY2Bg0TcN5550Ht9uNubk5FItFjI+Pw7IsxGIxSUykRAhUPB4PvvWtb703TonEXyAQgNu9cO5Xvb5wGCJrTrLtNGixQ5jd7bVaDfF4XMyBtVoNzz77LGq1GpYuXYrW1lZ8+tOfhq7rOHLkCIrFogx45ykIF198sQy0KhaLiMfjmJ+fxyOPPALbthe1k5AcdKpJJLS5yXjIIuV3clA0WRKhkGhlIF69ejUURZGhXWyMdTYvkrAtFAoYGhrC3NwcXnjhBczNzeHw4cMwjIWJkM3Nzbjuuuvk2Ti9Hhs3bpQSj/fH478ty5IRqKOjozIcoxMZUgAAIABJREFUjT/PheZyuaT0IlKkBYDqKR3oJHLpLKaPig7ljo4ORKNRaXRm8GGQIpJwZsVcLofdu3ejVquho6ND3huz6NzcHB588EEJus7JDWzwdXKB/G5MQsCZY6OI5DgjnHwLnx/pBucRTZZloaGhQc5N4zphMvH7/di6dascEMDvxUoAgNABNLsyAe/duxculwtbtmyBx+ORJlZyjXxf7e3tACCz0QcGBsRyQlKe5SP5WyISonOnCEBrDgBJCuSBmcBYTjHQDQ4Owu/3S9nHpM5qQlEWxi/zzETgTKMvrSWaponNY8WKFVBVVbgpIjgiLz6Hd7veNSjR70H1hxwEOR7nIQDcVNw8Ho8HW7Zsga7rGBkZQblcFr8TNwlRBWH4Oeecg0KhIH4Rlh48W4u+E8uy5FRQRVFwww03IBgM4uTJkygUCtKUSM5oYmIChUIBiURCMi3JN3IRTnWOxC+tBvl8HplMBrt27ZImxFAoJJwaMxMzMYnsJ598UuY2LV++HLfffjtcLpdYJgYGBhAKhaQHj42fnF2zb98+2LYtx4MzG1IIoJWBAemd589zczHbMWv29vbKZud3o9RNzsnn8+HKK6+Eqi4MjSOZSbJV1xdOvPV4PJiamkImk0F7ezsURcHs7Kycigws9AoSWWUyGXR3d6NWWzhPjs+/tbVVhqORi3Oqr8zwTisFVSuWpbQuVKtVlMtlKe+pLHIkLk2YXV1dUm7TV+R2u7F69Wopg/hcnLYCPmcmIZpkSWdceumlKJVK+MMf/iABjNyRbS84zYEFFOnz+USWZ/mqKIqM6mVpRxHJacGp1WrClxGtclzuxRdfDJ/Ph3Q6DVVV0dPTg3A4jOXLl0PTNCHSaYhlwpqfn4dt2+jv7xcelI3KPP05mUzi/vvvl1K3qakJ5557LlwulxxnBZxR2AEs6jpwqnD/2/Wu5ds999xjU2VgOcFzx/nF+HCZwZzkOF9SPB6XLnqSgN3d3fj2t78tg8reCfVYSpD4dRrGqISdPHlSOsNJkpqmifn5eYnSjPps+yBRymBIiMysykHvbrcbF1xwwaIjh2dmZqBpGpYvX45wOIyenh4EAoFFZSIzJce8AAuIs1Ao4NChQ4sUvKuuugqWZeHRRx9FJpMRRy5HqnD+VGNjozSw0k/F+3C5Fk7QZbDnZnESp6znubjprOYx5uRwONaXp71wbdi2LQ2ltm1j2bJlwgcyuPNnOC7XNE1s3rwZPp9PuLVEIiGntNi2LQcpsgeQh0XyEAXK20TBXNgcU8tNywzOzU2nfXd3NzRNkyDiHBJXrVYxNjYGVVWxYsUKAAu0QSwWw1e+8hW0t7dLmQZAyjJnY7PH40G5XMZbb72Fer2OpqYm+Hw+CY5Ehc899xzS6bQQ2wyW/P0MbpTfa7WaBAl+R6ed5p1KpKIoUhaRaKZ6um7dOjQ0NKDXYXzmNEzbtgWVOstIp7RPU+5zzz2H2dlZHD58GC6XCxs3boRlWbJWaQymiDI3NwdFURa1jtF2Y1kWfvSjH7238o3IiLU+TVgkSjVtocud5RIfBpWDQ4cOIZfLYefOnSgUCpicnJQzpfr7++UoHKf/hEGCnALJOxKZLAssy8LatWsFPZFTYQ8T2zjK5TLGx8cBLMyH0jRNesdI/NHjQWjMkaL5fF4OpORmcHpiGAjpKOaiWbJkCdLptJwsy3G4PNDzyiuvhKZpeOONN6REbmpqEu7B6/VKVz1VTHIK5HYAiORPopUkJLkzlhcM+ITyzkmOAITsXLZsGUKhkKiJJL3pMN6wYYOsDZYUvKdisYj9+/ejWq2KjEw5mOUh25V4AAETGDMnS34GzZ6eHpn3DECSITco0TbbNKjCrlmzRpqlWVIVCgWcPn0auq7LpEweCdbe3g6/34/rrrsOoVBI5k7TdsHmV5b/fGeNjY0SpObn5/HLX/4SiqLgwgsvlLPkqtXqIuc7yxmnNcBpqXGWn4Zx5pAHikskwlmeU/AYGhpCKBTC5s2b0dTUJM3fpBgqlQoSiYTwmtwruVxOuB6WceFwWFS6qakpzM7O4ne/+x1OnTqFkZERIetjsRiWL1+OUCgk3R979uyBZS2cEEPgQgqEIhED3nsKSlR9gDNqmcvlEs8CCTtnQyKJYUq9mUwGb731lpxw0NPTI+e1UYJn+USDHgdHcbTGzp075VytfD6P8fFxmcxHpYO1PvtsAAhRvGLFCiHUOYeIWczpWyJiIBTnHB/6aHh6KDcux+NqmibPg0oF+Q2Wj4qiSM/crl27ZIysbdt48803hRw0TXORE5obi2UONyKhNoMlg6JTdqViQz8ViW0Gbb/fD5/Ph+XLl8Pv96OtrU3KHAZcbnaeFWbbNtra2mQtULmq1+viM3K2QLDb3rZtvP/970dLSwuuvPJK2cypVEq4Qg7kO3z4sGx6ltV0RnNhk+jmZ7tcC0cqcR1STlcURTYYkx6TDFEi/5wlOX+Gx3pTPR0dHQWwcBqLrusiWvz6179GNpsVBEdrgXMKJNcd20yIati7SYGFAojTy0Qxgu+d1QTLXr/fj2XLlslQvlAoJIQ1sMAVvvjii5icnMSLL76IWq0mTdfcs5OTkwgGg9iyZQtcLpesWbatfOhDH8L8/Dx+97vfoVQqyf0kEgkhy2nStKyFpnYiJ74/rmUniv+/DkosobgZGOHZNU947Pf7Bd7T1MYyiJ6iWCyGiy66CEuWLJEHmUwmhSSvVqs4evSobJj5+Xk89NBDwtrT0RwIBNDT04N4PI7GxsY/GUiez+fx6quvyuRBj8cjRxkxIxMuz87OQtPOzL9hcOKiZk8dj2Xms6D/hcQ4jZ08wWJqakrIXGdjKAPBhg0bEA6HZfQKJe+WlhaY5sK4WyqEJNmdhCoNmnTlElUyOBGKEy0wo05NTcHr9YrXhZuTC4aBxDk0jQgok8mIwMHMe+TIEYHytm1j9+7dwqn4/X7xM7W0tKChoQHd3d3w+XxyLNDx48ehKAq2bdsm1oF8Pi/qF9uJeNKLc2Klqp45dYSole0/Tue51+uVgwPocyIVsGTJErGQ+Hw+saZwPR4/flzoAdphWDI5j9IaHBzE/Py8qIPAAurnFMb169dLwKO6Wi6X5fmQb2IQ4bsHIMZKJhjyoEysRKL8Hlu3bpXhiww2U1NTeP7555FKpcTIeurUKUHoXq9XFD++c5orOTu+vb0dwWAQmzdvXjQ9taenB7Xawtl9lUpFEuvU1JTwbbquy7FYrCbec1BiRKPETf6AJYzX60WtVsPevXtR//9Ie/PouO/q/P+ZRTOjGUmjXZZkydrseI+XeCHYWUxIyEaWHghb2aEsPWmBBjinpymHfgtlbUsLPSylbcLWACFx0iQkhDhLY5PYsR3vluRNXrSNlpmRNPv8/hheV+8x1PSXzjk+YGekmc/n837f973PfZ7nZrOqqqpSfX29lixZokgkoj/6oz/S1NSUfvjDHyoUCunjH/+4Ojo6bJNRkx86dMhA4mKx5OSXSCS0ePFiy1IgPWImV1tbqzNnzhiOg9wlm82qvr5ewWBQR48etWzIPRFJo1tbWy3QoOL2+XwWNJcuXWrRH96M11sai93Y2GinABISTM46Ojqs3esGMMzdCJDF37KQXVATkqLLkqWr4gKhkUhEXV1d1mFkMXNfwZpcKxKeZzwe1+TkpAYGBkzo6nKYLiZZghcxfrqystIcKjOZjJ566imNjY3p/PnzikQi6uzsVHV1tZnsg42RfdXW1qqystIsNE6ePKlYLKYXXnhBxWJRK1askNfr1alTp5TL5Qw+oP1NWdjV1WXWKpQxfr/fOmpr165VLpfT0aNHDdSvrKzU+vXrLfCnUikjABP0aBSAO+7du1c+n0/r1683LMdt9LS1tSmTyWj79u3K50tTexoaGrRq1SoLKGNjY+bsefPNN6tYLOqVV16xz5dk6wzuEy/WL2UPGRRANzIqn6/knsEYMrLWpqYm3XjjjYrFYuYxFg6HNTs7q4MHD8rv92vz5s2qq6uz5gtriT1ZX19vCodkMqmBgQElEgnt2rVLc3Nz1vxYt26dwuGwFixYIElWfXDQ/W8EuZcMStiHgPCTYYAJ7Nu3T4FAwLombCbIhmQzf/zHf2wYFKckp+3k5KR27typbDarFStWaG5uzszDurq6JEn79+9XOBzWu9/9bpvJFovFTPPFpgT/SSaTRs6DL+KyncFS3AwLgJXrZWHSfeSUlGRKafhbBJ/9+/crHo9rdnbWcCq6NWRipLTV1dUGsO7evdu6cVVVVSZjAXgk8KxatcqMvbLZrFE0kDtcbBdBsKMcJXUG4yHYj4yMaGpqSuPj46qsrFRvb68CgYC5HHBC0yLu6emR3+/X4OCgcrmSqfySJUtMhkEJcvXVVxvuwImZy5X8gyYmJvT8888rnU6rs7PTcCTXX2rFihUWSN3DhOcAvwjyJIC3JLtPZIDYqnD/g8GgZQmUVm7JXSwWbRAAHeaFCxeWia65lu3bt+v8+fMGcDOyiTHd69atU6FQsJFWQ0NDltmGQiHDqghEXq/XcMjp6WmDJ7gPbgOC39HU1KTa2toylwg3S4bq8uY3v9loK+zTSCSizZs322EEvcLj8ZhlCSOiXnnlFZ07d047duwwf3HwSjqCXq/XEg/2kksM/T+Vb/j7oJJmgdKWhOeC+p7W9OzsrHlNe71eG/fS3NxsJRjpOh0xhKJQ4cfGxjQ4OKjq6mp97nOfUzQaNTuGiooKG6WDpiqXy6mlpUXxeFyPPvqoxsfHDeAGnJfmqfKciGR/AKZ0QVztFw+ISapgAaTWQ0NDGhsbU3V1tbLZrFEfKA/7+vrU1NSkpUuXKpPJ6Cc/+Ymy2ayGhoYM7Pd6vRoYGDAMiCDI/aUk45Smm4dZnfvi5KXrxB93YQcCATU1NRmGRDDjefHZZHgdHR3mE5XJZBQMBrVixQr5fL4yX+hYLKavfe1rKhQK2rhxo/FfUAVAVkylUlq5cqXy+bz5dn3gAx+wk3hmZkYHDhwwagiblecNIRDujqQyQDWXy+nUqVMmn6ioqLBN+9JLLxm+Bqjv9/vtMAGTo6zq7e219SHJyLizs7PGC+JzkRtVVVVp0aJF1n0MBoO66aabVCwWdeHCBfMy4vsFg0Fr6wOkS/NcKESxDCFgnBSA8oEDB+TzlTyi6uvrtW7dujLZ1NVXX13GQ0I/SLZOVsxap/zD4gReUm1trVKplBYvXmxUnpqaGm3atEmBQEDnz583qoCkMnsagPv/k/YNtTYPGbU5YPDw8LAqKyuN93L69GmrI2lLI9T0+Xxmv4rdbU9PjzwejzZv3my/HzFsTU2NXv/618vr9Wr//v2KRCJau3atKisrNTExoampKT388MMqFot6wxveoHw+r0cffVSZTEarVq1SS0uL8VwQ6nIdLmOYTMjtjrjOjZIsxW5oaFAkEtGpU6dUVVVlzHZpXocViUS0ceNG+f1+TUxM2CRYqAVjY2OqrKzU9PS0fvzjHysYDGrz5s02iokJvJlMRs8995wCgYDuuusuVVdXa3R01MZ0Ay6iGaTEcjftzMyMMY79fr8NyYTDw8JetGiRvF6vZUqM+nGdBygzCWbcT5cPxial7AXkBZdg8zY1NWlmZsb8mTZs2KBsNmuDBrq7u21WGbKVYrFojZdFixbJ5/Pp1VdftTVWLBZtwUNVaW9vL+M1UQJVV1erqqrKzNhoXwNEk6VymIE1cegmEgnNzs5qeHhYk5OTNi3lscceM2Z4VVWVjh07poqKCm3atEmFQkF79uyx++/1loTpHo/HsC4yHNQHblbhVgNUIeBkHDipVEq7du0yojFDMxjSQOeVjjY4bT6ft6lDlIa/+c1v5PP5tHLlyjKWOIcSByflmuvJTbOFjrjbJIKpfqnXJXlK99xzT5ELBsuANU20hUbPZgKEdLt12CDEYjGbSCqVWucNDQ02WcEFx9LptE2PWLhwoXw+nxKJhJLJpP07devo6Kh8Pp96enqUyWT07LPPqlgsTXKlDAGb4qSABEqK62q+eA+ZGa10wFZGN8Frcg3uedDU/2Rmc3NzevHFF8190CX9RSIRhcNhdXd3m9d4KpXS0qVLVVdXp8WLFysajZYNMEgmk6bhQnJAUOJ5udYcdJHcf2fkzuLFi40j5QLeLheooqLC2saw0F1GMuVHJpMxLOuKK66wkjWXy5lg2x3bxCExOzurWCxmjQJoCAQbyhJOXE54Dk2Cstt95TmQIYKHYsZHZgLD39VnVlVVad26daqtrdWCBQusPAS4p5uXTqc1ODioCxcu6Gc/+5nGxsbsPgMUX3755TZJ2u1YAj/g7sBnezzzo5UIkO44Kko4oAm3U8wzY63jKAk0gEUvpv/sWbq97BX2LxNa0um0JiYm9Itf/MIycDzR8vm8jaangujo6FA6ndYLL7ygVCpl7H8aU695GCX1JVgEUQ4BKGUYM+tTqZSi0ai6fjvaCMzk+PHjGhsb0/PPP69UKmUn7dDQkKamprRgwQLV1dWpq6vL0vdCoaDrrrvOTn5qVTb9+Pi4HnnkEQUCAd1yyy3y+/3auXOncrmcli5dqoqKCmvPs0hJy2GFs5i93pJ/EZo0bhyLnr9PTk5qdHRUBw8eVG1tre644w6rwysrKy0jhHqA9op6GrP1vr4+yxxnZ2d1+vRpsxvO5XJGHaAs3bJli4G9nFIIRtPptGUGCIxZWHRoWOyQC7HhjcViVgqCSxBsisWiTflgQ/X19Smfz+vJJ59UOp3WsmXLFAgETJPIQEJGEEFqzWQyFmySyaRlJqj2WUevvvqqstms+UwPDAwoHo8biRKSKhYsF3eHUQDw/SlDsZKFLEmZThne1tZmgRitIGRg2OWhUMiIhq49B2TRM2fOGJEQnhNZXtdv/b0OHz6seDxuspKOjg55vV5NTU1Z4IcLCI5LMuBOSikWi8a8jkajkmS0Ag4812IkHA5r8+bNqqqqsuGSdNsIlByQBPK6ujrLnoFwqqurdeONN2p4eFj33XefZmdntX79ehWLRR0+fFiSjFiL1OxikB4u2qVel8yU3v/+9xddIBHlrzshlnSWU6OmpkbXX3+9jZ0eHx/XAw88oHQ6rQ0bNhhxj9ZuJBLRqlWryua319TUKBaL6bvf/a6mpqZMu0bwYxLtM888o3Q6rQULFphBPYsZhjOnCl0fV1DpGs5fnCWhTeJzSZmDwWDZoD0YuZw6LHTwEzRnbn3OxJDdu3dreHhYzzzzjFKplNrb21VXV6fXv/71Fuyo2SkdXCY7J2F/f799P0k2bhzcBdvW8+fPl1EIICNyUtNKR4LAM2T+PGWgO/BBmp80PDIyoubmZt17771qamrS1NSU2cnynlyuNNIoHo/r8OHDNsDS5/OZUylasaGhIUkyXMo19ocCwInuSoagrBAc6HgSlOHZUa51d3fbBnT5TnSKwB2R7axevVrBYNDIvDt37tS5c+f0xBNPyO/3W7nNFGQ8h5qamqyRQ5bKpnVLqlAoZAx/xMjnzp0zbMfNYCE/dnV1KRKJlA2vmJiY0L59+8ocGXp7e1VTU2PZMRCAqxKIRqNatGiRqqur1dPTY5QIjAfHx8f1+OOPl0m9yMDAVd01yV6R5mlGr3lwAAAo2QSqeRjX4Ba7d+9WPl/yyCb6InbECmF8fFyvvPKKPB6Pzd0iKiMLCIfD1hnh97ttSej2jFP2ekuqfW760aNH5ffPTy/hZ8h6ADf5dxeYd4FTAEK6HpQMdDIAAz2ekrcRk18JVpyuaAQ5hdra2jQ5Oamf/OQnOnv2rPbs2WO/q7GxUddee63a2trU29trbXoyAhoDbqsWHyoA4DNnzhhIyWIvFAqG07H5oBZIpS4VnJVFixYpGAyqq6tLc3Nz2rt3r/L5vN7whjeY44EkLV26VLOzs9q1a5empqYUi8VUVVWlW2+9VU1NTTp27JjROtD2FYvzdr3SPEbCsyCokfEgTXC9fliPvAe5kEvkdIMY93Dfvn12n0KhkHp6eozUSvnO57Gh+Q4VFRU2QZhKgYyMEo4JLV1dXUZC9Xg82rVrl/F9JFlZu2XLFhUKBR0+fFjZbNYOHeARF9Pk2smyydCQPp05c8b2JE6kVC1SKXuenZ21jAfM7OTJk3bgeL1eXX755crlcrr//vsViUT0nve8xyZag9mxF+hWIgaX5lUF4E/d3d2W0RLMoLkQoF5TUELNDGDMJqCOZfNxcqCoZjoCk1EpU6hP29vbNTc3p+3btyubzaqnp0ctLS26/vrrrQVZXV2tLVu2aHp62k6ctrY2y2pCoZBWrFghqdQazmazFkwCgfnRxKSLF3dXWFh8ljTvq8SpS1kEqRHbXjotfB60/R//+MeqqqrSxz72MTU0NNhGwAKDhXHllVcql8vpXe96lzGtXVlGJpOxB+8Cq/jwQHyEZAhzHXcFyl3Ik24rnS4PdADSbDIIOqucrOFwWFdeeaWdgAwuJHWPRCJatmyZ8XxisZj+6Z/+SdlsVjfffLNlW/hPzczMaO/evRofH7eMj2CCxQqBCEoGmWt7e7tx48BaoFxwgAGm0rVkwySTSQ0ODiqRSBj4CveG9cA1r1y5Un6/38iYdNOWLFli4nBY/NXV1dq6davm5uYMLyQTu+yyyzQzM6NXX33ViLMzMzPauXOnJJkUBaoFwRRXA7JKuqXSfNOB8VVUEYDngMidnZ0KBALatm2bksmkHn/8ccViMR05ckSSLGm4/fbbrQmSTCYVDocViUQs4ycQ8n1OnTql0dFRgwCADNAzUoYCfZDcrF69WlJJGvV/cgnA3oN0mDoUDg6R2f3CaJOYRx4Oh7VmzRrF43E9++yzisVieuSRR8pU3yMjI/L5fHrxxRfNyoRFPj09rQcffNDwj+rqam3cuFGStGPHDuviFYtFHTt2zISdfr/f1OgEE05pV9DJqUN5J5W0YPCdKioqjC8FB4lTA7Hio48+amS2yspK3X///WpqatKmTZtMFe33+611T2mFLIB/Byu6cOGCMbZd0zFaxWRkYC9o+disBCMWN3ojuo1uSUvmQLDFsgTek9dbGtjAc6ysrNSWLVusXKfE4Ln7fD7deOONFpBTqZRt/rNnz2psbExHjx7V6Oiojhw5okwmU2Ya6PXO288iwzl//rytMTIASWZjS5kMZ8bVIgI4Qzal/HXlOLt27bJDjflpjY2NeuMb36hCoaCnnnpKXm9JuAsGw3OcnJzUr371K/NOotzOZDJl6zGTyWjPnj3yeDx6/etfr3A4bA0W1gM+YYDa0jzVgM/lDwcTVsUEhIGBAbs2DlKy4CVLlui6664r0xoinens7NSSJUv0nve8R5J0+PBhTU5OGt1nbGzMhpECAbhZL9Iod4wYBzvcLDKp/1OmRHuPWnx8fLwMIG1razNsidSOlng0GrXRO2Aly5cv18TEhEKh0jwwJi643ZxoNGrZDWS0m2++2WxR0Lglk8nf8c3hwQFcnjp1SpKMuc1NBLjv7Oy0TOTiblgwGLQNgFyFzA+bWKZXgM24gDDY2cjIiP75n/9ZZ8+e1f79++266+rq9K53vcssfQHEyUjBfSjbisWipdJkdhj8kzKDCdEaxzSP05O5cRAZUaKTKXFf4A8xyZZTDn5RPp83DVcoFDKrku9+97uanp5WW1ub6urqtGnTJhWLJYMwpEhgSLOzs1q4cKFlcPwBeHa1bQDm8XjccB2v16vR0VE7qCTZ4QPvDUoAAxh4LVq0SKlUSnv27JHP57Opstgvkwn98pe/tMypsrJSo6Ojisfj6uzstENwbGxMp0+fViaTUW9vrwqFgvbu3WvkVqmURfh8Pl133XXmg8RhTlcrn8+b17uLl7lOE0hkuAfoMKGaSLIR4BBJly5datAGU4ybmpqM+7Zx40bFYjH9/Oc/VywW0wMPPGBZ5IIFC7R8+XI1NjbakMpCoWDE2EQioWPHjpUJjSmxgQggYLNW3TL7f3pdEuj+5Cc/WXRrSYBGwEPXxhT9VE1Nja655hojWnEagwOQXXi9XntoWFLAbThx4oTGx8f1/PPPW9ZVLBaNpwMQS9QlmmNXiq/w5ZdfroqKCnPExCgLABPtkcvDIOhBHmQRSLKbWlVVZWCe3+/XlVdeqdraWnOyRJB78uRJTUxMmBtANptVMBi0Vj/Et/Pnzxt/hYwF0B9ejUsK5DnQ2mfBul47Ho/HMiXwDxwYCYIE3gMHDthBEI1Gdd1118nj8RjjGhCzvr5es7OzRrlAdgFjF+zozJkzxtcBxyM4ptNpI9jBe6ObxfW7XBe30+Q6ZXq9XhuPju+Re33gMbhYQH6FSY3+C2zGLfdzuZIR30c/+lF5vV7dd999CoVCuvfee60DCJ4zOzur6elpxeNx7dmzR4lEwhpCjY2NCgaDRtCEoIgshnKL8tT1Foeo7IqHWXs0iVxOFkaD9fX1ymazOnLkiHK5nHlwUfbCcncntiCtAm/lWdJ0gYdE+Z5IJGxgJ+uaLJ01yO8im72YxvGtb33rtQHdgMScRK48gZPL9VjmFH355ZeN1wJ3IRAImCE7QQH/GNeSJJ8vmZABwBKN/X6/MciXLl1qgklS+kAgYDeYG37y5EnbCJwuxWLRunPFYsmQrbu72zYGm5WFzQamxQz2woOUpFdeecUyB1q8Ugnojkaj5ijIYuL6duzYoZmZGUt1YSZTniGBOHXqlIrFov07IChKcUiOLAgCDMAsm5LAi9MmQHHXbzV0fD6tebpfkUjEFlc+Xxq4wPXMzMzo4MGDmpiY0LFjxxQMBvXGN77RbFi8Xq/xzCYnJzU5OanBwcGymXbuAATWHeuDv3MoSLIgxXUT2Fino6OjZd1DrF4pM1zFerFY0ofV1dVp69atyuVy2r17t7zekrldY2Oj/uZv/sY8ugmwlK/xeNw8x2GII4WCAsG+4L5jScNhA7Y5MTFh95U9Rmue+z9tbEeeAAAgAElEQVQ9PW24En/n2bLPwN/gL7EW5+bmDOA+d+6c0Rs4tOrq6rRx40bD5BCYk62ydqanpw2uICunIUaGdHEHmszuD9EBpD+QKX3uc58rwnmg1i8Wi1a2uJmEe2JRkpw5c8YiKF8sGAya6t71G3Y3P102ygU6KQSBCxcuWHnDhfMgwCBYlGQYtM+9Xq8Bm2xuiJXuiCEePDfRxdYYiMC4GsohpoJQ9gHGQqJbs2aNgsGgksmkTfdIpVJmg8ucNbpOWFnwPeA7uRuMbg2nFKcp1Ao2vbux6SoSPMHYyBrcsonFKsnYw5yEPA93ThxePC7Fw51VhgiUZ5ZOp8soF+A17gtsiHvBGHO8fdwumVSiPpAlSfPz7BEfMyQSR9REIqFQKGTsZA5Kurnr169XfX29ent7JclMD12tJPeUDCqTydhz45ronBEMXQ/yQqFgVkCsIzqL3AOeuyQLFkAOVCMEB1e7BoEU9ns2m9Xx48fl9XrNZZPpz7hyrFixokzzSSBCi4dxHwRQgtPF1+y+iBFer1df+tKXXtvggI9+9KNF2t4EDCI5XbVCoWBiPDZ1PB63OpfFSvpPZE6lUjpy5Iimp6d14cIFVVZW6tprr1VFRYWOHz9u4DN6GQBtv9//O8MQSYV5gK7tB8AjmBigYrFYNK9rgiLlkqvadgFygoJ70vLAwNhQycN7mZmZMZMyRiSzkPh9kM32799vwK9bn+MrRSbY1tZmJFNSavg7kmwzusM22dg8T/7d45kfRkkL/fTp05qdnTX+UF9fn/z+klYwFApp5cqV8ng8OnnypP1bIBAoK1MInizQXK5khzs7O2t8KbIEF5t0GycMQrh4rDlBwM3cwfrcEsItJSjb6IKS5bjBnOtgzuDJkyftPoRCIa1Zs0YVFRUWzHFxYE2BBbrqAA67QqFQRhr1eDxlU2o8Hk+Zpm7x4sXKZrO2x1wuFsGNg8qtAsjM4A/19fXJ6/Xq3Llz9p3BnFizwBO5XM6wKIitZPGw3jm4xsbG5PP5zDmWDijP3e0Suux3xmndf//9ry0o/emf/mkR4M/l2/ChANWUAa79CGUFX4YHRJeLbhSLDIZ4sVi0zUf9Pj09bSc9Jx4ZkjSPRQE4ul0QNok0D/SSKcHfcb8/DpScMu5igc/ijrHmutiAcDKkeZIpWRnBkgDPJrSH4ZkfaQQWJP3uaCQ3Xed3uScwpyodGFJ+FzejvifjolNDOeP1llvVcHLTyaK8IIiRuVKWSDKrF1do6qb8bCw+o6WlRR6PxzzB4cUNDQ0pl8tZY4PrwAPcXZOsEbIGl+LhTgvxer3Gt+PFz4GDEnTARgYHBy1D4LP4OSoEVzvHZueeA2jznF3MkPslyQ4ur3d+4Cuf6UpMyIo9nvnxUlQP7DkONv7dnWbt8XjKmlesi4qKCjNupGS/WIzv7inew7+zz90DkfdzEHz/+99/bUHpy1/+cpGbiwwiEAjoLW95i0KhkA4cOGCKbrydA4GAKf/djZvL5ax96WIoRN1QKKRNmzbZgABOFlridJ88Ho8NV4SkhvYKgenll1+uUKg0O45yxOPxmFE8i/X5559XLpezTAfMgI3tPmiwJEnG0GYUU2Njo7xeb9n0TzaaJMu23DHjLikVxixlEOUU95AODBgcC871KJLmiYgsYO4/qTutdzeYcx2w7znJ2Zh8fxYm5FK+j4t7UCaSqYFv8P1cCoHX67VSwB3NRabKqe92F9nM3GOGQYKr8D3IVuj+uj/HhnZJsq4Ewj1Uuc88H7fcdcFcOEI8N66ZdUxQpTQEO6Ir7MINbGaXRwZO6vP5TN/n4pZUCy7Uwvs5iPnO7Anu+cVZJd+fTjBNJQKnO0NPknU2XZ9x3k/Q5NmzNorFor7xjW+8tqB05513FgOBgJqbm1VTU2Ot4cOHD6tQKNhwPdJxFo578vr9frPqpAPQ399vrVi/319mYp7NZnXgwAFNTEzo0KFDCofDuuuuu8xULZ1O6+jRo2bmJsmCRUNDg3K5nDFlkRfQ/uTkAjNinheUBrAZTh9uIJsabAR5Bac2ZRiL3k1hCTzwadxTQ5IFJRYCXSTKBwh9blnJKeliSijLpfnTkZLUDSKSfmfOm/t93b/zv7yP6+V305GhnGUNsAHcri2dPbqkhULJ04f7zSEFEOzCBdwbsC02CpueDJ37R3ZBqQEWyAgogifXAdZI+QnWSWPj4syfnyXIcxjxXdmQBBZ8tzg0yPzBX7inlNHBYNB4PW42TILgAsgcWEAN7r12rwWIwm3Hu7gkwQTS7YIFCywIsrY4EMGmALa9Xq/FAiAbqgyunSqETvEPfvCD1xaUfvzjHxcpr7iJeF5nMhk9/fTTmpubU1NTkzGK5+bm9Mtf/rIMhcfsavny5aqpqTHsZeHChUokEnrggQd05swZvfDCCwqFQnrHO96haDSq6elpjYyM6Ac/+IFp5xoaGrRs2TI1NzebYPfhhx9WLBYr+0woC8FgUBUVFTbiyefzafPmzQqHw3rkkUesfKI84+9oxjhtKDcuPkHZuACcUAlYCJxaGPUXCgUT/pJNIe8gewKrgjnP7wEI5nuyWAGN2SQEUxcUhw9EaQs/SVLZISLNyzTINAjMBD0GDbqlhHsd6OkgA7pYI0x1MjcaJ2QvANZu9kfQ4xrgxWzYsMGCiltOuYHELT3AjygT2SAECzApyi/AYwK4C2ijoMfRgu/lUjY4TDgkcEs4c+aMvF7v70wGBs4YGhrS4sWL7TuwvtLptAlqA4FAWaDm2UCbcF0FOIhYB4XCvHEgViZws8B7Dxw4YFwrcGBwZBwp3DLQHbBKkJXmuY6VlZXK5ebtjy41IfeSlICjR4+WRf5kMqlYLKaXX37ZTgvAQWQcExMTOnLkiOLxuM0Je/bZZ9XY2Ki//uu/lsfj0dNPP61AIGDOhB/84AcNrBsfH9d3vvMdDQ4OWlr45S9/WR5PaQjk2NiYfvjDH6qurk7Lli2z8THRaFSHDx/W1NSUXn31VUkqs1JxW7I4UfJgGJHMJmWz4M4H6E7ZgYwDm9uOjg5VVlZq8eLFhoXl83m7BuQfbFLSdHgrBw4csJMfx0KoBXwG3BiXN0WZxu+D5Er3qbOzs6yuJ9i5eAOdQYIV/+7z+cqsXegS4qZABprP53Xu3DlbiHDYfD6fYUKAr64tBuUCwdbj8Zh4k81Ll5VnyPdzR0ND4QDLyufzZpFC693VbtFuJ6DTECHLIbNNpVI6dOiQ8vm8WltbVSwWjQmOlQw8OSgJra2ttoH5/XjXQ8ANBEpjwAHc3QDD/cT94Xc262+DAAdkPp8vA+vh7NGUgMvH+8igfD6fcYsA0o8dO6ZAIKC+vj4Fg0H19vYqk8kYp8wV7Pr9fgvgEFqhiUDg5fe6HUEO6D9EC7hkUALQJR0mezly5IjS6bQWLVqkfD5vE289Ho99kVAopCNHjqiqqkrvfOc71d7erubmZmUyGR0+fFjhcFhve9vbDBcaGBjQ29/+dp09e7aMyNXW1qbbb79dlZWVpnFjQU9MTGh4eFh/8Rd/Yab4pKfhcFh1dXUKBoMmtMTyFhX+M888U0ZD4ESFIuBiOe6DJRC7bgfhcFg9PT0KhUJmko4msKury8pcyJSTk5Pm/ifJghbXVl1dbTaqAMlgSIDM+FSRUXHtZBx0XHg/9T2AKqXA2bNn7e+k/KFQSF1dXSoUCjp69KhSqZSVAsPDw7YQ6+rqdNVVV6mystIaCJzI6XRa6XTaBgKQQcDnotPT9VtrD7q2HA4EGdjKNEhY1JSjZCVcP2UWgQbsjNKGsg0tp+sSAXHQbXRwWNxxxx020BF9GBsOPIcSZXZ2Vv39/Zqbm7MshQAyOTlpmBPqAY/HUzbs1XWfBM+kLGLtUbK6ZW4ymbQmD1ADWkIkTC7GBDxw2WWXyePx6Ny5czbUgGCLr3k4HLYDvKGhwWxe5ubmbHwVBFoySt7vZrtuVvv7Xpcs3173utcV6+rqdNNNN5ninwm4gUCgbEIqHivT09OqrKzUokWL9A//8A9mCTowMKDbbrtNmUxGX/3qVxUKhXTfffcpHA7rb//2b43sxcKgy8TiOXr0qN7znveooqJCjz76qAqFgm677TYNDg4aDtHT06P29nZ95CMfUWtrqxoaGjQxMaFvf/vbymQyetOb3iSv12tma3TTLp6YS2ZBkKVrg4aM0xWKA2LkrVu3mt6PExqshLJleHhY3/nOd3TmzBnt27dPhUJBS5YsUU1NjZYsWWJ4ClgQAYUOyszMjF544QWzbAGQlObJrnRL6Z6Q2pNhYF7n2v26PClXwIvwNxQKaevWraqtrTUBMKRTggjBmikttH/5PYODgxodHdWOHTvk8Xh07bXXKhQKWVlE5sJzB+TFvoPMlSyATBw+FzIj7glz9np6emzYwdzcnLkzpNOlsfDXXnutGelTLoOf0CipqanR29/+djU1NZX5doP7kBFOTU3pueeeUzwetyDIEFfXQiadTht73O0u83IPK/dAobkAnkq2xWGNIR1NJUnWGeTQgZArlWYhkgW6XLGZmRlVV1dr27Ztqq2tVU1NjbLZrI1yR1pFB5NG0+OPP65sNqvFixdbRoXNjdtMuvfee19b+YbhO52SnTt3yustqdx9Pp927NihYrGo7u5uSykjkYhuu+02tba26vz580qlUlq1apWVZ6FQSN3d3erp6dENN9xQ1v1whYi8fD6fGhsbdeWVV+rgwYOS5rGcw4cPq7+/X7fddpsk6Tvf+Y6NfInH4/r1r3+tqakp1dfXK5FI6N///d8lSb29vYpGowZ4MowRiwrKNNLvAwcOWKciEomUyQdCodKkWVwpKSWKxaLNC2Nax29+8xsNDw+bfAM3QMo/yKVuR4WFlkql9Oyzz2pmZsa6fWQMUAfYJNI8SZKAQF0PQC3JyiZOYXhedAERxjKsETO+trY2I79CZiQTcbE0+DmQ7kjtFy5cqLm5ORsY4VJAyD7REno8Hl24cMG6iu4pjwMiWSP8Lb5HfX290um0rVsGXFxxxRWWifr9fhM8I6fo7+/X9PS0hoeHlUqlND09raamJnM4JbvG9aG1tdX4c4VCQVdddZUdIvn8/JALfLMgnQ4PD8vj8ZT5dkmlriL+SQR1OsiA9XQy+/r6TNuGmwTcL0nmsHHkyBEFAgEtX75cVVVVuvLKKy2DKRaLpkN08b5QKGSY2cGDB+X1ltj/jDpnLc3MzOjIkSNKJpMG9cANdEvRbDarkydP6lKJ0B8MSq2trcpkSvaytHmLxaK2b99uiy4SiZhymJLp4x//uNLptG677TZ5vV498sgjWrx4sfbu3WsnGx2k38f8dF9cmCTLuG655Rb5fD49+uijWrJkiQ4dOqTTp0/rk5/8pDwej77+9a8rHA7roYceMu5STU2NbrjhBoXDYSO5uaNoCEJ04ug6zs3NmaHX+Pi4nYB1dXVauXKlbRAWGcrr8fFxvfDCCza5JRwOa9WqVQqFQjp+/LjZSGB0h1YQ07t0Oq0HH3xQ8Xi8zB8oEonYYIP29vYyQqdrwwqAKs3Poec5kVGBuyxfvty6eARC7nckEtGGDRsUjUa1ePFiY68XCvOTNiDWud1KgPdIJKIlS5aY4XwqlTJLmscff1zxeNwyO8pDPIjwxkZr6GokKcHIAsAEyUxcwh+TkTk4scNFwBuPxzU6Oqr//M//1NzcnC677DItWLBA73rXu+T3+21qz+rVq21e4eTkpJ577jl5vV5t27ZNDQ0NZXIlSdYCp+P6hje8QXNzc9ZGb2lpUS6XMznPunXrlM/ndfjw4bIZcGTZLmcMjCcajaqyslKrV6828TaAeDZbGshZUVFRNqyShhXNl1AopPb2dp0/f15/9md/ppGREXV1damzs1Of+MQn1NzcbARXWPMQgxlUCpAdi8Xk95fcRwOBgLlfQq9xVQmvKSgNDAwoGo3qrW99q4kYKVsSiYS2b9+uQCCg22+/Xc3Nzfqrv/orm/Pm8Xj04osvqqamRhMTExodHTXzctJ7gg6RlNr6Yj4Ki3JoaMgmlLBxSPMrKip02223aWxsTH/3d3+nWCym/fv3K5vNqqOjQ01NTSZPoA7mJEPmASbCyYx7HjYcSAcaGxsViUR04sQJhcNhs0h5/vnnNTs7axYY73rXu0z7BiA6NzenTZs2aXp6WidPntTIyIgee+wxFYulAQh+v9/KHknGhAckzWazOn36tH2vfD5vfkxQCeiawS2hvHJBcrSJHo9HQ0NDmpmZsU1PkCB419fXq7q62iZUkBU88cQTmpycLHOYrK+v19q1axWNRi2DjEQiCgQCuuqqq+yZYYo2OTmpvXv3Kp1OW7nqdnBcoB1sxO0CAnhT+kHKJQOGakJJk0wmzexOKglSd+zYoWQyad0wRgXt27dPTU1N5iRJ5/SHP/yhbT4cJn0+n5X3lPiS7PCGozQ1NaV9+/bZOCfWNdkXAYNgxmamfGPA5rJly+Tz+TQ1NaXR0VHzM4JDh+MkZXk0GlVra6sZLII5cdj+27/9m86dO6dAoDQoAfeBH/3oR2pqarIyDmKxJMvIEomEldZuFgiLnucNfeQPvf6gdcnU1JSeeuopq0fj8bgeeeQRJRIJRSIR9fX16UMf+pCh+vX19frQhz4kSaZ/ogtDEHKxo1OnTulDH/qQfD6fvve979msMk5chLqStGnTJm3ZskXHjh3T0NCQPvGJT0iSvvSlLymVSukrX/mKvF6vfv7zn6u2tlY/+9nPNDs7q67fOik++eSTdsrlcjlt2LDB2KuSLDhiasfmdiczJJNJHT9+XNXV1dq0aZNNjOBkR7MGzlVZWWlBhZLM5yuNJdq5c6fS6bQ+85nPmNVJKlWaPAvOEwwGDVhub283PhVkPI/HY14+lF9gYmwOumFMioXpDb+MmX1kZJWVleYHlEgk9KMf/UiBQMAU59XV1ZqdnTVf5iuvvFKNjY1WhjJssrq62ryqAfBdADyRSGh0dNQwPrpvLkP6YgoEGSMBRZoX8jJmm/uCBhMeErjK2bNnrUzPZDI22fb6669Xa2urrrzySmUyGT300EMaGhoyEev3v/99jYyMlGXura2tqqmpsWBAC5wg42KK4IPxeLwsuxwbG7P1wfVDUnQ5VxUVFWVSJXRylFiMVqdb3NPTo4985CNqb2+3souKALLsT3/6U8tWJem///u/FYvFDLKQSo2IK664wriCkEOTyaSGhoY0PT1dNnSB2AHdgjLTXXOvOSjhM1NTU6NEIqGnnnpKsVjMOm/f+ta3VFFRoU996lMaHR1VJBJRc3OzPvCBD6itra3sRgAanzlzRvfcc4/y+bw++9nPqqqqSm9/+9tVKJSGIvK7JdkJ8qY3vamMsi+VdGQPPvigBbBMJqNHHnlEUqnsjMViOnnypAYHB/WNb3xDwWBQ73znO7V27VrjxQA0ul41oVDIRg7BFOeGB4NBO70CgdKoobq6Op09e1Yej8c6QIggAX45ldmUiURCY2Nj2rdvn1Kp0kC/pqYmA0IvXLig8fFxS+vxmmacEgsVMNqdGe9q+yB5SvPTLdC38T1gxhM85ubmtHv3bsMWstmsDTTo6upSY2Ojrr76akWjUTU3NyscDutNb3qTIpGICW3BvMCBKDXYPEeOHNGFCxe0ffv2MkInXUE2J+PMoXC4ftWUivDgaONLMhB53759ymaz1j3DuRJPK4JYd3e3ZT2JREJ///d/r1wup4aGBs3OzuoTn/iEUqmUyZbAdciua2pqrKRMp9M6fvy4gcbgP5gczs3NqbOzU52dnTbUlXUFRkXW62ZRNDXAP8Evm5qayhQDsVjMjBBbWlq0bNky1dXVWQeQvXL+/HmdPHlSDz74oI3e8vtL034ptdkbuFySyXIATE1NmZsne5zyjMwOw8Rjx46VEWNfc1BatWqVMpmMzp07Zzevra1Nd9xxh9rb27V48WIVi0Vt27ZNknTrrbdaG55T3v0CbJR9+/ZZVtXX16dly5bp1KlTuvvuuzUxMaGNGzeqs7NT7373u9XQ0GAte04ofHOkUmnCyCYQf9L2j33sY1beTU5O6oknntCZM2dMozQwMCBp/qTllKObglo/Go2atg51uFSyyKCLg2auqqpKN9xwgyKRiAUJV3YRCAQsM8GLnO4EYPDIyIhmZma0cOFCez+fxwno8/lMpgNVAZyA1rJrGwGGREuW70vAojytqKjQmjVrNDs7q8cee0yzs7Nat26dBQOsjb1er3WrDh48qPr6euPpUO5WVlaaqRlBkInIsVjMeFIsaABu5ry5JnYej8dkPa4ezOfzWeuaYAiGs3nzZqXTaZ09e1aZTEZHjhxRTU2NOWP+67/+q2KxmA2DiEajqqmpUWdnpxKJhJ577jl5PB5df/31amtr05YtW5TNZvXggw8qlytNmWlqarIGCddBQEYWxGHLRGPa7ZRr8KAg6u7du1eXXXaZJNk1geNRKtLK50DFFTWfL/mGXXXVVWptbVV9fb2tZ+gKQ0ND+n//7/9paGhIExMT1jgiyAUCAaXTadXX1+t973ufWltb1dPTY8+WCTrw9aRSKe1KcXg+g4ODVprDuP9DOPIlg9IzzzxjfkMLFizQ+vXrJckmq546dUrRaFTve9/7rHNGtMxms4b/uF2Rubk5I/u59Pnu7m49/PDDGhwc1B//8R/rvvvu0z333KPu7m49+OCD6u3tNZfDz3/+85qamtKiRYvU2tqqO++800Dr/v5+3XnnncrlcvrWt76lxsZGvfLKK5qZmVFzc7OpsF0nAXdChDTvYEjbF7lENBq1FvH09LQGBgas/qd8QooCJkJ7n44cQGx3d7c+/elPm9qdIOj1erVkyRJ7kLTHOW1Jvek+STLsaGxsrIxBTuB2ZSEEQBYSJz7lUjAYtIwAi5bFixerpqbmd1r927Zt09zcnH79618rn88bgOwOjqivr7efAwu67bbbND4+rv/4j/9QIpHQggULVFlZaSZswWBQMzMz5nvFZBcOD5dPhhWJC/jTcaJdDrGwublZ+XxeP/rRjyyDYjQ3zQZcAAKBgN73vvcpm81qz549psNsamrShz/8YQPxXZY0E3RwQwDfO3r0qHmh0z53ybgzMzNWyhUKJQM2txvGweWyz+EdnTlzpuxeSaU2f0NDg1kEQRiOxWL6xS9+Ya6W1dXVOnDggIrFotauXWtES5/Pp6uvvlotLS1qbW01Ui54EInFxMSEccuOHj2qSCSiG2+8UblcTj/96U81PT1tNA0XI7246vn/FZTOnz9vPJRQKKSFCxfaOGJkI7lczozQ161bZzYcHk9pztn09LTuv/9+eTweI5+5Sm826tmzZ/WXf/mXOnHihHky01aFSoCNxAsvvCCv16u7775b3d3dluZLpbLu4Ycf1sDAgO6++27lcjndc889amxs1N69e1UsFm3qJ3aqLkMa/ZCkMmV1KpUyW9Ply5crFAqZ4RW8FUDJvXv32uL2+/1mj4sA0/X6yefz5lHe1dUlv780LgcnxFgsZryXTCZjFjF+v9+6TQRkSVbSoWFCfCmVKACuyyYcGOQvfA9Os9WrVxsHis4Lk4rT6bReffVV5fN5bdiwwXRSFRUlT3NO1fHxcbNPRgJBKdfV1VXmWjo3N6e5uTlzjbjsssuMVwUTHEwtn88buREbDrqOaOxwZUQjd+q3Y7zR6BG4Z2ZmjApQW1uru+66S5WVldq7d698Pp/uuOMONTQ0qLOzU6FQyCoAsvCxsTElk0mdPHnSdHj4RE1OTurgwYPWBYxGozaqCn6WJMOh/P7S8NLz58+XPVPIiGSpHEy03AnOt956q9ra2tTe3m4Z5sjIiL71rW/pwoULGhkZsRl8mUzGOpxk5GvXrlV9fb1Wrlxp5ZrrS8V6gCrU399vHWnImwzy9Hq9Zd5cHBr/J0xp8+bNRl7kC9E9qK+vt4BAuoqq29VG1dbW6v3vf7+OHz+uDRs26Ny5c1q1apWWLFliKa9UAmdffPFFeb1e/frXv1ZfX5/dAN5TVVWl7u5ufe1rX9Pg4KDe/va3q6qqSj/+8Y+Vy+V05513amJiQjfffLM6Ozv13e9+V7lcTj//+c+VTCbV0tJi7gEAxWRKnHhgR9lstuwE8/v9uuKKKySVBMCjo6M6ffq0CQ6bmpr0wQ9+UJL0jW98QyMjIxoZGVFdXZ0+8pGPqKenx7CIwcFBjYyMmEtBX1+flYiQQIvFkitCLBYz83WGF46NjSmVStm9p2vIRqFkhNWM1otghTjTFdC6GQdYzfLly206aiQS0Zo1ayyw5PN583/m3nGKuzwogPF0Om1dp0Kh5LVz0003KZ1Om3F/W1ubYSPxeNwsXQkgCxYssGdDxhEIBKxbiLaOoLpo0SLLYCnpWFPJZFIvvvii8vnSaLCGhgZdd911KhaLeuSRR5TNZi0IvfTSS2psbLRymiAKNvPVr35V8Xhcl19+uXW+CoWCun7rMIpLALgTXWz3XnNPOAQBzgly/AzjoQhaGMS5eCE/I8lY1W9961s1PDys7du3m9c4e6CxsVF33nmnyavowDHPEFxsampK/f39mpyc1MDAgKampowT1vXbuXOMdicmEMCZ6IMV8GsOSq+88ooFhdraWr3hDW8w0DAYDKq6ulqxWExPPvmkPJ6S4TxufCDxlAdLlixRf3+/zpw5o8985jOamZnR4cOHtXv3bt19990G6i5ZssQ+n2DEq1Ao6Ny5c/rQhz4kr9erhx9+WAsXLtTx48clSTt37tTExIS+8pWvaP/+/Xr55ZeNg1RbW2vkOQBsKAEApxdzKcgaCF6QBdva2pTPl6ZUTE1Naf/+/UokEnrppZdMBV9XV6dVq1ZpwYIFuvPOO23Uc39/vz784Q/r7Nmz6uvrU0VFhZ5++mnrWiJWzuVyOnTokHK5nG666SalUin96le/Ui6X04oVK1QoFPTiiy9qbhlwSIMAACAASURBVG7OLFtov8Lm7ezstNMV8JuOZqFQsJIbnABRJYG6sbFRtbW1hn8xMIFyEdKiqx10FxzXgZnf0aNHjWybTCZ17733KpfL6YYbblBNTY2OHTummZkZm8zL7wXUHh8fL/PjghIAWxj9FRvTHeeOng5mud/vt4ZKc3Oztc09Ho96enoMF6upqTF4gMBHgGdc09TUlKampgzOuPHGG61TDWOfAAErmg3rYmhQLhYtWqQTJ06YeJjglMlkjF2/cuVKVVRU2BCNRCKhmpoabdiwQe3t7UY8pYQ8e/asCoWCPvrRj2pmZkYPPPCA/H6//uRP/sS6rjh4UEbyPMngCoWCWVqzxt72trcpFAoZoA07nWcjyco7Ny5c6nVJmckHP/jBImk7GBDduImJCd13331KpVLauHGjurq69O53v9smMoBRIA+QVIYNDAwM6M1vfrMGBgbsAXV3d2vx4sX6xje+YRMjJiYm9POf/1xer1dvectbykoV98XJNz4+bsLdHTt2qKqqSp/61KdUW1urEydOWMvY6/Xa6BywCkoAPJZPnDhhZRCMb0b15HI57d2714zLQqHSHDo2MykxGjLA3qmpKf3yl79ULBYzHZKLpfAQJRkeQLDkJCVTQLHN+1F8s2lPnDhhOiiyh1wuZ8HHzX4llU1opVtXVVWljRs3Gs9mcnJSjz32mDwej2644QYtWLDAymFOxXQ6bZyc2dlZHTt2TJOTkza2enR0VJWVldq6dasqKirMa72urk7ZbNZGE2Gf4Was0vx8vssuu8zug6Tfiy1VV1fr9ttvtwYM1jcIZBHCgmkReAhIZIG8ICSCM2azWTvk6MouXbrUhjK41+8GZQ5E4AJkTZKs2nAdECg7E4mEwuGwtm3bpkAgYGuUfdXb26va2lqzJOb3gt+6hoHgnvn8vJ0KeCh7hHUA6fPb3/62+W4Fg0HrDAOhpFKpMi9wghClNRy0f/mXf3ltMhNOnVOnTikQCGjx4sWGzDc1NemHP/yhEQVRKMfjcT388MM6deqUHn/8cTU0NOhf//Vflc/ndcstt8jr9erf//3fLdXngbNYjh07pl/96le2Yfr6+vTQQw+ZP7LL8IZPBHN527ZtisViOnbsmAqFglavXq2WlhZdc8018vv9ZnDvljvSvBMj3Ry6Xe5DymazevXVV418Cd7EZsR4PhKJ6MyZM0YlANwEt6qpqdFNN92k4eFhfe9739Po6KhOnDihqqoqXXPNNWpoaNCiRYs0MzOjhx56SOl0WkuXLrWuGnPL8vm88W5oyVLGjI2NKZcrTeQg6HK9ZIKJREIvv/yyZT6we6uqqrRt2zYLUC5pFbM9TPTAG2Clu8EdWQ4bs7m52UpyWOCPP/640um0enp6jLQqSStWrDCsaHZ21rC/RYsWmQ0NjQiPZ950jpIIoJ9rYtIHeNDSpUuVSqV0/vx5zczMqL+/X6FQSNdcc43p+tiQkCnT6bSByWRuxWLJduWb3/ymUqmUtm7dqoULF+ryyy+3TIWZZ3SruH4yW0nmdgBGxiAMggeJQzgc1pIlS8oItmNjYxasq6qqdNlll9nz5bDkvqTTaRvBvmLFCvPrJnDhsODxeIwPhRQLeIZOIWJ2SrzBwcEyt4JFixaVOWNcbNR3ybhzqUzpJz/5SdH1xXHTzUQiof/6r/+y9LW1tVVf+MIX1NLSYp7aCxcuVDgcNmKlVMpodu7cqYGBAX3961/XyMiIMpmMOjo69KUvfUmSdO+996qyslIPPPCAuru7f+93AyDndeLECb3nPe9RLpfTl7/8ZS1atMhO3v7+fpuYEovF9Oijj5q1CoFOkoGwtbW1ZUQvfGYWLFig6upq21yUJadPn1axWDQi3erVq1VbW6uuri7TtOXzJWdJMJ1z587py1/+suLxuI0iIst585vfbJM4ksmkDh8+bBIRAPBisWjz7Ti52IyuqJcg7rog8N8oteHCLFy40PhK0WhUr3vd66wzSQqezWbLNlMgENCaNWusxKU7ODk5qccff9xKvnA4rPXr1yubzRqJ9ezZs4Z9wVLGzgVFe6FQMPMz16ZXkmWx+F5NT08rGAxq2bJlFsQvFuRKMhyQA+3pp5/WyMiIAd1//ud/bp06yv/JyUk99NBDisfj5j+FZo95fNFoVLW1tbrmmmvMhTIWi+m+++7T8PCwRkZGlEqljJuFuHnVqlXy+Xw6ffq0CoWC6uvrDf8Cs8GRgMYP0iBwNwS609PT1voPh8PavHmzotGozfi7eEyZqxIIBoNl70ffODs7q//+7//W+Pi4jhw5YvP73M953eteJ6/Xq/3796tYLKq3t9eY/64fOgnBP/zDP7w2k7e77rqr6PrEkMa9+uqrlsV0dHToYx/7mJqamiw4APh++9vfVmtrq5VvCC7/EE/hUi9qXWl+goMkK2tOnz6tz3zmM0omk7rhhhtUVVVlLXBA7r1799rsdRYmxC74VQQRSSZTmJiYsAmx8JwIdmij8vm8du7cKY/HoyuvvNIWaj6fNx0efJOf/exnSqfTWr16tdrb2/VHf/RHamlpMTHlyZMnNTU1pQMHDmh6etpM5JjKAbbDCewaf/n9fh0+fNg0aJyWFwtFYagD5Le2tmrbtm2qq6sz4TFG+qdPn1Y2m7WMCH8ieF+wyx999FENDQ3pueeeUzabNUyH0//ikgS3wpqaGkUiES1dulT5fF6HDh1SJpOxkp1W/bJly8qM9OHLQAaly7V06VJVVVUZs7ylpaWMWU7WMz09rampKf36179WLpfTqlWrlM/n9dJLL6lYLGrZsmVKp9N68sknlUwmTcZy+vRpVVZW6k1vepO14DmUKioqzBqF+4zlD50oGitQPVxdGLIu99nCqs/n8yZshW7DtaDKhxHe19enxsZGXXXVVcaxOnfunA4cOFCGoba2tioSiaijo0Otra266667FI1GDRDHT+ull17SxMSEeUuRuXHvOzs7LZvNZDIW/GiO4Kl1KY/uS5ZvHR0dFq05vWpqanTPPfcoHA5rZGREHk/JC2lkZESdnZ1qbGzUP/7jP2pwcFC33367gciBQGk+XEtLi+644w51dHTommuu0YULF3TnnXfK6/UaH+l/ehWLpcGE3/3ud3XixAn96le/UiAQ0Hvf+161tLQYOW3NmjWmtUIwzMicYDCom266SX6/X3v27LGNVSgUzGeYlJiAF4vFDOzL5XLasWOHndAtLS1av3690um0XnzxRVvgkvTYY4+pra1N99xzjwknWZShUEgf//jHVVFRYZISAEeyInfkEFlSsVg0DR9GW2Q+LPSLh1ASDCYnJ610YqFIMgwM90u+H9IXvgNAumvCBi+qoqLCrDsOHTqk4eFhy/Z2794tv99vbWayQjA0VPIEO0inZJmAvZT7TNKgo+N6LBWLJXeGeDxu63X58uXGtQELATMiE2tubjbZyfT0tPnM+/1+rVq1SpLMD4tDrru7W1VVVVYK0Y2iKQI9BtyRQZHQW1566SWDQsCyOESwPUGjxjMk48BKZHBw0OABIAiyQEr3eDyue++9V7Ozs2bRMjQ0pEAgYLZEmUxGVVVVuuqqq9TQ0GAZMrgUnb2RkRElk0ktXbrUaBYudjQ0NGSsd/cZwwt0O6D/0+uSmdIXv/jFIsB2Op3W/v37DasIBAKqra1VNBrVhg0bVFNTY9gEo2yI8jgAuhyZgYEBveUtb5HX69VPf/pT9fT0SCqRH++44w55PB794he/UE9Pj9XMsFpJf6PRqM6fP6977rlHHo9HX/jCF5RKpfSOd7xDFy5cUFdXl6qrq02bxo1zO4MuJR6sigcMcc01HeN9MNJJ22dmZvTMM89YBrZw4UJ98pOfVH19vWKxmNEj8NVxT0uEtQhPR0dHTYWOAhs8KJfLmTzCtTotFou2kQCcWZxs3IaGBlvYqVTKPNT7+voUCJSGeQKiLliwQKtXr7ZFyWeDpbAB0unS2JyhoSF99atfVSqV0vXXXy+fz6ddu3YZ5SGXy5ljaU9PjyKRiN0/eERYebjPC0oKxD0yrEKhYE6NbAoOP4Lc8ePHFQwGtXXrVjU3N1tQhAKC7AJG/tTUlKanp7Vr1y75fKUx2xUVFRocHLRgK0nLli1TbW2tUTeYoUZwAkcEoE8kEtYNTCaTOnXqlLXqOWiLxaJZvXDYs0Z9Pp/q6upsb2WzpblttOK9Xq9isZhmZmasKuno6FA2mzXckAOmurpatbW12rx5s4LBoA2lXLNmjWpra9XZ2VlW6iaTSfvuY2Nj+q//+i/F43Er7Xp7e1UsFm3wq3uQwmaX5i2U8er6+te//trKt69+9atFTihuMt0F0mtSQJiudXV1JhCFl+OWW2wu+wL/C+Dr971isZgxc7du3WrugqdPn9YnPvEJJRIJ3XzzzYpGowZIr127Vvl8Xs8995ySyaRpqVwjMhd7oRPF4uvv75ck9fX1yeOZn3tGhoGz5ZYtW6wdLqmsqxYIBNTb22v4HCOKaPnOzs7qwIEDmpmZMT6RJNucxWLRmMQEaTJZyiICP2WPS04EI4E0ye9Np9NGfNu2bZtaWlrKsC43yKGLC4fDymRKo6CxasFpkQ4sXj6ArhxmuCsUi6WJxblczmxRGCSARpEmAcGR6wO7BP/AHwocxu0Y47leV1en9evXG80B7JAMkM/3eOZHawGsg0URjN3nJsm+v2vOB1seX654PG7ERSxyKMHcUVgc4OBXSG7Q00GepNMqqYw6QNOgvb1dNTU1Wrx4sTk25PN585Bi7Pizzz6rqqoqffaznzX6Cr9venpaO3bs0PDwsF5++WV5PB6tXbtWVVVVZlnCEA534hA2QBxiLiv8O9/5zmsr37BJdeUK2WxWu3btUjgc1qZNm9TY2Kg1a9YoHo/rK1/5igYGBvTCCy+otbVVDz74oDo6OgzR7+josAzh4lc2m7UbCYYlSadPn9bHP/5xFQoFfe1rX1Nra6vNMMfbBSHp9u3bNTMzow984APKZrM6ePCgUqmUMc2HhoaUz+et5c8NpkRxZR25XM4WwsmTJ21RY8NRLBatZY+CG1r/wYMHrZxKp9M6ceKEfL7S9BbwpVwuZ61vriMWixmjmQVDpkZ3hsXCi0OjWCwaz4Y/8HegI1xMNZicnDSJQiAQ0JYtW1RbW6tsNquzZ8+ar8+1115bVgb39/crFotp9+7dFhDD4bD5S+3evVuTk5M6e/as/H6/NmzYUEZaxeNbKh1KTDEhSBBUOHEJBgQYMCzWJhkPmePFinXeh1r//vvvt/I+Go0aqZEMOZFIKB6Pa+fOnfL7/brlllsUCAR04MABjY6O6vnnnzfJTGNjo97xjncoHA7rxIkTKhQKxn8CQ8ScrrKy0siXHk/J6xsQnYPT5Ra5PD3KN0mWfaEto8kBnkVWPD4+rqeeesosclnbxWKxbBzWggUL9KlPfUqdnZ3GLyL7pINcUVEaLgBTG/E4jSpwOjIjDjNixujoqCSVDb/8n16XzJT++Z//uQgQh/ATc7FwOGy6mLVr1yoQCGhiYkKJREJ79uyR1+vVhg0bylisYAG9vb1GwCI7AHMCsWeRjo6O6pvf/KbOnz+vWCymlpYWff7zn1d7e7thQa4NaSwWM0AWjR18FNTPu3fv1tzcnHU0aBXTjTt37pxtBMBGn2/elvX8+fPGsMVeIhQKGcbhTpilbOP0oDvk9Xp1+vRppVIppdNphUIhW1BkCJSXCBldLgj4CgJPuC3uJqdtzumK8yOYEgvdHRkF98TFKNwpJ27WRBq/atUqFQoFvfzyyxYY/H6/mpqaVFVVZfjD/v37bYgAADPlJl1dWsrSvAULpytdTCgPANIucA7frVgsGmEP7tzc3JwJdMGKKioqbGO58qJkMqmnn35aPp9Pb37zmxWNRs3TKRaLKZvNmr8Wlit0Oxk7tGDBAvPD8nq9ZZkqATaXm5+S4vLNksmkOVHAqOaAgv6Rz+dNp0lrnikoKP/BsJYtW6Z8Pq/du3crmUza9OPOzk7V19dr48aNikaj5r0NEO71epVMJrVr1y4rvenYsTbA5aBQuAcjf8ALCYqXmvt2yUxpZGTEkHm8oRHPYnoFmS6RSOiVV15RIpHQxMSEWlpa7EK9Xq9OnDih9773vdZ67O3t1fe//321tLRoeHhY/f392rZtm+LxuLZs2aLq6mqL4p/97GeVTCb11re+VQcPHrQOE2RBukOcVJDusIHFC4qbs3LlSiMCsphhQrstdEm/A8CCweRyOcsAm5ubTVRbLJasRSFpuv46zBUDNGRxE2zY/JAi3aACZ4TMjhMV8iXYA8GA8tLj8VjrngyRkxJfpkKhYOUn3CLsPygnyCQAwbPZrNn9/uY3v7FMEzAckHV2dlYPPPCAta3R7gGQEzyleQ+tWCxmXTSCCRMyYFz7/X7T9FHKIsNxp4RkMhljUHONr3vd68qCPzq6O++8Uz6fT/v27VMikVB3d7fxmCYmJnTXXXepqqpK58+fVzwe16FDh+wecShgbwwmxjXRESNQ+Hw+8yeqr683trlbnsL34r10QLGwcYFwSk+gB9b10aNHDXiura3Vtddea/hwPB7X2bNnNTw8bKaHcPUYi0XTAbcOYAWwIZoFJCxIucjaqQoA6P83XKVLBqWWlhYrg9LptDFR3U3rlgqJRMK6Sq2trTaVBGAWE7TR0VE77YPBoFavXq36+nqtW7dOJ0+e1IsvvljG3t2+fbuqqqrMXxg8YMmSJfL5fDZhdOXKlWZC5/F4dOutt8rj8ejJJ59UNpvVihUr1NLSom3btqm6utpInZi7uRkdwCNBDT6Kx+MxjRXBZHR0VKFQyLRSgJ1o1rB94b+DVV1++eWGvcGsdX21SYk5YTmJCCJQGGi3YhxGhsGCgcAIBhONRlVdXW1Asbt5JJnIc3BwUFIJQ/P7/eaLRFuarIfvR+An+0Z4DSdq2bJl1q3N5XLG5ZFKJyhZFhos5qPhYIn7BHayyFAov9HcwcWCm0PHh7KbDhE6LTbOrl27NDs7a0EMG48lS5YoEAjYWHP+OzPP3DHv3KdMJlNG4XBJka2trdbGJ6BJMmDc1YwhQoYLx8FxMSEWlj9ZJHQW2OXFYsmFAstmrqXrtyJw/KUIJDxrsj2+K58Ld4wmEVmeq2XluqA+uG4Hl3pdsnzbvn17EbKjJG3YsEF+v9+sN2lNI5hkJhV0ekb7njlzRvF4XP39/RaMAEAlaeXKlWppadEb3/hGRSKRsi5IRUWF3vKWt8jj8eiJJ57QxMSExsfHTXAJC5ma1+MpaaVcHx3a+a7hv8/n04MPPqhAIGCaqfHxcUtLCUIEC7Igt6MA/4ds6PcZWHFvisX5KaVkOK5fMoEd7AFsg88mCEiyspSsiyyNzIfTktOL6yX40s0DoOUFg53RRmRuLoYD+AnICvkSagVcNkkGeHO9APQcZKydiooKu68ej8f8oCnd8Axy3+/xlMal8x5kLSx4Ng4ZHpklJS9BkIwNX6hCoWBcG7dUYrO5JZVrDkgZRmZDtgGoTNuebI116jLuec6QPn0+nx18UA2YBuK2/jl43GYNzQjWCrISSmM3IyoWi7b2XdjCvYfcV/6X54c/uvuMyIwkWScemgwcus9//vOvrfv2mc98pshJRIrGB3OCA8r5/f6yVi7poyS7KFI+d9G4D5MHgWodGQkELHf6Jxfq8XisvoY3Q5uUjMalFICTSLIZVZxQrm0q2QebkCCSz+fLCG3uomLh8kBdCgQZDEGlUJi3SQXEdRnLbkYA9kXZw0ZwqRdsOIJCoVAwmsWJEydsIUkykJK5a7CBaQMjjgZjIxjyfuaw8XNcI+/j/i5btkySTJvGi5/j92FHzDQPWPyAo2RwrhmfJAuOlLNsamRH7oABN3tgBBbBgY3NFBYyYoIcn8s6wHiNDpo7wooAwLpyAXuCvut1RXZTKBTKlA8tLS1GrGQ/EaTcA4XfhXsCEAZ6VdZFKlUaJwYthBLXDYQej8eyQw46rGUoOZubm+Xz+Swo8mxcnIw1QMfe6/UaBMEa/NKXvvTaMCVSNhZHNBq1SMtJyY0lfZdkGxb+ydjYmLUWOZmI9vl83joSoPhuOQUAymlIoCADQEZSKBQMiKWb4Rpj0Z3x+Xy2WE+cOCGv12stYK4FEJD3wdUhRaXVTjAmoyK48UBYOJzw7qJFlY+fcjgcNm3h5OSkAfHIeziNuC+k2S7+wOdyzTw3nhObmaADVQGqA11AMh2+P5khBwrOm5yGvG/Tpk32/aT5oIIshe4qL5dYJ8mIs/xet/skzQdNykq8xmmMcFjyPckWKOegDHD/2OBkB5AIKS+5lpqaGoVCIesKk+lTxjU2NqqystKC2djYmEk5wPxc+Y972LlBDywIeQrdL5cnRklLxkF2yh7kIESADW2E9Tg4OGjC3oqKknc2BneSTJgL1eWqq65SRUVFmUSKjMrF+bhGMmoO2oslTzDEL/W6ZFCiFuQD+DIwhqurq02MWSgUbFyyqyEjxXMDCtEdHgsyAfAHFtHw8LCBfAQrbqiLGUxPT9vnuPUvZYhLp3czPpexzqL/fSkt343ywy3X4N0Eg0EDnN0aXpKxicfHxy0jZBG5uiBIeARplxzJ5pHmyy++N5kai4JNx8N329eSzAmSzAFZCwuqr69P0jzwDn54cXBZunSpJOnZZ5+VJCMXgjPweZQgwAC33HKLJBlQDfWEF9+H708wcksASWUlGRvaLSkAyJmZBnPdfY50D/P5vPbs2aNMJmONEjJUAv7AwIC8Xq+6u7vN9JDsx+fzWXlOu94djsnvIOPm+VLuuWUtOBoSHDIVF2qgpU9pjK0OmYxbveBZlc/nrePIgTg2NmYwh4uzcX/2799vscCFQMDvCGZ0NrlnHMQ8F2gt0G4u9bpk+fbpT3+6yOIgzSND4iazicE44FD4fD51dHQol8vpwIEDv8MdcVvx8HvctBoD+3w+r97eXnm9Xp09e1YzMzPG43HBtVAoZFG/qanJgiQgLymk29In2LkdAYIUqS6YEQGazIiuCWUmlALkGmRmdNlmZ2fNSfLZZ581GQRUA3g0lZWV1rV0NV/uApiamrIDIpvNWmbIaYSKnUyDoECQ42R2/ZWl+UyK50SQIjgQFNE58nM/+9nPJEmvf/3rJc2XZ2RCR48elSSTa7zwwgtlv2/58uWS5oMkP8d1k5nxd7d84zl5PB47fFDGu9ic3++37hxkUQ4Dt8ExOztr5EZm/q1YsUJVVVVqaGiwzpXX69WmTZusw+r1zpvlRaNRGyDAug8EAlZOnzp1yg42t8EA9sWB70IGQBxMrOFn2PzsKQYKUHrTVEKoSxZ04cIFSwgqKiq0bNkyc0NAxCzJ9J0uIbpQKKn//X6/VqxYYeJnSXbPKaFp4rgNnGKxqPvuu++1YUp333130U0zORUuHlvMjSPl5KSnbJuZmTHXgIuJU2wqv99vZun9/f2GF+DnU1lZaR7fZGQ8IMoNSktubHt7u50a2Wy5k2SxWLTNw0nGpmbxo7kaGRkxXlIoFDJKBJR8MhQ6EmQqWEg888wzGhkZ0SuvvGIdELoy0WhUV199tZUIrtFWOBwus6vA0Av+DeUEpxoaPdf/SpovdwhqBHP+Tmbj4hTSfJlH+QYWBS7BwAY2AEGFBcrnb926VZL0gx/8QNJ8efaBD3xA0jyWRAZH5sT3oKyjMUIGBoWDDIRMl3IdDMgd7CjJTnDw0P7+fnm9Xq1fv15+v1+nTp0yagmHGJl3MBi0ch993rp16yybdbFW4IrW1lblciXTPszg8vl8Gc4CpgV1BNyRzibVB1gPnDNsT8hgwCXZW+CSrBOoEtAqmKo7ODioYrFowtzGxkaFw2F1dHSoWCzq1KlTmpubMwItdkZXXHGFdSZnZmas4wguC6YH16+jo0PBYFBf/OIXXxumBPAHixnBq6sW5wFD0EIhTLoGzlFZWanLL79cmUxGTzzxhDKZjBYvXqyOjg69//3vVyAQ0KFDh2wsdaFQ0oThMxQIBDQ4OGjm7WNjY/rpT38qqVQOcJqyGNwOAh4wZFjMnufkAHCFZMmin5qasvS6urraWvjHjx9XPB43DSCBiTJ2ZGREiURCx44d0+joqJ5++mkNDw/r6NGjyuVK2sHm5mbdeuutZjDG6cLm4PQGM5mdnTW9E3wjsA8yVXggtP4J1gQhgjhBiozEHYcjzWdSYE04JzJMkuDDZidDouzi8x566CFJpblh0nzGA9b07W9/W5LMZpggRNcWbOji+W6Uo5Q6LmYYCATKKBbcP6/Xa40NXBhx1qQcJmP1eksSHJfxTUuf9SXJKBejo6O2lpLJpHbv3i2vtzTePhgM2nQapBcA2ni24xfV29trlBNKW0mGb/JseZauOoL/TxDjDzgwB5hbOgUCJctjLHHBp5CpcHjHYjE9/vjjRtKlI1lXV2e0DppKEIPBjsCXOVhmZmYMdvifXpcMSmA71KuM7vn/SDvzILvLKv0/d+++3X379r6nuxOyQRKyQCAJS0BRRJBNRccguKAjzrgwotZM1ShVOloOMuWMOjoooywKyh5EFAgQwhYSCJB9aZJOd6f3/Xbf/f7+uPM5972NE3/FfKuoVEL3Xb7f9z3vc57znOegEHaHAFBNmp2d1ZEjRxQKhXTOOedYQyOWJ+ghKJt6vV4je0899VTzW3KbYyHikMCzEHp7e+XxeHTVVVepoqJCXV1dmp6etsED8+bNUzab1fHjxzU9PW2cDtDYLfdLhXRlaGjIyqmgnYmJCb3wwgtGSFdUVNjJyckEogSdPfrooxofH1dLS4uWLFmif/zHf5Tf77cZWPPnz7eG4Ww233E9Ojqq559/XsPDw3r99dclydo38LymSogHNZVC0jg2CEFn5cqVkmTTZUCkLHBGTRE8CF7f/OY3JRUQE0Q4P3/55ZdLKlT3eF3eh41FIzOICC7qsccek1QIdoEuegAAIABJREFUiueff37R75Ee9vb2SioEJXd6C9ouSUW9lnP1XaTVIHMpbzsbCoVspt6xY8cUCAR02mmnFWmo4KLgsNicuEqQwkFnnH/++ZqdndWzzz5rqBG0Eo/HdejQIUNwoGW4UQ4WWlU4WPksbmkfdJzJZOw1ECdv3LhRpaWlVrRh2MeSJUvk9/vtYOYgZm8NDQ0pHA6ro6PDKrsMyJiZmbGBDHfccYdmZmbU09Ojuro6O0iPHz9uyJVgyjOF+uG7/G/XSdO3f/u3f8tRZaCrubS01IY1cmJy0rAYXEkAOX8sFtOWLVusxDlv3jx9//vft9HREIJAPXgsSqhuCVeSOTBi9OWKCCEH+Qx9fX02+w0YDnEOEe6Ku3p7exUKhbR+/XprOk0kEhoYGJDf79eSJUtUWVmptrY2lZeXm9kaBl5YUiC+JBDv3r3bNgpezplMRg888IChm5mZGe3cuVOpVH7ceDgctikkkJzMf2N0M82VICPXa4h75V6kWwShue0mF1xwgSRp7tp48cUXJb0T2RDMQTAgIAhtkA5pGWkYpX8mIIPI4KwgWQmGEOwgWUmmT5JkuqCenh55vV4bw011zl0/NEL7fD6TLhw4cEBVVVW66aab1NzcXBSYQGJUxCSZYn3Hjh0mDoZrJI2cmJjQn//8Z6uoUiaXZDQIxnagC9CvJKsmIogFHdJYywHMoE1XVMlUkaqqKhM+I+YlJa2trTUpjvvMXRkDLqEDAwPat2+f8Wm5XM6cILDFpcmbMU48A74b1cR33ZALMsJrmxOHPNjvz9uluiVc0h/EaJOTk3rhhReM6C0pKdH555+v+fPnW88YPBPBjEZUTMsQRcZiMU1OTuqVV15RNpvV6aefbhGe9gQ4LHq88I6R8pwICnPSN0lWDeF7LFy4UIFA3vgdQlqSISPejyqD2/dUUVGhJUuWaGxsTK+++qqSyaSdelRE3ve+98nv9+vll1/W9PS0VRhJy8rKyqwfju8PpyAVOB1Xx0PwB7GCCPn/7mbm90EebHZK+lTZILz5ff4/F0gGpAiBTTDi/VngBBsQEwgHROf2zUkysnX37t2SCoS4y1lx+hKcfD6f9RBKMgfL6enpop43prNACofDYb3//e9XRUWFjR8nsLj2HTRKo2cjiIyMjOjRRx+VlE9n3XHaWMWgW3J5QJAR3xt5iCtCzGazVlxyf5ayPJ+pvLxc69atU11dnVasWKHKykqTqyQSCY2OjmrHjh2amprS8PCwTSjx+Qr9rHV1daqoqLB72NfXp76+Pj3xxBM6duyYyWjefvttVVVVafHixaqoqLBujVdffVXZbFannXaatQK5FXmqgye7ThqUOIFYeDyokZER8+4mnQOtxONxO7lPnDih8fFxvfbaa0okEqqqqlJjY6O+/OUvm0EWJzq5bCwW09GjR628mMnkbRtisZiOHDmiWCym48ePW3MmAyKp+mHRSQWjrKxMp512mi0cfIiQBsAXSQU/ZJojaTfBEpdScSQSsUGGkKucvLFYzIzAeL1jx45Jks1Tf+GFF6y9JpfLaefOnXYfOemlYu9wFr+r+QCpErQoRACZIajZ7AQFgi9BhfQOLodDgo1NukNwgB+YK2ZESkBQY/H94Q9/kCRdddVVkqQrrrhCkgwxIBUgWDJFB2Kd9yEtbGtrkySrSCHs6/ifeXMQuuiE2CBwdBiOQcQSHGi/gSSnMIJXOL2EHf/TmjE5OamhoSE9+OCDGh8fN/Xzjh07jLh2tT0zMzPy+/2GqJCU0EdKmxDIic/h9/uLBl8iOM5ms2publZpaamWLFliPFNFRYUaGxut/D4xMaGtW7eqr69PTz31lOLxeFHRiTVaXl6u888/X36/3yySKVZdfvnlGhoaMtcB1+4Xshz9liTzsec7zm2fOtl10qDECUk0hygbHx83aEZkx5Q8kUhYSbSnp8c0RVVVVTr//PO1cOFCO5kwPyOn379/v2ZmZiwg3HnnnRodHbUoy0z0zs5OVVdXq7a2tmgIAOXfbdu2GcIJhUI2yohNBrFMfw/kHVwTwk6qZKhckUXgGQRCAuEFg0HNzs7qxIkTVmVz7WPpDVy9erUikYg1pEIYo+KNRqNWOSLIoFinxwnim7STqhD3irTX3fxs6oULF0oqBCsQEUEEJAKSIW0jneLv/HnJJZdIkh555BFJ0vXXXy+pEBQJdiBGghbB6NOf/rQkae/evZIKinH+RNJAUHXvpyR7frwfvZaMnsJ80JUA4JNVXl5ulaaWlpYijunQoUPmPEDBg5QpFAqpvr5eNTU16ujo0PDwsPkycYD09vYqEAho1apVqqioUGVlpYl9KccTQNlHHIKkUVTb6FUjMPHskMPwPc455xwbQS7l3TJPnDihLVu22NCMkpIS4wFpJqfih68WLgUgPuibdevWGQfMpJ5kMqnt27drdnbWprD09vba3nYtmklBT3b91WkmfHFXy4PCmBI2orOKigpVVVVp4cKFKi8v19VXX63x8XHdc889CoVC+uIXv6i2tjY7GdjEeDHDRx06dEgTExNatGiRpSacPPX19fr85z+vaDSq7u5uM9dPpVJW+md++r59+yztdJ0M4b7cwQGIMr3eguXE4sWLLbqzEKiaoFVyjdaYw9ba2lok+IT3WrBggZ1mBHi/vzB/DA4My9jGxkY7zeDE3MU6f/58Q0foxlgIXq/X0js4E54fRDJpFAjl6NGjRX8neHA4IY4kSIB8fvWrX0mSzd/jdQgqvD8XUoyWlhZJsgkbW7ZskVQgvN98801JBQ6M6iCncXt7u2lu0G35/X6bXrJy5Uql02mbJ8ehQJBA58SmrqysLBK28vzefPNN+Xw+rVq1SqWlpaZLgptsbm5WKpXS5s2blc1mzbN71apVVvUdGxvT9PS0ysrKdMkllyiXy09SRgvF90JcDPpk37HnkA/g04TtCcChurraEDBroa6uThdffLFGRkZsLBj85e7du+X3+7Vu3TpVV1fbNGeQGrxkdXW1NcJPT0/rwIEDmpqa0ksvvaTZ2Vmz1z3jjDNs2EA2m7X9AZcESj3ZddKgBJnG4mYxTkxMKB6Pa9euXQoGgzbkkdIpBHJNTY1qa2u1adMm24BTU1NFEzLGxsb00ksvKZVKadmyZZqZmbFubapLb7zxhsLhsK677jqbCDo6Olo0zlmSWUNQBQTaj42NGVJCVCcVkAEo0B3mSM8c/UackqSxCM3catvrr79uUJbTFbLT5yuMkw4GgzYOR5Jef/11ZTIFm1hsUTkVEdotX77cuveTyaQ1krojl5ASpNNpQyggJTYzz5Hvz7RVkMeaNWskFZAVgRHkBNFNMFmxYoUk6ZprrpFUSOc+9rGPSSpwUSA30tmnnnpKUoEr4n34nHwOFjFEOkGSgQcE0fHxcftZ/Ku5j+Xl5SYs5L+6ujoLMjMzM4rFYraJQMju4M2mpiYLICCaqakpPfroo+rr6zOx7ZEjR9Tb26vW1lZFo1GtXr1a2WxWO3bssJFLwWB+si+eYclk0hCS3+83S19X3iIVZBKU/BmKUF9fbx7griwAgS2tKVdccYWhbmgBppHgZwWpL8mcW0dGRjQ6OqrXXntNPT09euaZZxSPx00Ww3dxraORx4AEuf5PSKmvr880CfBFLlHHGOWamhqz5IBhx2QcpS03rrKy0kqox48ft5Km6/ly+umna3BwUEeOHFFFRYVuueUWVVZW2klJU+6pp55qJdp0Oq2GhgaNj4/r8ccf19DQkLq7uy2NcVXKiNbY7BDWriUHym02g8fjUVNTk+layJeRHAwPD6u8vFzpdFq7du0yYtTn89lEiUWLFimZTOq+++5TKpUfYkhq4fHkLT1yuZw1T8IvAH0pSRPcqeYRZAnOvB5cEAuZYMGigLMhWLCgXDcCqVAV+9u//VtJhbTvuuuuk1RAXCAi/h0kxb3n/Qlm69evl1QIUl//+tclyXRAtK/wefkTYh70AEfGoYHFCfP3SLNx1dy5c6eRybQIUQAhDcbzyucrmBK6HfE04rI23JQZcztcLDikLr74Yvv8U1NT5kyJwT4VN+4/aIwASOUumUxqbGxMwWBQy5Ytk9/v165du+T35+fB1dTUaM2aNdbAHolEtGHDhiJRJW0stI/gTkoLGc3eAwMDFvzw5I/H41q0aJEVbiKRiNatW6dAIKDe3l7Nzs7aQUfsIK2lt+5k10mDUlNTk93wdDqt/v7+IvJ1YGBApaWl5vSHhQVKZDRO+B6Njo4qFotZdJ0/f74WLFigDRs22OuTZ7s3cteuXSorKzNb2/HxcY2OjurRRx9VNpvVe97zHmUyGZsBz7hsVLE06vI9XBMwcnJK9zwYoCvIj+BbVlamo0ePmq+TewJI+Y181llnKRAIaGRkxER48G5DQ0M2Ovzuu+9WKBTSWWedZeQ5GpFEIqFt27YpGAzqIx/5iMrLy636Mz4+bupuUhBJJu4j0IOQ3vve90oqpFcgIv4OQoFgR0fE6Qz6gOAm3eT3EAESHCDOCS6U9NkU/Dxp3oUXXihJVr1atmyZpILinHQPxA7yevPNN4t6DVnw6MwaGxuNZiBY+Xw+Q/VYlDCwYHZ21qgCSYaompubzbOJKh/tKOPj41aBevLJJ+X3+7V69WqVlZVp7969CgQCWr9+vXK5nF577TUz0PN4PKb3gyR2nTZpJnbRPM8OFBcIBKyiB73wyiuvKBjMT86lkhgOh21CMF0HaAzJDmitQfC8fft2+Xw+nXrqqXbowafyn9ebd5cNh8Mm9XH7FSlS+f1+8/3GS/9k10l1SjfffHPO7UDmooLBidXc3KyysjJ1dnaaiT6b3dVhjI6OWpuElD+Bq6urddZZZykYDOrEiRPW3xOPx7V3715lMhm1tbWZ1iEWi2nv3r1Kp9NF/T0+X35mfDKZ1HPPPadcLqfVq1crGAxaWZISL/03KMfn9uVxMsGJMEkC3mHDhg0W8NBBuWVPKhME9OrqasXjcb3yyitWIeQBQ2QzGWJmZkaPPPKI4vG4lixZomg0qoULF6qystKCwsGDBxWLxUwCwWu6Uz0Q9/F9pIIIEa6IE5l0jGorgdb13pEKSAjlNp8HpIR0gmADMgBx0ZYCUU1QQ7LB50NJzs9RZSTIue4L3ONcLmecIsUV95SW8umqa7ZHakZfGOl4Npu3yVmzZo2i0agdzggA4fpoND106JD6+vr0+9//XoODgyalQeW/YsUKqwQjhKSqx/tSGZRkn50UDE6JtIpqNXuKbn2Q4tx7EgwGjSuCzEe4SXOxx+MpahUDUGASh6TgoYcesnUyOzurffv2KZvNqrW1VaFQyDKI1tZWO1jj8bhqamoMhXq9Xv3oRz96dzolbrzbWyTJRIhlZWXGadDxX1lZqY6ODlVWVhpXcPDgQQ0NDen5559XPB63KN/d3a2xsTE1NDSoqqrKhFaUHNHtUMpHIFleXq7h4WFt3rxZwWBQl156qfx+v1566SWl02ktWbLETpGxsTFDBixCqdD1DKGZTCZNAkAplTSIGzkyMqL+/n698cYbikajuvLKKw3q448MIiRISLL0AGJ3/vz59nPot6ga0oBMyT+VSmnDhg2mFYPgRCw5OztrxDU6JJAgaRZpE4iDYMuhMjedI+hQoQGxEJTuuOMOSdLZZ58t6Z3KcNpOCG7cB5AY6RqlfV5/+/btkqRVq1ZJkina+ZOqIUGJTUzQRelMOwlBFz0RJf1IJGIjh2jBIFikUin19vYagoFcLikpsWAE7wJf+Yc//EHHjh3T66+/rmQyaUEPe2DGku/fv9+mmdBxQIMwQYzvQCWR9UlRpaysTLlczroTqLKRbhHckCOk02nTL5WXl6unp0eZTMYq1/ClrBEOVHRRBGJGqF188cXq7+/XPffco5mZGa1Zs0a5XE67d+9WLpczaQIiTbSNLpr/P7kEfPrTn865VhB0CiOAopqF42EymR9od/HFF9sgwuHhYd17771KpVI2SIAubk6S5cuXm9oWHdDIyIhuv/12GwmezWYt+K1cuVKZTMbItqamJhMtejweK7m6p4rPV5idBdFOVzlIkP9APQ0NDdb+AXGPYtcVTTJ4kPHQrhiQigj5OXoYBhj09/dry5YtSibzo8urq6u1fv1645po9OXER8kO2uOkZqFls1kbNw6Udg8HqZCWEWRI8wguBA8WPNwOaRbIht8D3oOYkAaAcM4880xJheBI790LL7wgqWCRwuckGIKoCZZu35dUaAfi71L+sKG1gjHkbGg2rhu0/X6/Ov7HFHB4eNhaPNDWSIXqM6nfihUrrArFwIqenh5L3/7mb/5GkUjE3AhcMzsQcywWs4BAdZiUivYQ/PFzc5qC2eAQ4VRwKyoqzCGDA//11183vRWUSUVFhTV5E7xIs5YuXarKykprOm9vby8CJwMDAxoeHtYTTzxhtic8I9AncgrWpN9fGIhK8efHP/7xu0NKBA+iNV3cKKIJSIj/sHgIh8Oqrq5WJBIxTYPby7V69WrTbfh8PmsLYHOT7qH/IViwKRmnzO8wUfbAgQNFqnN+h2AH8ce/U/7l+0CcIhLlpOFzMIWDzcj74x3OVAs2D71YbMbGxkaNjY3pt7/9rXp6erR9+3abpVdXV6eNGzeqpaXFJka47n7ovqhs5nJ550364NLpvI8z0B/yXipU10477TRJhWAB0iAI8P9BdE8++aQk6corr5RUSJ9OP/10SYWGWxbml7/8ZUnS888/L6kQRPh5Nqe7qaRCkORzsoApbMCnzK0asqkxNkMagdka9/CNN94w0R5SCikfXEE8Xq/XKl0YqUEAY62Dvg00w2DIyclJzc7OWvUU7+5XX33VbHy8Xq/6+/sVCoW0YcMGZbNZm4cHOnF5I9Z8Mpm0ahwX/FEikdDx48eNgqDixYFLRbakpMTQMRVd+lH37Nkjr9er008/Xel0WnfeeacqKip0/fXXq7W11dIuDmsqk7FYzDSJUsGVE0ExQ2ShE1yr47lOIXOvkwYlmufcCawQra7ZGycHEI9es0WLFlneOzMzY94rLS0tmp2d1ebNmxWPx3XKKaeooaFB73//+81grby8XOeee67Gx8c1NjameDyulpYWCxIEAynPVaRSKVNX0+ODjomghIE/6RiL322HYGG7imlkCK6FCc2GVMJGR0d13333qaysTDfeeKN573i9XtXW1toJ7fF4tH79emUyGV177bVFJyRBkfIwQXBqaqpI6Y5+BikAAjdOyYmJCVvsUoE7grPhcAEl08vlTgdxgwAIiZ/7zW9+I6nQI0cVjfTwxhtvlCT9/d//fdHvQXiDvAiGc61S+Hk+B+kf0gPSUngQ3Bz4HdA4972zs1PT09Pq6urS5OSkoYJoNKqysjLrFUwkElbRCgQCRqzX19ervLzc9HcEfQ6ACy+80FJpKmOpVEpLlizR9PS03nzzTdOfzc7OWq9fZWWlEcJus+rk5KQhY0SIpHaZTMHTC4qDIMW6BTkFg0FdeOGFmpmZ0eOPP66RkRHt37/fWscikYg+9KEPGdk/PT1tjeZUmFknHk/equXtt9/W4OCgxQAog97eXnsObi+dJBuSIeX53/+TSwDeQyi4UX3SbY2ehlI1xk+zs7Oqra1VJBJRWVmZVq1aZVL34eFhPfroo1bu9ng8evnll60XrKmpSdddd53l4+Pj43rwwQdtWAD+SrlcTs8++6yVbHO5nN1wfJTmzZtXpMyemzdLBdKeRSHlT2jaDLBskWSezaA4eo4Qf+Kvc+edd6qurk7r1q0r6lsjReX3MYfjPiQSCWvPYSglVR56p1DHY2XKJgVec1J6vQWbC5DP3LYQTixK/twTlNt873vuuUeS9L73vU9SgcAmeKATYrF99KMflfTO6hvpGA25IGfeh9ejgLF27VpJBeKbYMQFaqRgAFdJpRVECRfT0dGheDxu7VGMJ9q+fbs5RUIA19fX6z3veY8k6emnn9bIyIjZfBCQ2Btbt261PYIeLZlMmlVNc3OzEomEXn/9dXk8Hm3YsEHhcLioMEF7EYJDLg5ZAicIGCSPpo51efDgQWudymazOnHihLXGLFmyRO973/uME4vH46blam9v18KFC02Nv2fPHo2OjppkYnBw0PyUoAZcjSDVdqxS0Okx0Qf0GQ6HLdj9b9dJgxI6HtfONZFIGPnF1Ak+IBuNEje6JsYlDw8Pa3R01LqrXUfIcDis5uZma1HxeDzG3Xzwgx80iEyP29TUlG1Od5P7fD6Dut3d3crlcpaXc5pC3Le3tyuTyZgEwLW9peIAcgkGg1q4cKGdzPT45XL5qS3BYNCkEFibBAL5QYf/8R//oZ6eHhvwNzMzo+rqam3atMmc/KRCYYFKCloqvgecFgjINcL3er3WXkF5luoYF4gJZAhiopoCIqEaRxWNYERbyFyJAGnXTTfdJKnQA0faB5dFUOH9+H2CJH+6E2bdzzvXiXJoaMiQkSQzNCMQsQ7gkLja2toUj8e1c+dO+Xz5ycU+n8/sl9GFPfnkkwoEAlq8eLFKSkqsl7O9vV3ZbFaHDx/W4OCgurq6lEqldMopp5hSO5UqzEqDnnjve99rCAT0wX6iY5+KIl32LtrlwAkEAkWpK9yt1+tVS0uLvF6veWcvXrzYqI1wOKwlS5aorq7OGnXPPPNMjY2N6f7779fo6Kjuv/9+O/gaGhq0ZMkS1dbWqr6+3rhXmuqnpqbMXRM0R/DkAGd8PWuVLONk10mJ7ptuuskkAeSRfCjmnGENQb6Jk2I0GjXzMU5oAhinCick7ROID99++20NDw9r69atVk5Ero8hezabtajLZq2rq1MymdSuXbsk5bkMTM/5bCwE0lGPx/OOqSPk9HBTrhaJTUAPk9/v14YNGxSNRk1sSbra1dWl0dFRvfrqq0YoBoNBLV68WNFoVMuWLbPNADEPKU8ayakHx4ELAPfLXbCcoHg8gVQg3t1BD1IhPdu6dat9N6nQu/a73/1OUqFbH33RvffeK+mdiAmFOqV/gpnrAiEVgtRcszmqpARH0kHSOj4/QWr//v2mU3KbVuEAQa/upA5aSkD2pMic5vCItDNJ0p133qmSkhJ961vfsoM4lUrp6NGjNgmZYazT09OGUOFjKLDQQ9bf328kuiQ7DLH1pXLF/wM9sRZojaEyzdpmLySTSe3Zs0fpdNr6NkOhkPmMZzIZQ6OuSwAHPAG9urpa69atU2lpqa3fiYkJTU1N2bRjhKR8Xr+/MOtPKniMuTIOSfrpT3/67ohucl0WAcHFTQ+CwaAFJ+Do9u3bFQgEjJFHvzB3PAseKwxKxNy8vb3dXAimpqa0b98+BQIB60lbtGiRRX9uSDAYtKoL6cLbb7+tbDZrql64Mex2pTyfgdeMW35lAwFRafbN5XIm8OTBvv7669YTxynBpmpvb7eSMHoTxJGYgPF+bvMyeo90Om3pBp7gkuxzuA/cdR903QLmOkpSbmbTk77xc3AeVMVAVJCllOZBeK+88ook6cc//rGkQoMtn4ufh6PBbYDfhyhHckLQJBjxd4IWp66LsCCeObw4pd2hmqQPrD+3VzAajeqcc85ROp3Wa6+9Jq/Xq6GhIdXU1Og73/mOysvLzWaYzzQ7O6vx8XHt3bvXKnlVVVVqbm5WOp3WiRMnjBAGYfN+VFVJzzgkpYKFCZQCfJf7GhxQVMRZt1ABbW1t5g8v5QMkqStN4/CYrLWqqiqtXbu2SC7heoxTXJmYmDCqAcEqBTHQuJsi8mw59P7adVKkdMstt+TQPEgqKm1DNgMnIY7pCE6n0zYlgf6jcDj8F6sZnPSSijrx9+/fbylUMBg0z2SU5dwoGmWB65RPuRH8HK8111mAHje3kkAPEj9DOwsQOZPJ2LgappZykvOdueA0Vq9ebZMg4vG4DTagVQHkODk5WSSIY4G6dqbcT37eJUNZ7HPTHi4CMkGC9yW9oucNBDM3zeMU7PgfkziCB/cf21wWoTvxQipU5/j/cFggMdYk33VulQ6OrKury4oYgUDADiPUyW5bDZs2GAyaGdyRI0cUj8eLGnVBM6w/v9+vVatWWbOqlD/s0um0kdSM/2aNse5ZP9wvlNfugci6dqUnkUjEZAikQ66wkmfl8qTwlQQr+EeCGlVoAvWBAwfk9Xq1YsUKc6yQ8sUOv99fJNPJZDIWiBhaAVWAhtB1YHC/s3uBar1e77uf+4b8HhKLqMzoItfPB8WzJIPFiBHJ0REaxuNxjY+Pa9++fZqYmNCJEydUWlqqCy64QIFAQAcPHjQpAUZX/D4oDb0R6RTpDe0FpEEorF0xIlxXY2OjCc3glji5JBURkVJBmczwQPJlzNvp7j/llFPspI3FYlaqh+vg9CA9bGxs1MzMjBGu0WhUgUCgaCoHVTW4PESm2LCC8iRZvxJBwrX4cL8Hf4JQQE4EH5ASwYfgQBc/wYTNSlDhxOf9SGcgrNEzsXDRMbFZ2XhwVSBSNuZcxTcK6b1791qqQwpBwMIsj0OVRlW+N9IUqqHQERRaQqGQVq1apUAgYPSDO/ARWoLfA1HBC2WzWUOaDQ0N8ng8hjI4lHjfWCxmDhmuvY8bnAKBgDXCIncBzZNSQpF4vQVbF/YI48DIXBBVgpanp6ftPbgPqM8RGvt8hUEABCOeHUG5oaHBNI2JRMLsfE52nRQp/d3f/V0OBIHqmcWGbocgBcREX0F3Ox8G5EEplk2XSqWK4DYQkTwXzsot+SKWcyfOotNx/YGxomDx8vN8Xh4cVRjU0u5seK/Xa+0LKFRdu1PeiwfC95FUNNYcRObe77/2cEAq7slK4CF4Euwg6mmTkAqc0dxSP+/LxgEhQmxDrnIRtPh5kA9/x9KE+0xwg9MCabHgOcy4F7wOwQ/pAn+nWkdw4nsQNLn43q7Y0ZV4uNNCUGy794ufB8E0NDRYGjI7O6uuri7F4/F3IGEOPw5f93vxfNjwbsXKlZbpiym2AAAgAElEQVR4PIU5fnBWoF3WFSQ+yJ29J8n4yLnN1a5Qme9BdwGtM/F43Fqx2KdUMikicZDPddrAJZYqPMiO+xCLxSyoSoXevTvuuOPdjVj68Ic/nAMWRyIRm9vFidTR0SGPx1MU/aheAWv9fr8WLVqkcDhs/kuHDx+Wz5e3LfX5fOrt7VUul1NdXZ1SqZTeeustjY6Oas+ePQqHw7rmmmtshAzQM5VKmW+M22aRSqW0b98+S6twBeD0lGTIoqenxxYMiEcq5L8EERYA7SekIW5aJekdEBvhp8fjMS2J+4C4X257AYQtRCrkOAQ2C3Tu6UjXursQ+Ryu1EEqEMVzXQPcHjH3Im1iwfP/eb25E3VJBwmmICUKAQQbEM/c9heCIGuT+wvyg4OCQ+LQQwpA+sNhArKhM8EdAsmGQ/LCIeZuKJ4lgYHf5dBio3FAoV/jMILsZa1xyBK0CKD8XigU0vHjx21NsH4ImAAC7gHkOCiLg9blUakwuy0ergYRwjqdTht/iwiTtYV8hjUGL+zz+SwWkB0BZODCXHfYTCaj3/zmN+8uKP3mN7/JcfLDyofDYS1dulTJZFJbtmzR7Oys6urqTNsxOzurP/3pT3YTAoGA5s2bp8rKSi1dutQEXyhfp6en9bvf/U7d3d3atm2bSkpKTKY/MTGhwcFB3X333Uomk1q7dq2qq6u1dOlS1dfX68ILL1Qmk9HDDz+skZERM4hnYbW3t1uLAdNUfD6fzj77bIXDYetKd9Xi3A+6w+mhQwfikncECTYk8+hQwOK/TQWENIwpHOTYTNVwgyZBEjtVqjPugwatwamxENwTT1LR67KgpEJaBzIircKHaW7a54pJpUIQ43U5tAheWJTAV8xtrOV1eF/uJUGL9+X15xLeq1evtufmcpIuWnefK6ldfX29vF6vbTRem2DB5nVN+NPptPkepdP5kWGnnXaaSktLzeqVDUyV2j1M3AIKAcetXmezWeOzjh8/bgNY3dHmbvM3B1hVVZU8Ho/dE7oW/hJi4nJV7JDa6OmgF958801lMpki7RdoL5HID4KlDcbj8VgvHgcia5ODD6oD/u2uu+56d5wSbRvYHUxPT2tkZESvvvqqbQrIQ0STIJzp6Wkj8LZu3aqamhrdcsst8vl8eu655xQIBHTuuecqGo3qhhtusArA8PCwfvnLX5paORwO6wc/+IE8Ho8OHDigoaEh3X333YpGo1q8eLGqq6vV2dmpaDSqvXv3anx8XG+99ZZyuXy/kJuLw3U88cQTRRAZ+MyDQ1XOIoTfYhMx+RYvHCY5MOAPgy6EafSkYe3Cicgifeutt5TN5s3hsWWV8twMSIn02eVISCN4PcSsEL1sbhYsyIX7QHpHUCIYgVRAoiAweAnSJnrSKPEjogTaozeCowIJgbT4k6DF9+ZzgaT4OxwYGxUuj5I3NhzcZ9elAsQLheCmvQRvNhIHz549e5TJZEw1ffToUXk8HnNtQJKCyp90z02rZ2dntXv3bhsEEQwGzRrGtdAJhULm58X6IkiDlCjmuAJeHAlYE2j7SKkkFaWuICsEkIxaOnDggAlycRXACWRmZsasoxctWmR9fSCwYDCo1tZW08olk0mrEpJKSzKOy0Vrf+k6aVCCO0HfE4lENDk5qX379imRSJj4kOGSPAgWwv79+1VeXq5NmzappaVF9fX1SiQS2r17t8LhsD7ykY9YpD18+LA+/vGPq7e317xXIGs/9KEPqbS0VHv37rUA4fP5NDY2pv7+ft18881FAUjKbywsQ0BtpaWl5tNUXl6uZ5991j4zkJjF6/P5bLMiRiQNcc3QOZXC4bDmz59f1LBL+w0Omkjxt2/frvHxcRuwwMI5duxYUQVtzZo19u9sMld8BoQGUfHdPZ78dF6I4rlcED/HaUq7x9wgRRsPEgGCFW4A+B598YtfLHp9t0IkFZTcBDV0T/wdfRNIintCGkh1DyKd1+d5gI65L+jqqEbh4UNFyufzWVqHTglUhmsA3JMk08FdffXV1vhNewqBDMKayhQe6vF43ES9U1NTmpyctInQ+GdRxnfnKmLN7PJRHFyuWwAonu/OTEUQFJ73kNT0oLlcFQJRj8djLWJUfgEep59+uu0fggvdEgiJuXfwm5lMxopQ3GM0ZCe7Tpq+rVu3LldVVaVLLrnEOttnZ2d1+PBhBYNBnXfeeQqFQmZOfs8992hsbMx8Wm677TYbbX348GFdfvnlSiaTuu2221RaWqq7775bZWVluuWWW2xEi1Q8Ux2Ec/DgQesVe+yxx5TNZnX55ZcXCfA6OjrU1tamz3/+82pqalJtba1GR0f185//XMlkUhdddJF8Pp9efvllK8u7SAlC1J2xhWiUkj3BkgePa2BlZaXOOeccQztu1YwS/+zsrAYGBnT77beru7tbu3btUjab1cKFCxWJRLRw4UJboG5pn9OGzvQXXnhBiUSiyNdHKujKSONAfnA/BA2CFX+fm065AxSlglc29rYgInrR3HlzUiH9Ii3j8+3cuVNSoW3l2muvLfo5t5jhfg7mwxE8eb+6urqi0577zj2ZmZlRIBBQZ2enSktLVVZWpng8biJHJjBfcMEFCofDRX5M2CGz8SKRiD7+8Y+rrq7OKl5uJZh0nbYTvL8IAKWlpYYEOYwIFhx67kXaRSoJSqQIAw83PDxcJLCkqjY0NFRU0GC+G66cqOVdB45MJmMCzpmZGZWVlenCCy80ITQWw7lcTu3t7fL7C+PKqKj/6U9/UiKR0MKFC+X3+82rCoqhrq5Ofr9f3/rWt95d+oY3ipSH/C+//LJ8Pp/Wr18vn8+nZ599VtlsVp2dncpms6bduOKKK9TU1GTWmMuXL1cgELATq6OjQ/Pnz7cgwSIElruXz5efiVZdXW2iO+Dx3r17dejQIZvUevvtt6u9vd34gS1btmh8fFzV1dWamprSXXfdJSl/UkciEbuho6OjxjUwB8w97fGKwWqlurralLolJSVqaGhQOBxWNBotcigYHh42ZTdpb39/v7Zu3apkMmnTNJgzRnsL3BFIrLGxUYlEQlu3brWx5nAdbvWP4OUiP6nAyXAAkU6RfhGk+Dm3EVUqpHUQ1YgtIaD5d9JCghz/TlWJIEN7yR//+EdJ77QuAcGBVNhAICg2JO9HwKZaOz09rVwup+rqaiUSCb388sumycG8raKiwkr89BaGw2FNT0/r4MGDGh8fNxQwNTWl2tpaa/3gosEalTfc0HnnnWcVL1TXo6OjZrVD8Od74/9EcG5tbbXvQMChpQakRPPwggULlEqldPDgQU1PT5ulLyPI4YD279+vYDA/pruiokJr1641pERGQiAHJeIJlUqltHv3bvl8PuNpSVtxQD1w4IA19GKbm8vlzAuc9YWg+WTXSYNSS0uLuce5svhHHnnESuZlZWWWA2O7+YUvfEHJZFKXX365vF6vNm/erIULF2rnzp2mSqU0+tdUntwoSYa4Lr30Uvl8Pj322GNatGiR9uzZo2PHjumrX/2qvF6vbrvtNoXDYT388MM6duyYUqmUKioqdNFFFykcDls3M4ue0whiDl6gtrbWpk3MzMxoeHhYExMTisViikajWr58uckLPB6PnYBHjhzR8PCwtm3bZtWQcDis5cuXm2H96Oio9u7daw8ef3L8pRKJhB544AHbEFRoysrKrOJBawBE7MjIiLWfcNpJhU0+l7jmJF29erWkAqLi50FaDJfEfI3Dg3QLtEoQZNER1Oilo1OcRtuf/exnkgqKbw5AqqmkeXwOTOmoHhK0KfG7pvVIS9LptA0hhWfBhI1Gbea3/e53v9PMzIwWL16sxsZGfeITn5Df79frr7+uYDBoQY0ezm3btsnr9erCCy9UTU2NOjs7TUIgqajZNhQKmZsA4mN8sqkmrlq1SplMRvv27bP0DHsdhgFAmuN0gEPEsmXLrNgSj8etIj4yMqJAIKClS5faoQeKxpywpKREbW1tOnHihL761a9qcHDQso6vfOUrqqurs8DrqvsxuZuenrY2FteXKRgMmpQGyYJbBf/frpMGpYMHD6qyslIf/vCHTdiFTmdqakqPPfaYAoGArrjiCjU0NOif//mfbaSSx+PRiy++qMrKSk1MTGhkZMSiPCcoC3hum8TcEjW9Zj09PUUTNlz1dyAQsIF53/ve9zQ6Oqo33nhDqVRK7e3tqqmpsUrCwMCAVQ8gC0mXCC7pdNqMquBr2ATMCevq6lJpaak6HE/tmZkZhcNhlZaWatOmTYpEIjZ3jsW1du1aTUxM6OjRoxocHNTjjz8uKe+ljY0EAcNFZLgzHDt2zPRfbg8gFQ53NLikIgmDVNANQUTD+bA5eD4Q03A5c61G/uu//ktSAVlhYULPG69PUOHf+W5wWPg2kU6SqrB4IdpBYPzJdGTUxHxHBpXi6FhfX28Volgsps7OTvl8Pkutn332WU1PT1tZ2+/3W5pXV1enj33sY0UCyN/+9rdFjoyjo6OWmriVJwStcEd8pjfeeMMmp6RSKavGkYK5rTBUFrknk5OTCoVCWrx4sXw+n8bHx82oH3QoSbt27bJ9AXJpbGw0a154Q2yVf/3rXxsv29zcrIqKCqVSKd17772qra3Vxo0bFY1GLX1kbTY3N9vEXRwRpDxfSHZE0zCSg/8T0U0a9PTTT5sGZHJyUps3b9bU1JSpl2+44QbjMaqrq/W5z33OFqPH4zEOgrTC5Y6OHj2qG264QT6fT7/4xS9sIUM4T01Nafv27fJ4PFqzZo02bNigAwcO6Pjx42Yq9oMf/EDxeFy33nqrvF6vHnjgAUWjUT3wwAOKxWJqb29XPB7Xn//8Z42MjGhsbEzpdFpnnnmmpYdSwaqzrKzMEBo9bcBwoGokEtGZZ56piooKM5ZvamoyKX42m1UoFDLDO+4FFbT+/n698sorSiQS+vrXv26WMIlEQnv27LH3Likp0cDAgPlQuVoPNjVKe1fQRuWD5yAVuCAcJ+fqhFioc4dF/vSnP5VUCDIgTILZRz7yEUmF9IvPwUbic/J5QHAQ1U8//bSkQvVtri6J9A8yl6BIGkqBg9YHOhAYjMhzhQM8fvy42dvSFpLNZnXRRRepqalJ69atUzKZ1AMPPKCenh51dXUpkUjov//7v81Ohu/Z1NSkSCRiLVg4a7Dx6Eig0ouSG7SOFzyqaJAEchJXh4S8hvSNRlzXfhYjwFAopKamJn3hC19QS0uL5s2bZygpm81aY/v999+vyclJO8BeeukljY6O6s033zRtVXt7u1avXq3a2lortlCNP378uCYmJqxHjsOBoAo6wuLZTef+t+ukQQlxY0VFhaanp/Xkk0+afUl7e7t+8pOfyO/366abbtLg4KDC4bAaGxt1ww03qLm5uehGSPlAc/z4cd18883KZrO2GT/xiU8om82a/J/F39vbK4/Ho4suuugdbnXt7e3mfEjuvXnzZkn5k31kZERHjhxRV1eX/v3f/12hUEibNm3SqlWrDInwYKlsIFzj/QcGBkwSAATngTIyqqqqSj09PVaaJu935RJsJpfAHRoa0q5du2x2Vm1trdra2pTNZtXf36+hoSFTNre0tJjwFCKbMnEmkzGoT7BFazP34btuB1Jhs0NME4xAbqRp3FeqbRDUBA3GcOM2wP1DVwSSIkjRwEuwI8gRpPicBFHSRNpZCKY04sIlkb5BIu/atctEtiUlJXYf2dR4A4GcSI1/+MMfKp1Om33t1772Nc3OzpogsaqqyrhQJqPQAoW4F9IYhI2f2OzsrObNm6d58+ZpcnJS8XjcpCHYj4D2sK3xevPN336/32xyMbKrq6uzYDA5OWlTgdeuXavGxkZzpMAJg8DZ19enrq4uPfTQQ+rr67NBno2NjVbUQnPV0NCgSCRiU6Eh9UdHR/X222+buybPDv2TVJC1HDp0yNLP/xNSWr58uZLJpHp7e212VWtrq66++mq1tLRo0aJFyuVyZoZ12WWX2SgXtw2CC6EfXfU0OS5dulRHjx7Vl770JY2Ojmrt2rVqb2/Xtddea7YlpGlSwT9IknlUs2h9vrwhfy6X04033mi/NzY2pieeeEKjo6Oqra2Vz+ez0rZrfkY5HaV0MplUZWWlMpmM8VNuNzpVHKo2mKuHw2EbIOAiQ3oEQUZA2ng8bnwVLoCIN12/IL/fr87OTnO8TCaT5gBKGgdJ6rbVSIUgQToEx0RKzP3duHGjpELQwGESPRI/x+vPNfYHwaDH4f7y7zTkEnQIQnMtVgjKrn+SVGwKhyrb1cCw+M866ywlEgn19vaa6VokEtHFF1+sZDKpX/7yl+bvFY1GFYlEFIlE1NHRoampKW3dutUOxaamJp177rlKpVJ66KGHlE6ntWHDBtXW1tr8Q7hFUkOU9v39/ebSSKO1K3Alnab1ZdeuXVq4cKFVfN22DVqj4D5pZp+cnDSlenl5uc477zw1NjbatGiC0dTUlI4fP67vfOc7On78uMkTJFlzMO4ANTU1+uQnP6nm5mbNnz/fhJWzs7MaGhoyR9hcLmfpLfIb9hMos6yszLKtv9Ss614nDUrPPPOMmY03NzfbxNLa2loFg0EdPXpU0WhUn/rUp2xBsanT6bQtKioBsVjMJp64AjaPx6POzk49+uijOnLkiK699lrdfffd+trXvqbOzk49+OCDOuWUU4yc/O53v6uJiQm1t7eroaFBV1xxhS3kQ4cO6aqrrlI6ndZPf/pT1dbWateuXRbxsUqh1QQkyEKSCmZhRH3QRyQSsdltk5OTOnLkiE1YJX1CSuD2XrkPghJxZ2envva1rymVShVZl7C5eZAIPxmlJMk64JkIC8KhQsNcvbltISAOt6TuXkwX4fVAUDz3TZs2SSr0yFH1vPvuuyUVkBRBlCobr0NQ4nX+6Z/+SVKh5E+Vj/QPCQHBi9cF4SFepUQvqUh/BM/BYVBfX69MJmODLGpqatTY2GgOqaR3ExMTCoVC+tSnPqVUKqXXXntNg4ODNonnc5/7nFnZkg7B/8zMzNghnkrlp9UeOHDA7HLhKBFb+nw+M/aHFG9oaFBra6tRCG7/KBueaTbd3d0m0wFJt7S0qLq62taBlEcsw8PDevjhhzU4OGgyAyrLq1evVjgcNjHnueeeq/r6ektPqa5DQbzxxhvmGwYwKC0t1Qc+8AGl02n9/ve/1+TkpN0jDuZQKPSOrGfu9VddAlBql5aWqrW11Yb4MUIpk8kY98CwSHL4pqYmTU5OminYZZddVmRF6149PT369re/ra6uLp04ccJOB4SJJSUlhng4wW688UZ1dHQYZyHlU4dHHnlEhw8f1pe+9CWl02ndfPPNqq2t1WuvvSYpb5AfDoc1ODho70MFC12SpKImRvJ1ny8/oK+kpERjY2OamJiwTYHEYMeOHdZNjkq2vLxczc3N9lB5SJlMRv39/QoEAqb96OzstAU3Ojqq559/3rROaKJIFfj8XKR0rpiSIIIEwBUZSgUkgkgRZLVu3Tp7TanA+VCFe/bZZyVJ3/jGNyQVgg7BiWoewZT34fOCrPgc3BNM4qjazW28Jc2jMEFvGwLKSCRi3QFSQaFPLyGbi5RrdnZWsVhMhw4dUlVVlT760Y+qpKREu3btks/n05VXXmneWBQcWC9wQrFYrGjKTCKRUFdXl8bGxvTWW28pk8mopaVFkUjEzAeHhoZM5iDJDjCGlbotM24rC/cSrgm/MDSFra2tamlpMbHrwMCAfv7zn6u3t9c4MdAjo8gRZK5atUo1NTU69dRTrWWF54Nuz3UtOHjwoGmy4MLKy8u1evVq00vResV6/2uN6CcNSmeddZZZMoBqJiYm9OijjyoajWr+/PmWSqFozeVylnNzim/atEkHDx7UGWecob6+Pq1YsUKLFy8uyi9nZmb03HPPyev16qmnnjJrUW6GlE/bFixYoFtvvVVHjhzRxz/+cZWVlem3v/2t0um0rrrqKo2NjemDH/yg2tradPvttyudTuv+++83pOR6IyO2Y3GyoalyuSeY3+/XGWecoVwub642ODhoToWZTH6UzKc//Wl5PB795Cc/UX9/vwYGBlRdXa3Pf/7z6uzstPTi0KFDGhgY0IsvvqhUKmVtCzy8+fPnK5fLqb6+XsPDw+Zz3NbWJo+n0NlNIymNwiwahH/cP4IRi4s0iCAwV0HNz2FRAldDGsdJN9f/iN8jGIGQeN2nnnqq6OdBTI899ljRzxNESQsJYiAvghzPhQ1KugTChdui6RTTPNTVL774ojKZjJYtW6aamhq9973vVS6X02OPPaZkMmntQ9u3b1ddXZ3ZHiMtoBfttttu0+TkpJYvX65cLqc33nhD2Wze9xoi3W0vggAmJUPbBhc4OztrlUX6HElROzo6rJVIktn0ULkDnbn9fxUVFbr66qs1MDCgzZs3a2BgwNxiw+Gw6urqLNsg4DQ2Npq9M/2W4+PjpuFihBNBkliAlQlrEQ/6uro65XK5/y/rkpMGpR07dkiSKUgvuOACVVdX6+KLLzZ9zdjYmP70pz/J4/Fo2bJlZqCFzJ9UZtGiRTp06JCOHz+ub3zjG4rFYtqzZ4+2b9+ur3zlK3ZKI8zjfd2L/rHPfvaz8nq9evjhh9Xa2mqc0ksvvaSxsTHdeuuteuutt7Rjxw4ry0ajUZPKIwlA3MacNFdLATcA6YhCG9sHTr7x8XG9+eabmpqa0o4dOxQKhVRfX6/q6mqtWLFCjY2Nuvrqq6115tChQ/rCF76gnp4eU70+88wzqqqq0mc+8xm1tLSYBGL37t1Kp9O65JJLFI/HtWXLFqVSKZ122mmGUGdnZzUxMWH+Utls1szk55qzEQwoqYMwCU5wbNx3OCFSY5AH1ToQF/8fhElw4qQmuICA0EVhN/vZz362aL2hR5rrNgBiQv/EJsJpE8I7mUxamu3z5QdLEJDi8bi6urrk9/staDU0NCgajRry6uzsNLV/ZWWlrrrqKmvbAKWRbqNZGh8f17Fjx1RZWamLL75YgUDAlNpwrxwYXV1d1uDuPje+X3t7u44cOWKCXoITbqwlJSU67bTTjFPCgjcajWrNmjWGkggmsVjMKoyf+9znFIvF9MADD8jv9+uGG25QXV2d/ey+ffvMNYPpLFAyyCt8Pp9OnDihVCqla665RiUlJRoZGTFCn6AKwo7H40b+E5BPdp20zeSzn/1sDl0RpyMczNjYmO68807F43GdccYZ6ujo0PXXX28kMnCS6AhqooP/8OHD+tCHPmSewaFQSJ2dnVq8eLF+9KMfqa2tzVDJQw89JI/How9/+MNWqZl7TU9P65VXXtHIyIj27dungYEBPffccwqHw/qHf/gHRaNRM3gn+j/55JNF7RikADQSv/3228ZbsEDC4bA6OjqUTqdt0F8ymbSFUlFRYe0o2JN2dHTYdIfx8XE98cQTGhkZsT6khoYG44A4KaUC8cvfXd4klUoVTeJFyoCzos/nMwKbTQziQCFNegdygruBU2JRffCDH5RUCF4Q4DfccIOkgtMkaR+flyBG79y2bdskFfRQ11xzjaTCZFyC6IsvviipUG0jiILYWIsLFiwwRb5U6NXklB4ZGVFFRYUuv/xyq8DF43Ht37/fUuFAIKCamhqVlpZaiwaBBwTmXqlUyswCsTNBNBuLxVRSUmKjrpn+sX//fo2NjenAgQPK5XJmvwziIu3n+bJXXKQEj4gUZ+PGjQoEAjpy5Iit0ZKSEi1YsKDoAHb1W7yeVPDmIkOgcss6I6jxe7Ozs+rv79fPfvYzmyzkNqPD98ExHf2fcWDwrTRCk/b97Gc/e3dtJsjQjx49qlAopFNOOcW0NLW1tbrrrrtMHIVp+dTUlB599FEdO3ZMf/zjH1VdXa1f/OIXymQyuvTSS+X1evWrX/3qHc15SOEPHDigJ5980hbWKaecoocfftigu7tpXUdGKZ9uMNtKyksa6uvrtXHjRvn9fu3Zs8d686iUSIWTPZFIGCJy/x2iDusTOCBSAgSO5557rsLhsLq7u82/mNIqAaG8vFyXXHKJBgYGdMcdd2hoaEhdXV1WMampqVF7e7tisZgefvhhJRIJU8dOT09rdnbW+pSorGBtgr8PeTybHMRCEILQJm0C+RDwUXBDkmKyxn296KKL7H7xndz34aAjGEJkk0by/G6//XZJ0sqVKyUVxJmIMCmUgCAYlkn10C3Ls145POjGp4mUHsVgMKilS5cqHo+rr69PsVhMBw8eVElJiS644ALrU2PDIu1AqU9/HKnRwMCAfvrTnyoej+v8889XS0uLVq5caZ/J5QYRcyJlgGPD7SAajRZpktzNzHoHXYNUBgcHrZLH5FtQWiKRsKZhnhetWvCiBEYIe+Qtc3vb4Frb2trk9Xr19NNPW+m/tLTU2kc4XDs6Oqxi7VIl/z/XSZHSvffem0skEuru7ja+g65rFN1jY2MaGxtTU1OTvvvd75q1q9/vt8EBCCtZUDt27NDhw4d166232mSHtrY2/fCHP5SUr8qUlJTo3nvvtQX9166uri596lOfUiaT0fe//33NmzdPVVVVSqXyU0disZhZr2zevFmTk5PW0UxgJF1zLUDgLXAirKio0CmnnKJsNqv9+/drYmJCx44dUy6Xs0rFihUrVFlZqY6ODpWWlpqad2hoyPyRent7deutt2pqakorV640DQhkZSQSMQIWY3qEgCAg3AMZX81mpDw9t72E9IpgTHpEsEFUyWZhRBKb4tVXX5X0TlM2uCZ+Dp6BoMP7Mv3kF7/4haSCxID7D7EO50A6Obf6xkUK3traar5EoVBIS5cutdTG7/fbOHWXH+FQpEdycHBQBw4cUDQa1Ze//GWr1En5YD42NqZHHnlEExMTZmJIWowkoLKyUlVVVdq4caNVdIeGhnTXXXeZ9gzXCo8nP7qsoqJCy5cvl9frVXd3t7LZrPVWwtNKMhsWCj9Lly5VLpfT3r17lU6nzcDOdSooLS3VGVTTKPgAACAASURBVGecYZ9LkhHdBEhaQbq7uxUMBnXWWWfZzyNfmZmZ0bZt2zQ8PKwDBw5oZmam6H3C4bDOPvtseb1e7d69W9ls3gDS6/VaczOqexDYj370o3eHlB566CHTLuDfg1ka3e3t7e268cYbrbzc1dVlPWj/+Z//qYqKCjN4b25uVmlpqTZu3KiNGzcalzD34qT+S1cuV2yyRrDr7OzUk08+qe7ubn39619XLBbT+973PpWXl9vJTAUPYps8GXM4SvOobdlMcCa0ldDpTBWHUTrLly9XJpOxRtP169crEokoGo0qnU4bgiItdUvEdXV1uvrqq1VfX2/lYCCwJDP/ymQyZvPr9qjxeYHyXq/XuvtpACVNBQlCKPNzlOQJRgQBFjRolTSN151b4sUF4JFHHpFU6Hm77777JBUQG8Q2iIi08uyzzy76fHxeyF2QlCRr3cDGGHQTiUTMYoTqbX19vVXostmspRfNzc3WMMuAiKGhIb366qvK5XJmanjkyBFNT0+bjXN3d7dKS0s1b948VVdXm7wAd0gKFBs3btT09LQNwnDdJOGmcrmcdejzneF1IMAJZOl0Wo8//rg10rocD0FgampKfr/f1hYaq8cff1x9fX1mA5TJZOzALSsr08GDB1VfX69NmzbJ58u7wqbTaXV0dKi2tlaTk5PGoXm9Xq1evdpao/x+v9asWWMV+2QyqVgsJr/fr/r6ehMqk4H8b9dJgxIKYyBcIpFQJBLRzTffrHA4bIMFjhw5ooGBAc2bN0+1tbX60Y9+pK6uLl155ZVWeQgG86OYmpqa9JGPfERtbW1at26d+vv79eEPf1gej0cPPPCANWH+pSuXy2loaEi/+tWv1NXVpT/+8Y8KBoO67rrr1NjYqJqaGqVSKa1cudK0FlTbZmZmdODAAZWUlOgDH/iA/H6/NQizScLhsPU34cwn5RtEgdLJZFLPPfecKYkbGhq0Zs0aJZNJvfjii5qcnDQHw8cff1zNzc26+eabTQsDNC8tLdUXv/hFc7ZEX0RZlROTzwBJm8vljLOinUUq+EHTYOrxFEzrCF4oq/mTfyetmuvW4KZFUiE4Q5ATNCCMSaMhrEFUzzzzjKR3jvfm9TnQeF2CD4iNNBTUwP+vqamx58dnxp2B6RuRSESnnnqqda3zs/St0VdWV1enxsZGMyhz/YSQOPT09Jg2R8pXnMrKynTaaacpFAppcnLS+ihLS0vV3Nxsk41RlmcyeXdGBkUkEgkjmhnXHY1G3+Enz7PCiaCyslKpVMpSeXedgAIxvovFYrrllluM8wJth0IhXXrppaqoqDDZzznnnKOamhoLrqB8QAmC4SVLlpjXVyKRsAP6+PHj1m9HKkdVEGQ2t7Ng7nXS9O373/9+jkZV8lFEZ6hgKysrtXbtWptBHgwW5m/RvjF3WKCUh+bXXHONvF6v7rvvPgtGiB+9Xq8efPBBzZ8/3+A8DbQuEdnX16ebb75ZHo9H//Iv/6J4PK5Nmzapr69PHR0d1pvG70qykwdSFERAKdX14yFlotOf7nsU6aSnsVhMzzzzjGZnZ1VRUaHW1lZ99atfVXV1ddHUl9LSUrW1tRWdlu74aYy40CfNzMwYx8HJip8yC5eSN5CckuzcxmZ0RqRdWGUwTQTTNdpIUHa7/UxsfKlAPMMFUeL/zGc+IymPtKWC+BIEyd9pU5lri0sFlhN1rk6J702l1506EwwGzYbj4MGDCoVCOuecc1RfX69ly5YVtYTQdgFimpiY0MTEhFn0vOc97zEyGUdTKc/HRKNRGxd/8OBBqz6HQqGiFg16FROJhAYHB03PlE6nbfI0vtbQBjwHSUY2MzGIRtnDhw8rl8uZpe7w8LCR0R5Pfu5bKpXSzp07zZYFHisSiejss89WMBhUX1+f/P78SKVoNKr29naz0ZFkHQukn0888YSmpqbsYGXf8p3c2XhwXsiE4Msk6bbbbnt3Ht233nprTlIRzAwG8xNeM5mM9uzZY6lRbW2tbrjhBlVVVRlxxwchBaEpda7+6N1co6Ojuvfee5VMJrV+/XqVl5ebZOCrX/2qpqen9cEPftBOyHA4rJUrVyqdTuv55583u14WpVvpAJFAcqIbguNYsGCBPB6Pjh49qlQqZW01kKrnnHOO+dDQEycVOBDU6SCvo0eP2pSMWCym3bt3KxaLFRnXoxfju8B/5XK5IqMtFOVSgWgmqMMtQTiShpE+4U/0yU9+UlLetUAqICeCm3soSDJR6v3331/0uqR19LoR/NE3wWEhGeD3QFJzXQm4F3w/WiTgYECWeGSDHuFiWltbFY1GdcYZZ1ibTyaT0YkTJwzBwJmygdD9kCkQ/OBaGcooySQjbtCDMI/H43rrrbc0OTlpdsVoi5qamowToyjCQcRsRFeO4fXmhyLgQMDzhEQniCCTqKio0IIFCxQOh22f0Gc6MzNjvFpZWZm++c1vqqmpydYW7U/PPfec+vv7DQWvWrXK+u/opWPNwSUhLUDxTpN9LpfTL37xi3fHKcHEozWiGvfyyy8rHA5r7dq1qqur08qVKzU5OWmixueff16NjY168MEH1dbWZo21LkKYe6VSKTsRuSlSnmfAbvVf//VfzSoBszMWezwe1+bNmxWLxfTZz35WqVTKgiZDBiESIbhxH4Bn4HTgZtLHg01ta2uredLQXyXJUjIGBOzevdvuF8pe8m9Ox3Q6bdoN11pjZmZGg4OD1kaQTqdtiCalfi6QFg8aq1JXkCoV0iQuOBoQE5wS3f4QuD//+c8lFRAQQY2FSfWOQ2bDhg2S8h7oUqFq94EPfKDo99Gk8Tng7vic/Bzp51yCHsRH2gLi4fuCnPhsrF/4lnvuuUehUEjnnnuutYtgmk/Po4uYLr30UgUCAb311lsaHBy0Qw393qZNmxQOh+3QIp1l5BfPj6CFl1hnZ6eR6Nls1oY/wiW5z5IAz8ZmjDZrC0fM5cuXW6AeGRnRU089ZbyOJAsQDDlIJpNqaGjQTTfdpLa2NlVXVxvPSSDGgrqyslKrVq2S1+u17gTEkPQgInPhntKnh2wDfvpk10mR0o9//OMc6RJEIr01ZWVl1lG8atUqBYNBjY6OampqSjt37pTX67UTiQeBmI1hjYj88JahDAnxHAwGNTQ0pJ/85Cfq6+vT6OioGhsb9e1vf1stLS2mjsWG9Pnnn9fIyIhBSd6bPBbP7h07dlgODRrCrS+Xy5kEnw2PXw7cRl9fn20IHhZEajabVXd3t1U4pMIYHMywQAgM7UTntGzZMvN7IkfnpKcNQMqnmSwu94FTUoY45YIzmjtk0oXoUgGRIJoEmYBY2GxsFN6XNA83AS5+HuIaRTfvR1AkOFFlcyf/SgWkB5KCEEdECkJEe4QTKkEf7RztQr29vZaycL85BFh3U1NT2rJli3w+n7VHsZEha11/LZdAhwRmzDzID0TuNu6m0+miARVS/pBlGGRNTY38fr+lmFAJpHonTpywgIZkAG4HbVMoFDIOaOfOnRZ0fb78MMmqqiqtWbNGlZWVNuaMAx2O89VXXzXCG44IRIYcAfTO+uBPVwvIAfrjH//43SElfHyampo0PT2tbdu2meIVGDg2NqbHH39c09PTeu2118wYvaGhQWeeeaYikYj8fr+6urp0/fXX69ixYwqFQlqwYIHuuOMONTQ06MSJEzp06JDe8573aHJyUuedd57Ky8uVTCbV2Niob37zm5qentZHP/pR7d6928r2FRUVCgTyE01d/2BmVgGr4bS4OcuWLTNxndtXxFBMFh88jtvl7vf7TbQHksRGl03c2tqqVCplFRQejGuXS7c4jp2ITL1erw0GpCm4pqbGUjuX9EQ170479fl8ZpmBSBHoT/UM5AHhDaqY2/DqDkd0/ySY8fr0wM0dvcTPYwZH2gbCJQjx89w/gibBkeBEioBeyR2yiZDP6/UWTQmhaoYWJxwOa926dabnogm2qqpKV199tXw+n3bt2qWpqSl1dnZaT1xZWZk++tGPqry8XH19fZqamiqqYHm9+RFY5eXlWr9+vXULcLDx/Agu+HgRtEDEBC33T+4VFVxkJZD1FDUCgYChReiIgwcPKhDITzmprKzU+eefr2Qyad+xt7fXgjLyAK/Xa7TH+Pi4ksmkFTnmOlDwc7ih1tXVGd8MSkqlUla8Adme7DppUMK07M0331Q8HjclKgQwJznk7+TkpEpKSvTFL35RTU1NampqUjAYtFI1wwFoRKRCsGLFCovWXV1d2rZtm/ExPp9PmzdvVnl5uZYuXWpEZUlJiRYuXGhly2w2q2XLlpkJncfj0WWXXSaPx6M///nP1p7R0NBgIrlf/vKXRjRLhfHPVF5AHgjY6urq5PF4ivqGCCbunDkqHHzPeDyuUChk6ldIwtNPP924N05ZFzYTFDnBCTrZbNYQHmgNKQMEeDabfUf7x969eyUVql2urawbHEif4IogwgkKpE+8Lv9O8OZ1gOmkuQwaoPuf4EQwmju0Eh0TiIv3RadF4QHPKj43vFp1dbUdKlR+crn8EFK/32+9bIgDX3zxRZuEm81mrZNh0aJFCoVCGhgYUH9/v1W80ImBOqLRqPx+v5n5d3d3K5PJWFpG4yz0hDuvTpI5C7AvJFk6B/UQDofN98tNXVk3IyMjZoOby+Xss0v5gIJWigOY7GRmZsaeJ3IGsgOam7mXSC58Pp89AzegumuD1+OQJQM52XXS9O2RRx7JTU1N6ZVXXlEulzOnRoIAD42F0draqkwmP0Mqm82a7qW7u1uTk5M6dOiQnSyzs7Mm2lu2bJkaGxv13ve+V+Fw2Lrvt2/frlAopKuvvloej0d//OMfNTo6qpGREVtUVAqo+qG+xkcH6A/MDoVCxs2gw6LRlfYBrCWwN6Val8vlrKIgyV6HAAqR714gG1daQWoGgiNdAb4T7CALKfGS9kCkgrqYa0ZVDqKehQFC4e+0kfB+LCSCE7okSv4gIC6KG/w7wY6gNJcIBy3OHQc+1wuc96O9hOAGIpr787wenlToy+CQSCkIjiAXNj7jiOrr65VMJk34h7sjqZLrbAF3CKHOAUEahoyAIAWRjoWKW8UFlbjrBrqEdJC1gRCUNek6O7oVSIIT/YAuX+aqw0FrIB3QJcaHoD9GJEkF51ip4GiAaBPKwE1h3WfE3zmAv/Od77y76ts3vvGNHAEHkSGaBSAcpJzP5zODdvgOFjn/xgkuFXroeJg8NL/fb9ICbGkpmXKDqZqw+JEgYHmCmhRE4wYmqbD5GC/DCUUTJnPbCAgQlbwvI304od3eOalw8rtmdHBfLBSCCBuE14dvcBc56IpeLB4+BvljY2P2HUFW2WzW0jWM/dlY7rBL6Z26oblz1kAg/DxBmfTLVeu79xfuDO6Jjcf78e8gIz4nn5vSOEHNNeOTCvbFrs0rKm2X+CcQjYyMGP/iSlRASqREFB4YuMj7sj5qamqMHqD0z+djfXIouOgBBOe6Y8C1ZrNZC34IjfkurENaaghokix4YdyPVICUnkDMZweduiOYqKx7vV7zSnNbuNhDBHDoB7fIwud2W1rce4rgmOt73/veu+OUWNzMr6qsrDTuhCjr3iD3TYmiBBXk9Tx0vph7gvCQORE56SoqKmzhuBqjqqoqexDZbNZeF+dJjNz4b2Zmxk5Qj8djSnP+zkMcGxuzahylfh6sqyehKsEiJUgTfAmarsqYUwvdCv12ZWVl1reEox9d5u6wQhYilTdJthi4f5ygBA+CAMGCoAOsJ00C+YCgeK4EB5DLXPta0l8IbRYm70+aSPc/lzuSWir4KyHCnMs9EDRxhaC7nlOY9+VzcghwgWzh30AhbCAEiYcPHy7abBQy3OIKo7Mg0mnolfIbfmZmxhAebo4EN0lF+jR3tBjvSbrkHuSZTEbd3d2W8hOQpAKB7DbSEqwI1ul02szgpqenTZ7CFCKeKUGopKRE5513ngKBgLkAcJBSoEFYzHcEsBCASV05aP/SjLu510mDEi/OpmbxuQgF1Se5OjoLgg7BiYhNdYOFgd8Mm5OFSLmR6O71eouG98EZcJoAl0tLSy29YNG6uhU3LUKxjmUJ+bor/iSdQzNCOgfiCQaDqq6utgWCYhjyz+Px2Osxb52UDYdJJqPu37/fUmEguKQiuM//h8eTCu023HdOUxAGwYxTkuADAQ7BPde3CMKZRQQUh0OCiMabe8+ePUWv50o2pIJbwGWXXSapkJbNdS1AVDnXAoXgA0Ljs8HNcA9wOgUBExyhGziEOABpD9qxY4cVV1xUAmF78OBBeb1em4Tc0tJSJDkAobGx3eGY7vMjCCGu5P+7F713IBqEoS0tLVYRg6dh8zMWDF0UNjuJREIvvviistmsTj/9dOO94JaopPn9fnV0dNj+hE9m/7sUCFNNCGZUNt2g6KZ9rpPFXyO6T5q+ff3rX8+Rs6KPYPMTJPz+/NwtNgRQkHQuk8norbfeekcPjyQjhRsaGhQKhSw9o0dtx44dymazxjH09PSYjocSKq9XUlKiRYsWqaysTHV1dSakpMUEaJrL5azRlrSB0wb0gWKbKhYpVjabtby+tLTUuvRdSQENsQTDRCJh+qPjx49rZGRE27ZtM39t+oJ8vvwQRZooI5GIiU9BDm5XOaI+uBQ2pSTrYufvlNxBQJzYHDIQ4gQBgpB7CksFRAMiAIH9/ve/l/TONhLex+UOpUIQ4/WYgkKQZNMShPje/J3PMzs7a+sPjoffB+FyCMFBogtC4sJ9S6fzXtozMzNmRTI7O2uuAhUVFdbGhCPlWWedZWOt4F/gLHG9AOkEg0EL9uiXuPg+bnDi2UMZYNFMccO1BOF32JvsKUlm40sRBN6IQZvuXDgcQHBLzWazOnLkiGKxmBk90trT3d0tv9+vZcuWmYTCfeY8KwAFXBdp369//et3n765SmceIOkC+TqbAiTASU9vD4Ria2urVUAkmb5oz5498vl8dvIeOnTIqk905bu9RDxIV7zI552ZmVFPT48CgYBaWlpUVVVladX09LTBZfxnpMIEBkg69/SBsyEgh0IhG51EMMVvCa4CQWZdXZ2mpqb02muvmRp2cnLSuI1wOKzKykpr3MUi48CBAxoYGLApFKeccorpt2KxWJHokiCZyfw/0s48us66Wv/PGXOSnCFzmqFJmjadJ1rLWGYEBLSAClj1KipLnMUB9a57vXex7nWAJXodLlx0gQqiMgi0KChay1SGQgfo3KRt0jTNdDKdnJMzn98f8bPPm+gtv8U9a7FK2uTkPe/7/e7v3s9+nmfn/m5iK0EFUh/Bh/tF8JjdhQMYpsyDTwQWRbCDqY1tLeUZ5SCvc889V1LRNYAFjBwFHhQYFlQDyisaJmSGzgmzhULBFARkuhyklBZkPPweJwN6ampKhw4dksfj0Zo1awwuyOfzqq+vN94a1YHP59M73vEO6zjxc2SzZAV+v18LFy40vlI2m9Ubb7yhiYkJHTt2TPl8fkaGzfXC0ma/weInGLEm6Wg7vbDgA05NTZnagIGbztK2pKRE5513nrze6TFJiURChw8fViwWU3NzszlWlJeXa+XKlcrn8zpy5IgSiYQF60xmenBBR0eHfD6fTp48qUQioe7u7hmfjQMdrh9NhFO9ThmUqMkBnuFK8IG5UdL06bR06VL5fD5L5Vwul+FGtMDT6bSeeuoppVIpLVy4UM3NzfrYxz4mn89n885IXVOplEKhkC644AL5/X51dnYqkUiourpaQ0NDeuSRR1QoFPTud7/bugiUc84OAmORwbZ40Nwwp+YNTgdAJ+UWFhPS9Mk/PDxsqu5QKGSBKp+fdhCcmJhQZ2enBgcHtWXLFg0MDOjAgQPK5aaN4evr67VhwwZzGGBzud1u63IiYoxGo2YODw8rny/Ofwer4tAgUyX4OLt6UhFQJqgTlCinyKzAbjgsCC4A1Hzf+vXrJRWDChnY7373O0lFNwBSfTIiJuSiheOQgAIAlsKpC9bo9FMCEiDA8Py4H9ls1u4rTH66x9XV1ZZZeDweK9s4YGB8U+6B2TnhC543OMzk5KSRh8855xyjEsTjcTscoQ5wv/CKnz9/vtzuaWEu94gEwNnZLBQKVq6RJQGeO3lKksxRAia1s0z0+/1avny5WeJyz5hgBKYIF5H1AWG4qqpKoVDIgls6ndaKFSvkcrmsE8r+QSMHz+lUr7fElEiD+cU8TCdXAa4Eyuyuri5T6ft8PnV2dprlSSKRsHKK/0gZly1bpng8rldeecXA9dLSUgWDQVVUVJiTZT4/bfmKfOXaa681i5TJyUn19fXJ5XKppaXFGNbxeFxDQ0PK5XLW5iTTY2ETwZm/RTkZj8c1Pj6ubdu2mbsfAmRwJjADTrXR0VE99dRTGhsbU1NTk5YuXap/+Zd/kcfj0YEDB1QoFIyEioC0s7NTo6Oj5l2zY8cOFQoFLV++XOFw2GQsBPyWlhZbtBBZncGWoIPRP9gNQYaykOBD8AAD+ud//mdJ+jsHS77/2muvlVTMxBDSziZtkkkhuAXQRqALVsWoLhY/QWx25uQcOUVJ4HIVZThoujhsYPUzeYYuYmtrqxm/OT2Fli1bZgJYqCHcy2w2a/cZLJUZbWT3F154oRKJhLZs2WIBFKw1n8+bgBcPbKRHYFIul0ttbW0zWvBkOk7nB1wwC4WCvQfk5PPPP1+lpaVG+G1paVE4HNaiRYvk9XpniLdR9RcKBUWjUZWVlam1tdW+hqKDIiEajernP/+5DSCoqanRunXr5PV6zTVAkukApemDzPmMTvU6JaZ05513Fggy2WxWoVDIzME9Ho8RtJzkME4nIi5YDg8J9H3u3Ln67ne/q+bmZttYKPkpl3hALA5+jzR9+h89etTSSCeJEHCQDhzz1Tnh4fkAkDrd9fh+v9+vc845x6xP0um0ecYsWrRIkUhEc+fOVTAYtPuRTCaN2Z5KpeyB4KO8Z88e44/g5ZzL5cw8zOOZnojy2muvKZvNmtauurra7juMZa/Xq4ULF8rj8ZjnuHNyq/NEJFPiRflDEJpdBiMbmf1iXhtBhp8DIAfT+clPfiKpOIKJzALhL+6HnJ4A4AQ1sL7du3fP+JrykK/JhgkS8II4rJzUkFwuN4OikUql1N3dLbfbrWXLlsnlctk0k1tuuUWNjY0z+ElkYmAyfP54PK4dO3YonU6rrq5OgUDASikY0X/605/MZB8sUJJlGfDMaL9ns9kZxNLZXTi4Tvn8tMzE5XKZoSLVCx3d1atXq6qqSm1/k4cwcOLEiRMqFAomkQGWcQL3koyU+4c//EH9/f3as2ePPB6PGfK9/PLLymazamlpUSAQMKsTBME8A3SH7Lm3bYfrzIygARBZ+eB0w8iqvN7p4XrpdFp79+5VLBbTyy+/rHg8ru7ubgUCAV1wwQVqb2+3VutschtpLuRAqPRkLC+//LIKhYJWr15tp2k2m7XpvdTbzFnnpMehkCBEegoGxgm9ePFieb3Twx5jsZht1nA4bJ0u5+eFX5XPTzvrtbW1aXR0VK+88ooymYyN20YYeemll8rn8+nVV1+1e1xRUWGNgdLSUqXTactQkdOAVzEimkwEsieDO+kuzh5CyWbmnlF+sdlp6ZO5AHhzn/h3XrwPCxgP7tkmcZRdZFpkTM77LxUxI9YDQctpGSLNdDtAvkOZ5vV6tXLlSmtNp1Ipk4XA5F61apXKy8u1Zs0aBQIBNTY2qry8XFdeeaUdMmTA8MsYROCUeAB8M5zx4Ycflsvl0nnnnWf+WXRXwWLy+byVUTwXJ9ANlsOadIL9BEhn55r/EomESVzq6uq0cuVK84niwIxGo4ZrsldwWuAz19XVGVTh9U7b7vb19enpp59Wd3e3CYB7enpUWVmpxYsXKxKJmBfV9u3blc/ntWzZMnm9XpNMQYuhqXOq1ymDEmkuC4CMBc4CgJ1TkJhMJk1L09/fr9HRUcscKisrNWfOHH3xi19UW1ublVGUT+iDmJ9VWlpqAO7k5KS6urpswicnRSQSMdyKme1OLKy0tNTm03HdLA4IY7ScAeGJ5nBFsMTF9hQ3yYaGBivx0um0jh49qng8bkZg+DIdP358RkpOGbh69WoVCgV7kJz0Tv4MgD6pvBOQB+QEUwKgd5Y3zs1OUGJT01rHIxvvboICGRAZJm4ClF8ENYLLokWLJBUxKrK1Bx98UFIxc3rPe94z47oYFMD1IEMBWKdk4XDhOgcGBowvhqDbCRwD/C9fvtzuD9kw1BSy80KhYCU5wYy2O8+TYErWMT4+rsHBQT366KMaHx83L3DkOXRYnd1S5zoCF+J5gU3xfLgOn89na4K/A7NpaGhQaWmplixZYqLcYDBoQy6kaUzu2Wef1YkTJ/TMM88olUqpubnZMl3KPvBbn89nEAhVx9VXX62hoSFzHeCgjEajBpbzGelwM14JwNtJRD7V65RBySmvALCidpZkSDoDKPfs2aN0enrMNTIPuDqVlZW68MILtWDBApu/RheKrhNe1JxK999/v6H2iHDLysrU3t6u6upq1dTUWCnGA5uYmNBzzz1npxsDD1isnMqQC+EMeTwe89GBxo/PDt7X0CIo5zjZSLn9/ulxx319fRofH5/h0yPJAu3atWsVCoU0Z86cGUGELhqTeMnGAFRxD0in00aNYJMFAgEjm8IzcfJhnJua4EEZMZsCwKbg35999llJxYyFIDKbdwSw/dGPflRSkTxJEKGLRibGz3/sYx+TVJSr8Htm86goaWbLWVifGIoxARnPbho1UACAAjo6OhQMBo38iFaT9Xjo0CFzHkAahGykpKRE9fX1qqmp0YIFCzQ8PKze3l7bL9ls1lwY8R7CoO3w4cOampqytQ3eBNOfoOn8rGSz0FY4WJGpRCIRVVdXa8WKFaqsrJxBWD158qT++te/Gl7k8/l07Ngx4wDiL4519MTEhAVYmji4eDKthEEMra2tZmfkHK3ESCcC+dR5yQAAIABJREFUL+A+pMpTvd5ymonz//mPRU+Z8frrr9tFV1VVaeHChQoGg3r/+9+v8fFxPfDAA/L7/frMZz6j5uZma7myiffu3WubEMB3fHxcHR0dMxYDnbmbb75ZFRUVOn78uKampoxlSrRmke3fv99Sek5EZ7eN7gedPlT4c+bMUWlpqRYvXjxDD0TaXl9fb1wl3jeRSGjbtm1KJBJqaGgwjQ+z1/1+v1avXm0PifICqgTXgTxCkrX84YRBveDkbG9vN46MJOvWUXqQKSH3IOiQYdGFI0MBCKcsIxiAZYAFcX34L917772SinPdeB+CEr/fycGRipkQGdiWLVskFbt5/D6e0+yuX1tbmzKZ6RFHlOsE8UAgoNNOO02ZTEYHDx5UPB5XLBazQ4GDE1lIeXm5ZZw0Crjv8JKco62d2rrGxkZlMhlt3rxZ+XxeV1xxhaqrq7Vq1SpryoyMjNgY6yuvvFKFQkE7duywtSEVZTOz/a/QT4L7gNeCczqvt7Ky0jhOHPg1NTW67LLLNDw8rNdff91scaemprRr1y55vV6dffbZqqmpsUANMZMqprq62gJULBbTwYMHNTExoW3btpm9rs/n07p16xQIBOyZga2BibHPT/U6ZVCCGMbscafPzdTUlHbu3Cmfz6fVq1ebeh8aQC6Xs2zmQx/6kGUgk5OT9jCnpqY0Njaml156SZlMRsuXL1cikbDuW2trq9xut3bu3KmysjJ95CMfUUNDg5ViKKKd2ivAZnApuiUEJkBCaXqTcoPoQEBU42clmS8TD760tNROUwiVyWRSu3fv1sTEhJYuXWrdEWeZODQ0ZGBkKBQyCw7KtwULFpiwmBOFk9PlcmnFihXW3QRYxeiLVjNEwEwmY5kJmRIZLoueIAUATeZBOee0BpGK2AfXDRDNYIDrrrtuxu+54YYbJE1PWuYeS8WMDX8lsCL+nXIQqgAvMjiu49ChQ6YYkIrUAWl6gzNTkABSUVFhJUVJSYk1EOD2gPkBLtfX15t+zu2e9hGj9U42NDg4qM2bN6uvr8/Y1IcOHbIx9xUVFVqzZo3y+bxeffVVJZNJy6DAVGFVQyz0eqcHZYIpweiWZJkY/+/08oKyQxZFucTBXlFRoWuvvdZoDOl0Wu9617sUDAZ1xhlnKBgM2jNwWg7ThRsZGdHrr7+u3t5ePfvss0okEkY14CAgsJJ40CEFCiCxOdXrlEGpr69PbrfbQDYAX6/XOyPdZZgftTwlGP5AMJXr6uoUDodVVlZmXS7nqJeqqiobpDc0NKTDhw8rFArptttuUyQSsZOS1HHp0qUzTLfq6+utUzA0NKRjx44Z78Tv99vJyLWy2cFpSD0Z/+wcsOdyTfsmIWWhbCVVHR4etge4f/9+w9aQJdTU1GjJkiVKpVJ6+OGHTf6AVIfuDxgJIsZAIGA6JwIOwR0jLjIHXrwfm5RMh4XNi6DFSU0wIYgRvMl0br755hkL9iMf+YikIvmR78Pj+33ve5+kvwfMKc/o4BCkbr31VklFqgI+TSxi/qSUIUDAfaEMAsOgPU2ZXVFRoWQyqe3bt9sGZJQQjHDKPbBEj2d6wq7H4zH+GvIQuEeUzJBm6+vrFQwGzcUikUiopKREV1xxhfGk4vG4eSOxPmGuQyMgmPLZAPPJCpHIeDwe7d69Wx7P9EzC6upqrV271iQd4XBY55577oyM2plhOTVy6FORRg0MDBjeVlFRYWz1+fPnK5lMKhAIKBwO64wzzpDP57NO98mTJy1oOkXR/2ftG5gHTFEyCH5Bf3+/SktLNW/ePBUKBfOPgX/BwmGAHqDYnDlzjFDlcrl05pln2vvBZwgGgzrnnHPkdru1e/duBYNBs7Vl2sQTTzyhQqGgSy65RNlsVps3b1Y6ndbKlSttYSCYpJMHZQAMiMyHVmkul7MZVbRHwaYqKysVDAZ15MgRhUIhBYNB29CSjKV9xhlnmL6otLRU55xzjk0yGRoaUnl5uQYHB/XAAw8oEAho3bp1ZuhOWZZKpbR161b5/X5t3LhRoVBIQ0NDmpqa0ujoqGKxmOFmLDbG2sweEcXwSMorFj3yD04xMiZa804phFQEuCE3cqpCMZidaRFc6LpxnaT2BCMoCJs2bZIkI6nCQKe8pBwl89q1a5dhKuBKqO6laQ2ds/RhDZDVY8+MhaszU2LtMoiAn6WhghxlbGxMixcvVjgc1lNPPSWv16vTTjtN5eXlOnDggPx+v84880wr11hnLpfLJBhk9VihoK6nunDeO3AxmkvOMeLpdFovvfSS/H6/urq6FAqFrKsGSRQagvPPbDar3t5ea+ik02m99tpr8ng8Wrp0qVFMODBZZ16v10papye3VKyyotGoEVPB1d6qfDslT+krX/lKgZvEBiVqU8tLMnvctr+Np6ZV67SbhWo+OTlpm6Ojo0PV1dUWZbGZhRu0d+9e5fPT/jZer1cTExPG9yG9ljRjZnwqldKzzz6rfD6vtWvXyu/3W1vSGbGpk7nRfEapaMCO20BFRYXhOAwGCAaDlh5jvYL+z8lvwUVgampKL7/8sjFfnaQ/uibt7e1KJBJ67LHHlEwmbWrGggULFIlE1NHRoUJhenpGPB7X6OiotZydBvd8PjI9PhdBh81O0GCTk1mxAQhWZDiUWWBBaBLBpsi06FLhzc118NzJ7AhqkCORtUDGBOQF8OZ6CZZkueAWyB8Qi3JKs1HICJjYQWbr7I4RkILBoNasWaOKigo7nDkwOVTBSLq6unTy5Ek9/PDDGhoasik+rBngDTIXKoqRkRGlUqm/swEBG2Itou10YjPsQ9ZANBq1UpWMDXoNurtQKKSmpiYbs11aWjpjz8L5csqsFi9ebA6eIyMjevzxxw3bTCaT2r9/v3K5nPGkaBQ0NzcrnU7r+eef19TUlCUGjIz6/ve///Z4SnwwxH90B7hwJnYcOXLEcJVwOKy2tjZFIhEtXbpULpdLBw8e1PDwsJ5//nklk0lTa/f09Gh0dFR1dXWqrKxUW1ublSb5fN7wIwSUZG3hcFjDw8PatGmTza7yer164YUXlMvltGjRIvn9fgPAwSLAvADU4U4gcITxzeKBT+JUqQ8PD2vfvn2qqKjQNddcY2UA3RxsJ8AIWCBo0gqFgtrb2+Xz+TQ2NmZ6ocnJSb344ovK5XLq6OiwjC6ZTGr9+vXGTcLAjnliyWTSNi0tfwy7KLPYlGQcANAcKgQhumTwg2Zr5ghKANvwlqCOwPQ+//zzpxfX34IaZT9BhwyJjIuyBS0dWBLUgF27dkkqZnAEv9kvnhn3mcwDu1nK+XA4bF1Rv99v9skIR/HlgugqyUSulIcw55FgdHd36/XXX1cmkzGH0dLSUoVCIbW3t8vtdmvfvn2amJgwwqNTIIxmlK4pz8jZYYPDBEeNTi33kEwFUTyHH2OmgsGgSWxqampsUCcdQEl2oMK8Hh0dNbFxKBTSZZddpv7+fv3qV79SIpHQ2rVrlc/nzSGCUelkhM5uMGvhrTClU2ZKN954Y4GTXirOPHdOiCXVpEsVCoV0+eWX24SRoaEh/fa3v1U6ndbpp59uVrbc/PLycq1YscJSRASRIyMj+ulPf6qJiQkz9O/q6rKUMZvNasuWLUomk2poaFAoFNLixYsNm0Gcy6kCZgRm4PF4zLKEzIJFQGra1NQ0Q2OGTo3MCXIjwHdbW5uBqGBTtF0LhYIJSJ0DDPr7+/Xss88qlUqpoaFBFRUVNjLKSYWAsJlKpXTsb5NzOa26urqUy+UscPX19c3ocgBMI5Ql8wEDosyjFCB4cFozTPKiiy6SVMxsCPazh1NShlFGYafL7yWTgmyJRQrXA0bFNBSCJdfH7wOzdGowcU3weKZN8RFQg9mwoTOZjJVrTBWh1IDv9I8yMkSqJSUlmpycVCwW07Zt29Tb26unn35aXq9X119/vcLhsEZGRkxJwL5JJpN6+eWXlUgkTHNHhg11IRAIaGJiwvzxwaEIQgDv6Dz5DOXl5aqrq1M2O22fOzY2pp07d5p9dUlJidra2hQOhzV//nwjCKfTaY2OjppbQEVFhebNm2fzC+kwIwCORqN66qmnNDw8bGuFTCkcDiudTuvgwYPmxAFmxvMpFAr60Y9+9PYyJecQRJjapJBEZSYdSNOLHylKZWWlIpGI2tra5PV6NTQ0pJ07d8rlcmnt2rUKh8MWlXt7e2d0tbBrcJaOBJd4PK5XX33V0lyARFq/3ABSetJfj8djHA1SXycwz0MDz6I7CC+IVBiCJ+9ZWlqqZcuWqby83JTRlEE4GIL7NDU1aWxsTA8++KB6e3u1Y8cO0wFWV1frvPPOU2Njo9rb2y1l5h44fae4J6Tu1PsYgEUiERtSIBXLNjId5ynsDBJYixAE/vjHP0oqatwon8CMGDbJ+3/xi1+UJL300kuSimUX3Tnuy+yTkmCFTxPXPbv7R8bK15BvkY/w99x3mht4zAMlzJs3T9J08CXQezwes3RFfoJmDu0bJTv4FNkJ3eh58+aprKzMvLsp16F1DA4Oyu/3a/369crn89q3b5/S6fTfaUid/CuAekpmOoPJZFKpVMpGuSeTScNQOXCz2awqKytneGyz/o8dO2Z6VI/HY1Oe77//fgWDQX3sYx9TU1OTdSzZM5SZ8XhcU1NTluWyDpGazJs3z5IWbGEQRf+fXAI4ocvLy609CZs0nU4bMZIRS+FwWKFQSH19fTbZ1cmIZbxxU1OTzWlLp9Nqb29XXV2dLr/8cqvzc7mc1q9fr1gspmg0qlQqZXwQ+BdsMkhuOEUiWu3p6bEUnPISBi2lm1RkICOsJRDT7aOM7O/vtwfr7OLFYjGNjIzowQcfVDAY1Kc//WlVV1crkUgYg5dN6nK5dNZZZymXy+mDH/ygAa9ooNikMM850ROJhGVISAy6u7tNTlJaWmrkQrAKp2G8c9ODxRGUKPMIIrODABkSZdOvfvUrScVhlfgo8ftvuukmSbJ5fZAwAbwhY4JFUeaRgfH9PB/KP4Ib1ytpBg7Cz5CNw62hhD969KjGx8c1NDRkGWh5ebmV6xAlkVgQvJFewOGhG53JZBQOh3X++eeb0DydTtvggMWLFysej+vNN980A7RMJmNBm5lzTo4RLgE0ZSi3ODBzuWk7ajrZzlLVmUAwFOGiiy5SIpHQU089pWg0amUWScOGDRvk8/nU39+vyclJCypOV0tJJjg/cuSIBgYGbE/W19fbdbJv+Vln6XvaaacZYdk5VOAfvU4ZlIiMzLGi+wTDFWUyN+vYsWPy+Xw2KBL9z2mnnabx8XFt3bpV0WhUTzzxhGm8JJnQ9eWXX1ZDQ4M++tGPGpltbGxMDz/8sHnj0H6UplvGANz5/LRzYz6fN9vSlpYWoyaQfkpF7RAPkVMU7AQ5ChOB2/4mXB0bGzP3SzKrsbExPfHEEwaWl5aW6oEHHlBtba3WrVtnpZ5TeJnJZJTNZm2yq3MiBEx49FRTU1Mm2yG4VFdXm5WpVNQo8rycnupSEZieLQshGIDVsAghM4JR/eY3v5FUDEKXXXaZpGKQ4vu4PqgAs7tvAN10/WZPNSH4EDR5zmBVs4XFcHCYTwY7mXKIoMtBNG/ePCUSCXV1dSmTyRhpddu2bYYlgrPU1tbqkksuUaFQ0DPPPKPBwUEtXrzYMBg26djYmP7617/OsOQNhUJWwuRyOTU2NiqVSllH6+yzz7ZmDs8NlwIOPZ4Fhyy/l3XrcrkMT+SgzuVy5kCAhTT4WHt7u5YsWaJLL73UsvBUKmVZcktLizo6Omw68p49ezQ0NGSZEmPBnU0h/kP8KxX1ocQIfo7sk/Hhp3qdMiih8seTGkEiAYLNT5pGh+Gss85SOBw2Z8jm5mZVVlZq6dKlikajRrKidKmqqlJZWZkaGxsViUTspOTkuOqqq0wYizZocnLS+Dv8fiI8mxBmMS1op4NiJpMxghptVlJQTlenHxGmXWSM8JD4fGQ8mLIRvAcHB/WTn/xEvb292r17tyYnJ42Ov3HjRsOBAMQhhhYKBTODp8yAtwS4iW0F5Us8Hp/BBaGFz+YkaJAZksGRERJkwIDAiAhGyEvAqnh/MpxbbrlFUtF9AK0bWBYnJL8PJ0aCJH86J8xKxYwNQJ2SYWBgwLAYTmHKftaBy+Wyv+fa29ralEwm9frrr8vj8ei0006z7i/r3ev16o9//KM5TwYCAQ0MDGh8fNw0jIcPH9bg4KCOHj2qdDpth+POnTtnKP1xabz00kuN0U8ZOLtRQdCho8yzgotFkCovL7fuHu/BnnR2CpcuXap0Oq0DBw7YWLLa2lr7XWeccYaGh4f1yCOPKBqN6le/+pXhoHPmzNGKFStUU1Ojuro6w15LS0t1wQUXKBaL6cCBA7ZfuR6Px2MdOjSqdAedFcr/9jol0H3LLbcUWCzwXgqFgrGSW1tb5fEUZ6Dn89MTGS644AIjWkHjd/KdKPsA0LGegN5+5MgR69bRTmTRTU1NzZhBVVJSYkP9amtrlUqltHPnTrndbq1atUo+n8++H5CQYElnAcBRKk52oDsDEMmChtCGhsnn8+mss84yvydpOtNCwAkLlk4gtr2VlZVatmyZ3G73jLnudAXBrFiY/D+NBakI+LJgcRGYPWiADGm27S2bfTZJ8cYbb5QkPfTQQ5KKrX+C2G9/+1tJ0hVXXCGpGMwIMshDyKg4GQmOZD5092aXmRwG3E/AVK6foLxv3z5rmDi1i2QNEA4BvgnqPL9jx45Z5ku5j7i7pqbGys9f/OIXCgQC+nfHZOZ0Oq3u7m4lEgmNjY1pYmJCO3bssOmzrG/4bTidAgM4iazYSkPOhNoBvUOazmr5jJCH2ezsHVjqjIvic8BiT6VSNhShvr7eCLazsR7GjlVVVemMM85QaWmprd/x8XHFYjHt2rXLLHnQgzrXIHvGSX+Ris4Ob3tCLrUuiwArTjYIHYKWlhYDhvP5vLZv3y6fz2dKZHyr0XLROcIhki7GK6+8omw2q9bWVnMhYBIpnYhAIKDFixebbSxgr9/vtykkdOuOHj06Q0WOKVdnZ6ctfDoSlDxkLADl3IN8Pm8tZhY5GRhyG5wLnaOLKioqbJQywHxbW5tSqZSee+45YxETDLEmYeHRyqZrx3VJMjY8CxfWNwuA5wZgDGZFt4tDAdM3TmwwD76PcoqgRYZEcHvxxRclSd/73vckFQW5/DsCYDAaGN0EKbAuguTsqSu8D0GW64SqAhYEC5nMKBQKKZVKWTcPqRQNBO4bfuvnnXeestmsXn/9dcuwampq9J//+Z+mvGfjshHHx8dNSO71TvuFNzY2KpvNqq+vzyRPHIIcplBbAM2lohGax+OxNYi7aSqVsnKRPVgoFMw7m2vCWqelpcWqmng8rqqqKk1NTeno0aPGuIbeAH2hsrLS5CbsW8o1APKxsTFjlTuJulwPB6TTcYP7TjPi/0QJ+Pd///eCk11KqYGeBaCXKI7QtLKy0lTSKJ6pJ1FXY93AB2GBcnOnpqZ08OBB+1DwSQqFgg3344PT2mW6RF9fn/L5vAHfTm8dZ3eNmphOHCcxQCpRnw3AqdLU1KRcLmfYBBwSFplTXOxyuYz6sHr1ahM0JpNJM293Tmchw8HrhgfuxMEkWR0P+a9QKNhCpivF53Fa0EjFzMY55UMqlleUTQQxMiTeh2sgg6LMYwoJPCXu3WxvcAYH8D5o6Ajys1+sDYITWBCZFmvP6alNxsN1cCAgN8lkMjp69Kip4gOBgNauXWt2OQxLdbvdWrt2raqqquzzojV06ruoJlKplHp6ekyiQpBx8uO4/3SKsTfu7u6296W6YDM7CaDODjiBlayeA9RpJsjPswdxQPB4PFq5cqXC4fCMJonP5zObXKgHQBYTExMzRi0xep4EY/Zn5kUMgL7xtue+OXkg1ImSrPXICYx1KMzdnp4eG9+Sz+fNiY86GMU7ZLK+vj6VlpbqwgsvlN/v16FDhwx85oZAHOPG0+2jnKKFK8mCF8GSExRvGABGumoERXQ/tEBpv88udxgeyImH4BYvG7yWOaW6u7utrCBTlIoaNfgr27dvVyaTMXCc+47GzhkUIZlSonB6ptNpw7pYFGQYvHhO/EkZSLnEcyZTAiMiuJx33nmS/t5faXbw4sXvB1sic+F5gWE5eUFSkWrgdHOQisGIDINNhwLA6UQKoZJuG+UTTQVJZu984sQJs+twkhAfffRRlZSUWJd5dHTUmN2sUacGk2fB5qQhBG8LygKOmFBM+L3JZFJtbW0GFOfzeePxOQ3hoCVAd+GAxxYF8N/lchlRFukNLHUyazy5wfuogpwZEnsHorGTCwa26zzEoRFxjyCmztZgzn6dMlP69Kc/XfB6vRZtnUplZzTGGZK0mAyE04rF5pRhQBJDU0e6TVnndrvNKXL2OGYwEjKaYDBoAkxY1AQjvJk5XWBoe71e87PBGB4AHGyjoqLCanwWi8dTHL3ExneeCplMxjRazrHm3A9ODDI07pXLVVRPO4Fv3pNNyPc5GefO+82z4b5IxXIH3Mz5PPicUpGvRNnH9RC0Zn8/X9NmJrNykm2lYvnHIcb1cJ2znSZhfPM1PksEPTIsjMi4TictgD95PpBZ6SI7sRuugyAGDooCHgnLkSNHNDU1ZfAD18FncE5W5n2cpRX+Yc5n6OxcOT3FyTo4cHm2dL6c9imSDO+dbW3MwUZVgdEc8+NQDeC4wWfBIRJsy4kZOYMgOCj3noOaz+CcHlwoFF1Rf/azn729sd3XXnttAdVzOBw2nsiePXtMLuFyuSzKcpNJgWn1Qz0vLS1VKpXS4cOH5fF4tHr1aiNP0l3KZDJ64403NDIyon379qmsrEw33HCDqqurDaw7cOCAtdRZ5ACLmUzGSGmUVdXV1XayUOfm83njVpBtOBnDnL4wvFk8tGJ5QM4TmQfjXIh87XxATtq9VJxT5iy/4IRkMhnDCUjpWZCzx38TTCG9zi6fCAoEHSdFQioGCb7m5/m+2ePJeT8yDr6PoMTXs6kBdNfIeGZPOWGTOlv6UjEogUFh8UK5DEbCIenEYbgul8tl94kXhytYHp8TDJFroUSj3Oe62WisfxoTTha+U6+G4NvJiyPAQPDEZ9xplcJBRTBw4r10pjl4mWLinH03O5BSzkmya0qn0zOkN7PHkzlJkkAHbrdb8+bNk8s17VRZKBTdAfjsPAuqkgceeODtBaXf/OY3BSw2EJyWlZVp2bJlSqfT+vOf/6ypqSnV1taqrKxMc+bMUTwe1x//+EdLTUtKStTc3KxIJGJTIhobGxUMBtXU1KRYLKaHHnpIPT09ev755xUIBLRx40ZFIhGNj49rYGBADzzwgJLJpNasWaOamhotX75c9fX1uvjii5XL5fT4448rGo3ajYUnwbQKn89n7FW3260zzzxTZWVl2rRpk2UZZH48fL9/ehopvCtOVCcm4BxxQ+s+m83aAwOLA0MLBAKWxrOI6WJiNezkMTlJqrRpPZ7iwAMnz0qSdTtp3ZKBOLM4qdjtIgjTYgcbgtHN5mVjEjQIDvw97wsjfHYGRaZEBkk5x/uQoXGds0cs8f4Eea5r1apVdvqzjp38GSf7ma9phLjdbtuoZCCsWe4thwFVAkNQ6cwuX75cJSUlFqzIqJ1gr8fjsUOHygAKhbN7TVebf6c5QoCEV3TixAnDU8FvnfeEKoBnTDUBF46Dk1ILp4tIJGIM9mQyqTfffNMME7F+gVCcTqetYwgFgTXtHFzAs3O5XEakxvL3l7/85dvDlPbv32+RHzvRaDSq7du3GwCLqNHr9Zo/9d69e82iZHR0VM8995xqamqMgf3MM8/I5/PpwgsvVGVlpT7+8Y9bd2xoaEj33HOPeQuVl5fr9ttvl8vl0oEDBzQ4OKj7779fVVVVWrJkiU1qiEQi2rdvn8bGxmzUMD7BPAxU/4ydgYfFycr3wsvCCAsfJhYz5Eo0cq2trQoEAjY0srGxUblczkzG6urqTAYC85wAn81ODynM5/OqrKw0czBJxqBncXMdZHxO0zYAXD53Op02OQVBgO8H8+GUJCjhr0SmQobFgieo8CfANqRISglOb4ILOAWZlbO8kooZFEGKspNMiuvk/dlwdCudAyay2axtXIIBGKGzaSAVA5gzY+FQwqUil8uZ/uzo0aNyuVzq6OhQJBIxXhzvS3bBOuKg27t3r2Xufr9fixcvVqFQFNWy6Zk+ix/Z7BdBwCnB4iCmEgC/hVDJdBGaKZFIxIifuAzk83kdPHjQ3ARKSkrU3t5uGNDU1JRZRzPJBx7SxMSEddrhyuEoQHCnDPR4PIannep1yqDEOG7kJhUVFRofH9f+/fuVSqXU0tKibDarp59+2vRdnEYlJSXav3+/gsGgNm7cqKamJuMR7dmzR2VlZdq4caMaGhrkcrnU2dmpD3zgA+rt7TVrCGka5Lz66qtVWlpqDFnKn+HhYZ04cUK33nqrTpw4MWO0UHl5uQlw0TSVlpYqEomYYnrLli22eJxpNuWa09rCyZCGH4UuCVb2ggULFAgEDFug29ba2iqXy6W+vj6NjIxo+/btGh0dteAhFc3bnXwUFNjHHMM/KfMkWZlMRsWLNB+gmM1PkGFTUhYBPHMqE5Q4RPDSBssjs0Ho+9nPfnbG+/P7OKXhLQH0wmcCSIcyQLCbXQaSWczGlMj0pCIdQiraAlNaQ67Ezhi+HEHfifX5fD41NDQY9sQ+KC0t1TXXXKNQKKRFixaprKzMynmeH6TVeDyueDyuzs5OpVIpO4QIIIhfkbkQxJwDHSYnJ+0+OvlIaBo5mCjnwM7Q2hF8kL447XMB1ckA/X6/Fi1aZGt0amrKyI7IqfBNAn+FD9Xf36+pqSmz9aUpAZ5MJxgoxInh/W+vU5ZvZ511VqGiokJXXnmlMbSnpqbU1dWlkpLp0b8lJSXq6+vTyZMn9ctf/lJjY2M2zO4HP/iBedd0dnZqw4YNSqVSuuNW+dmWAAAgAElEQVSOO1RSUqKf//znKisr0+23366mpqYZZQdgIJvu0KFD+tCHPiSfz6cnn3xS+XxeGzZsmEHAmzdvnubOnatPfepTamhoUHV1tUZGRnTXXXeZ9afb7da2bdsUi8VmAPXO0xPwDvyG+r2mpsYAPLfbbVgVxu3nnnuuGbU5ZSVOv6P+/n79z//8j7q7u7Vz504VCgU7eTs6Ooz46Owqgg8FAgHF43E9//zzSqVSBsRy3ZSEdGTIKMBUyGDAZAgibG4WFN9PcABo/sAHPiCpOO57thaNTIaMi+DFInzttdckSb/+9a8lSR/84AdnfB+lBS8yNDI+gicM4tra2hmnvRNk5bq8Xq/a2tosiCSTSe3YsUPxeFyp1PRsvgsuuEDl5eVWfhFc2MgnT55UKBTSDTfcoNraWit1eDZkYoyhf/bZZzUxMWF6NKxiURpwGM3+fbxounDv3G63iYEB6514KjIVuHKSzMgQrM1ZhkH8lDTDCYNOudvttpFNF110kQ0iAOcsFArmcQZGREf96aefViaTMWPH0dFRZTIZc+jEYeSb3/zm2yvfAKghSm7btk1ut1tnn322PB6PtmzZokJhetIrAGB5ebne8573qLGxUb29vUokEjaHCyZ4e3u72tvbdcUVV8ygnf8jTQzdrjPOOEN79+61Wt3lcmnfvn06fPiwyRl+9rOf2XSFWCxmmqTq6mrFYjHdd999kqZP6nA4bOn/yMiIlWeAfASpRCKhN998004Npl9gU4vPDgZwYFiFQsHGbR89elTRaFSvvvqq+vr69NxzzymVSpkcpampyTYNDHU6Ll7v9HjnqakpPfvss5qcnFRtba2d0M6g5aTvO7Ev59w6qRiEwI5mm7/N9mciyFBmQQEg6PF9ZJL8SaZD0OJP+D64EMzOmFgHZCpgXWBLvK+TSMimp4Qgq0in03rllVfkdk8z/IPBoNatW2dOpj6fTydPnrSMaXJyUocOHdLY2Jj6+vqMm1NTU2P2xpKs/KJL7HYXh16ef/75ltGS5YyMjGjr1q1KJpPGpyIzJDBAkp07d676+voMX8zlcva7GUhBlr5gwQJlMhkdOHBAk5OTOnLkiLllSjL7lH379qmkpERLlixRMBjUmWeeaWVcoVAwjh9AOWsbXlNPT4/cbrfhtE7CL8aNsVjMwHqyU7qVkkxrd6pESHqLoNTQ0KB0Oq2tW7fOoANs2rTJyjlOn0wmo2AwqMrKSn3uc59TKpXShg0b5Ha7tXnzZnV0dGj37t12stHBeCsdjLNrVVZWps7OTl111VXyeDx68skntXDhQu3du1c9PT265ZZb5HK59P3vf1+BQECPPPKIEdnC4bAuu+wylZWVaWRkRLlczk4bUnfEkdS/tbW1RuJE3oIVamVlpY3TZqEODAxY6xiZDGl4WVmZVq1apba2NjO927Nnj7FpC4WCnUgrVqxQMpnUo48+qlgsZjwagiLTdJubm2f41JDiU94SBPgeyoPZZMQ1a9bYAnZ+P+Uac9qwLOHvCV5kqyw+Tn0IefCQ+Hm+/ulPfyqpWM7xvmBP/P1sJjrlJRgbGkl+P1kF8icmGPNssYiF+T0xMaHBwUH99re/VTKZVEdHh+rr63XDDTfI6/Vq586dKikpsSGWQ0NDGhsb0/PPPy+3262LL75Y1dXVmj9/vh1IZK7QZAKBgC666CLF43HDkubMmWMkY+5PLpfTgQMHrLPK0ADAfIDkwcFB+XzTwwdKS0u1cuXKGcRNOuLDw8Py+XwmJkawDB6GXVBzc7NOnjypL3zhCxocHFRbW5taW1v1hS98QXV1dWpoaJDX61Vtba1RCRgOy3QUGORer3fG8AwkVM4q6FSvUwalw4cPq6KiQtddd52BiGQuExMTeuKJJ+Tz+bRhwwbV19frX//1XzU6Oqr7779fLpdLL774oiKRiIaHh3Xy5EnV1tYa85aXUwjr5OE4Fzep4/Hjx43DQtlCm9Lv9+vqq6/W4OCgvvWtbykajeqNN95QJjM91aO2ttbKL05AQEoyJrRTMMYPHTpk/CRKOaj/5eXlOnLkiMrKyozS//zzzysej6u0tFRlZWX64Ac/aGWZ3+83pvoZZ5yh8fFxdXV1aWBgQL///e8lTXtpe73eGdoo9EyUJtls1pi/qOTRQ2GDQXfuHzHUpWJmQzkBUE3GREYEBkRJQPnEvb/77rslFYMZTpQIeMnECCpYoBAMCUJMNSGTA9gm2M82oSO4VlVVGZbj5BqBtQG2Aq4ODw8rkUiovb3dDsOJiQlt3bpVk5OT1tamw7lr1y7V1dVp48aNRj/AtJDNFw6HTaCOyJUuKocb8wrJtt944w1NTk4aLomfmDPrA3thMxOIx8fHzbYHDt/g4KDRalBd7Nq1y2CHyspKhcNhNTQ0aPXq1eZlBuY0PDysX/ziF+rr61MgMD0xGInOr3/9a9XU1FhTClyOxlBDQ4NisZix2oEA+vv7zf4W0TAB9v8UlAAD//SnPxm6PzExoc2bNysWi6msrEwdHR365Cc/aUZV1dXVNvUC4JnuhVTkexA1jx07pk984hNyuVy67777rGPj5HQAtJ5xxhlav369Dh48qOPHj5sq/bvf/a6SyaRuv/12ud1uPfroo6qoqNBDDz1k5lvJZFJPP/20RkZGLFNbt26d1dvwWrjuQqEoX2lubrYMLx6P69ChQwqFQjrzzDPN9xiAFHkI1ISysjKzKAFY9Himp05s27ZNqVRK3/jGNxQKhcw9Ye/evYrH47ZAecB09SgT8AFC/+QklYKJOTc/mSEOjwQj/p4gRvfr1VdflST993//t6SivIPyCWdIsCaA8dndstlBhiBJkPnLX/4iqRgk+T5KEIISgYSyEWY12QMuCfC0KisrLUjTVfV6verp6VEgENCcOXOUTCbV29urXC6niy++WA0NDTrrrLOUTqf1+OOP68SJEybcvffeezU0NGTXX1paqjlz5igcDpvfOzo858EKpkiXb2JiwrpX+C+xPjCmQ10AYM0h2traap3jXC43Y7RRPB7X8ePHrV3f3t6um2++WU1NTWr7mxc3wQ9ngUceecSGTxYKBb3wwguKRqPavXu3BfrW1la94x3vMEEzWfvk5KSOHz+u8fFxI6Kyz51Eaq/Xaw4KfX19b8noPmVQWrVqlTGjY7GY/vznP2t4eFjJZFKtra2666675PV69eUvf1mDg4P2kHCtc94ICGA9PT36yle+olwup2984xsqKyvT9ddfr3w+r5MnTxrFXpLJMy677LK/w5taW1ttIits5ieffFLSdNk5PDys7u5udXV16Uc/+pFKSkr0oQ99SKFQyKI6AmInNuH3+41JjByBG45ol5E5tbW1qqystO4QZRPdSmwq2GSUiLFYTIODg9q5c6eSyaTmzJmj2tpayyxOnjypaDRqYCSezxi8Oe1xsYwpFAoaGRmxzhP3RCryf8iUeLG5AJKhBvzhD3+wzyNJmzdvllTstgFQE0TA9LC3BYMiIyLj4rSfHewIhrMHF1D+zS7nnLa+mAaS3bDh0um0du/erXQ6bWOxGhsbrVlASZHJZNT2N294SuM777zTFPbJZFJf+tKXlEwmTf6DfzUEVibbUEJipk+pgzbsueee09TUlJqbm9Xc3GwaSPCZ4eFhy7TgLDHyHboB2jTwS8B+DiskWaeffrrq6+u1ePFiVVZWGiGYddHX16ejR4/q0Ucf1YkTJ6wUxpLZaROEyR0NHEk2uOLIkSMGvrtcLmsAcCBhOMgzcwbs/+11yqC0cuVK08UQqRsbG3XNNdeoqalJCxcuVD6ft7T83e9+t7XhnQxkXgBfzKhC5Lhs2TIdO3ZMn/vc5xSNRrV27Vq1trbqxhtvNNsS+BssbhZuMpm0E3/hwoXyeDzGw/nMZz5jPzc6Oqqnn35ao6Oj1rLHQoPygvKUdiuTRyhdcXp0zsRiACY+RqFQSO9617tUXl5uGZlTJoJGkMyIf08kElaf875z586dYRbf398vj8czw185lUoZqxYDLToidKlYIFwH5Q/dLUpiAPELL7xQkvTjH/9YUlFgy8Jy+kxJ0o4dOyQVgWqCC+4Dzpn2kvT8889LKmZovMiACEaUk5R1BDcyNTICOlRkvGAv69atsw2YTCZ14MABRSIRXX755UqlUrrvvvs0MjKiQCCgiooKhUIhG3wxOTlp13nppZeqoaFB69evVyaT0eOPP65sNquzzz5b1dXVRo518nGcFIGBgQElk0nV1NSYHzaBhAYLuCZTa7mXdMMomdG00W2DaT0+Pm4i3XA4rPPOO8860KxnGNXHjx/Xf/zHf+j48eMW5Lj/jKhPpVKqrq62AbAMu2BoxdDQkA30kGS6QudAULp1uG7Ct3srHPmUQWnLli3y+/2aN2+e5syZo3e84x2SZJ7Fx44dUzgc1sc+9jE7VeHI4FfjcrlmCEinpqaMt+Gkz8+bN0+bNm1SV1eXNm7cqAcffFDf+MY3NG/ePD366KPGARoYGNBtt92msbExtbS0aM6cOXrf+95nnZrDhw/r2muvVTab1V133aXq6mprAdfX1yubzRrBC04VKTKvkydPWnsdLAiMJpVKaWBgQBMTE+rs7DQrDEnWreA+OE8PLEfgiMybN09f//rXlU6nrVwkZV+4cKGSyeQMuQvBh81I2cZ1FQrTgmNOVadZO4uAjIPgDrZEgCdTo3zja4Dp2S18AHD8lSjfyLhwtOT9KNd4n69//euSioJfMlTKTZwpCUJkWgRDnqGTBkCZjZ4LHJAuaS6X029/+1tlMhkDcKFx4HvE8NSPfvSjymQy2rFjh7mA1tbW6hOf+IQ1ech+OQTi8bhOnDhhAWJqakqHDh2yQRaA34hVwXWcoHhdXZ2am5vtQKUElYq6U0i9x48fN04U67CpqWlGsIQwHI1G9fjjj9vE62AwqDfffFOFQsF4SKz7888/3+4PgmIy32Ryeho0o8gJ+OXl5br88suVy+X08MMPa3x83EzfOBCR8pzq9ZYTcr3eaW9rEPpgMGgM6iVLliiXy5kj4dq1axUIBMyedO7cuRofH9e9994rl8ul97///Tav3Skkdblc6u3t1de//nWboQXgiLtAaWmppYyUCZ///Oc1b968GRNi29ratGnTJnV2dupzn/ucstmsbr31VtXW1ur1119XoVDQihUrVFZWZtYd1PrU6YCLnDCJRMKwB4/Ho2XLlsnv92tkZETj4+Om82Gz79ixQ36/31Lpjo4OhUIhA/gR/kqaoRGkjGhra1MikVBPT4+Gh4e1detWmzrh9/sNG4H74Tx5wOL4XJJmcFKcf08jgaBB653Nj/c22AI/T7cOc7ivfOUrkooZGGUepybBiIyHAEI2AJYHdoRdLqOWaJ1zcPB+NCZwT3C6QgQCAcusmHyMYNup00TfNTk5qa6uLlVUVOj6669XIBDQ7t275Xa7tWHDBlMOIBei8YH8ZHJyUkePHjUdXjKZ1LFjxzQ2NmaUkubmZoVCIa1evVo+n0+Dg4P2/ewDzN7gknH/ISMCXnMwwf5GcnLVVVepsbHRaCYul0sDAwO6++671dfXp8HBQSUSCcN2GhoajMaCdXV1dbUNw6C5wv0HGqAKOnz4sHGyPB6P0QLWrFljXUKgD+c9O9XrlEHpzDPPNLAbIuPo6Kh27dqlqqoqm95A2oqWCC4Fp/gnP/lJHTp0SKeffrpOnDihZcuWadGiRTNG4yQSCeOTbN26VQsWLDDQjMWIz/Idd9yhI0eO6IYbblAwGNRvfvMbZbNZXXvttYpGo7r88svV0tKin/70p8pms3r00UcVj8dVV1dnQTOTydi1Q1KEcUormdQYrRGZYjQaNRtUOl11dXW66aab5HK59F//9V/q7+/X0NCQKisr9ZnPfEbt7e3Wuqbr9sILLyiTyWjBggXm8YMnOAJlflcymVRLS4tcLpei0ahNr3B2DSWZxw4sZakIULMYaOUTDCiX6LKxCLEo4ZS++OKLJRW7b3RaeIb8HMGI38v7b9myZcb3kTE9/vjjkorYFhgd894IYvy7Uw9GWxwAmRLc5XKpra3NGgAw+vl35uzl83ktW7ZM1dXV5sm9adMmpdNptbS0KBAI6NVXX1VNTY1aWlrMotiJzdx5550aHx/XypUrVSgU9MYbbyiXy6ntb2Z+vb291iVlXzjZ2M5uGxlXdXX1DJUB193e3m6AcaFQsNKPQ5QMimeP+8b73vc+DQwMaPPmzRocHLR7VVpaqtraWl1zzTWWcQcCATU0NFgXmSYQJOaxsTEdO3bMGj88m/LychtY4Ha7TftKZ1LS/5d1ySmD0o4dO6xFX1FRoYsvvlhVVVUmswgGgxoZGdEf//hHuVwuLVu2zGpLTmHIfQsXLtThw4fV09Ojr371q4rH49q3b59ee+01ff7znzeuBim/9PejeFD2f/KTn5Tb7damTZvU1NRkJ+tLL72kkZERfec739Ebb7xhWAedmNNOO01lZWUmCoQS0NvbawxbJ5eC05QgC9CH/qixsVHj4+PatWuXYrGYtm/fbnU5v2/OnDm65pprTDpz6NAh3XTTTert7TWt3J/+9CfV1NTopptuUnNzs4083rt3r7LZrK666iolk0n9+c9/Vjab1fLlyy1DhUlbUlJiaTafj6BBy54XZSClJkEHvhH3HUwIIJrMAyyIYMHXLFAWHRkXTG6wP5jgn/rUpyQVnSoJQvCRCGYET/6e4Am2R2YOiRGvpOHhYetCgd8lk0kdOXJEHo/HgjzPi8MJ3RdNi6uvvtpsbCYmJgzjnJiYMGxlfHxc3d3dhln5fD7rki5cuNAyWHAWyk78m8CepOmyubu72yxEJBm7/NixY/L7/ZatQ16MxWIKh8Nat26dmpqa7KCiocP06ZtvvlmTk5N65JFH5PV6ddNNN80A5A8fPmyETbBSqhaCoJO2csMNN6ikpMQcYPnMlZWVFhgp75wWJ6d6nVJm8olPfKLg9Xpn2ICSHo+MjOiXv/ylksmkTj/9dLW1tekjH/nIDKIfnAkWUygUMmZ3Z2en3vOe95jwFuxq4cKF+tGPfqS5c+eqUJi2EH3sscfkcrn03ve+17Cj2a9YLKYXXnhBQ0NDOnTokIaGhvTcc88pGAzqS1/6kioqKnT06NEZGRLB1Jmxod/J5/Pq6uqykon5X4wnz2azM+QKgUBAK1asUCgUMh8lmK9tfxtSSafv6aefNu4WmwzfJ6koowAPwEKDIEAqD9DotBxlWKbX67WyjYXNM+TveT/KWILA7HHfV111lS0uSbrrrrskSZ/85CclSeeee66kYhDi+glidNuwzeUAuu666yQV7Xc5TZkjSLeNIEpwovzs6OiYYU3C5yarj0ajCoVC2rBhgzGUsb6B24YQFpcLt9tt2B46L16AxYODg0ZrQYYCAFxSUmKjrunwHThwwLKMQmF6cAGmaJCDwXJ4OekMlG8oFcrKyswQ8ciRI5YxBgIBzZ8/X5WVlTbg1WlH4+zIOo3wAKhzuZwFIJQcBCOnRIouIV7eTiwVHRw0CoKQz+ezrqLL5dLdd9/99mQm0vQGOHr0qHw+nxYtWmTpa11dnc05I4NAzrF582YdO3ZMmzdvVlVVle677z7lcjldeeWVcrlc+uUvf2mnjZPXcPDgQR06dEjPPPOM1a8dHR16/PHHbYHSkpemN4FTKPvOd75Tw8PDFuhWrFih+vp6XXDBBfL5fNqzZ49GR0dnjMmRZCUaAGQwGLRUmgeKnYPb7TbekCRr+1dWVurcc89VeXm5jh8/blwTUnMeeCgU0hVXXKH+/n797Gc/0+DgoLq6uhQOh40Z3NLSong8rt/97ndKJpNavHixAbA8cMpkTkuoAh6Px3RPBCOCDJuZlj0UCoBkyiqCEEEM7Rvdyne+852S/j4j4k+eKUEGwPz666+XVAxuMLrBoADQIWEStPkTaxS6hjxDJw8KABk1PoMC8In3+XxauHChbbJEIqFt27bZRmeGHpuTjURbm+wBwHlwcFB33XWXpqamtH79ejU1NZmcRZrepL29vcaPgyzs9BRHwU82xvQcSYZrSrKhE85MxalxC4VCWrhwoXw+nyYmJuyw5HMkk0kTRy9dutT4TXQvM5mMent75XK5zFaFA5EGEbgieGJZWZlKS0vV1dU1w62ASUHY+bDn/n9eb+mnBHUdKwg4EhMTE3ryyScVjUY1NjamhoYGfec731F9fb35/0DnBwhmQW3btk2dnZ36/ve/bze3ublZ3/72tyVJ3/zmN1VeXq6HHnrIOjKzXwCDvI4cOaIPf/jDyuVyuuOOO9Ta2qrKykplMhl1dnYqHo9rYmJC0WhUTz75pMbGxqwM4L1Y1JxSYAFOJ8JgMKiOjg4VCgXt27dP4+PjplmiU7Fq1SpVVlaqra3N6nJ4KKlUSrFYTL29vfrud7+rWCymNWvWWMu0qqpKV111lYLBoKampjQ5Oam9e/cap4bngV4Jyj9lCI6edA6lIjDs3MxSseyi1U+5RjZ69dVXSypiRmQ8BBu6eVAGyLz4Pffcc4+kYrfvyiuvlDStUZSKQY7TmzlvnK78O78PagPPnaELOJRi4bpkyRL5fD7FYjH5fD7DPp34iBM/3LJli4aGhkzB8MUvflG1tbUzIAgy9lgsZsx55zhuRl9VVFTokksuMTJxNBrV/fffbxgjwwak6cwuGAxq+fLlcrvdOn78+AwLG7Io8DCyk7KyMiPA7tu3T9ls1vBKTP0ZBnv66acbubNQKE4EwgUAP6ju7m6VlJTorLPOUiQSsQOvrKxMiURCL774ooaHh7V//35bl5lMxhQMZ511ltxut3bv3q1CYdoAEmcEDuh8Pm98rh/84Advz+Tt+uuvL8BU5tRMJBL2ixcsWKCWlhZ96lOfsoVz5MgRfeITn5Db7dbdd9+tOXPmWPnW1NRkXIW3+3JmSrTMpWJq3d3dra997WuKxWK6/PLLbXNLMpCbsgv8y2myhZCSIMJml6YZxKWlpTr33HPl9XrV1dVlwc7v92vVqlXK5XJ66aWX5HK5dPbZZ9uoqVxuelgnHb5oNKqHHnpIqVRKa9asUVNTk9773veqvr7esKCjR49a92ZsbMwOBzJTp6MkHQ4Cm9frNayNrh/PkMyCMorWOyOTGEgIo5oghWkbWQDBhOslWCA/YZIuDQLKU7p0ZEzwpMjYyJQYMMDhAeZyzjnn2HpwlrFkjE1NTdYddgqloUo4Wc2MDRobG9PWrVuVzWa1dOlS5fN57dixQ7lcTkuWLFEqldKf/vQnmyIL5SUQCOjyyy9XdXW1HUorV6607mwqlVI0GtXk5KSVjWCWTk+k2bqwSCRivt/AG36/XzU1Ncrlcqbqh26DQyTG/vgczZs3T7W1tTrvvPOUyWT0u9/9Tn19fdqzZ49hgJAmy8vLNXfuXM2ZM0fXX3+9IpGIAeLJZNJw05GRER05ckQul0uLFi0yzhw4HaaKsNWBHgjkmUxG995779sr3+bOnat8Pj/DCjMSiejWW29VWVmZBgYG5HK5rJvU2tqq2tpa/fCHP9TRo0d19dVXq7e314hefOCrrrpKLS0tuuSSS9Tf369rrrlGLpdrRpn2j15E+rvuuktdXV3aunWrSkpK9E//9E/Gis5kMlq1apX8fr/OP/98lZeX20jl/fv3q6SkRFdddZW8Xq+2b99uXQ30RQCOWM7C/yFYZTIZbd261erphoYGrVu3TqlUSi+++KLGxsaMIf7kk0+qqalJX/3qVxWJRGZ4MJWWluqzn/2sOVt6PB5zB+B+g8+x+WAsM+abcoCFJcnwAcirUjEYgfGAIfH3BB8yK36O4MNGIbOi+0W5hTSIDABMiGD417/+VZK0fv36f/g+BCOCJeUafCeCEhkf7XK0b06bFpjtbM5QKKSlS5cqEokYQREZCo2BUCikuro61dfX24Zm87jdbisvKcPA8Nrb21VeXm7rDbE2mExTU5NlFalUShUVFeZMmkgk9OqrryqdTttzhxkdDoctYKBRc2a9+fz0DMNMJqOuri7L5iXN8GmnMzs5Oal/+7d/UyKRsMynp6dHfr9fV1xxhSKRiPk+nXvuuTbdGuFuLpczy5P+/n7F43EtWbLELE8YsOFyuXT8+HHzKwdX5boIrm+VlJwyU/r2t79dANhOpVLatWuXstnpQXZ4CEUiEa1bt07hcNhqd2wLnBowPiCZTWdnp973vvfJ5XLp0UcftTLt8OHDFqQee+wxtbe3zzA0hynLou3r69Ott94qSfrWt76lZDKpjRs36uTJk2ptbZ2hTWMD05KlZGPzUXY4fZCd2ik6Gs4x0eBJiUTC7IFDoZCam5t1yy23mKeTJGNxz50713gbYAz8HqbA4NhJGk6AhJULC5zN7LzfgIoEE7AiWvRQAggqZDL8/Yc//GFJRUoAawSgmfvI111dXTN+7qabbpIkPfbYY5KKfCOsSnALIMNyZobS38+VI9Pm9zrtfyEogguS2efzeXV2dsrv92v9+vWqq6vT8uXLjU2PTMSZMY2OjmpsbEwvvfSSfD6fLrnkEpWUlKizs9Om70jT2sGKigq1t7erUCjo4MGDcrvdZo+LRMM5sZgpM/F4XMeOHVM2mzWRL5OOCZwcGs4OMOZukUhEmUxmBmjudrtNbMy9mjt3rjKZjLZv3270EXCsSCSis846Sz6fT729vfL5fFq9erUqKiqMBgGuSiNnYGBAw8PD+v3vf69YLGYj0ti3dBSxbOb5kd3SwQb8vvPOO99e+XbHHXcUiLrwdqjZc7ncDKyjrq5ON998s6qqqmYAd05LCacJul3AW+hg/rdXNBrVgw8+qGw2q/POO89uYnd3t774xS8qFovpyiuvtAddVlamNWvWKJfL6fnnn9fExIRxPJzm5gQHhIR0NAqFgmEc+CfjCEn0p1RYv369tfX53FJx/Hd7e7sFagy38PPBv4npo2xEOGL5fC2z2RgAACAASURBVN5AQ1jiBE9In9xTSurZ3tYsGjAaMg+6WJRvyIe4fq5lNhly586dkmRaxNkOlHTdZo8LBxfh5wHKyZwIUk57FqmIcTF8FBcFcBW6Wc4OExq5iooKveMd71AwGDSaAO1yBk1wnZiwzWZcwwXq6emxrpskswNxjgKDEIkt7vj4uE6ePGkdVITWTj8mj8djbHHGXjslNk7yJB1Hno/TmA41RSgUUkdHh3l25XI5uwYm/D777LMKBoP62te+Zjo79sb4+Li2bt2q/v5+o3esWbPG7mEulzPeFF5fDFOgmUXjiGd4zz33vL3yDRIbi4va9eWXX1Z5ebnOPPNM1dbWauXKlZqYmNDtt9+urq4uvfjii2poaNDvfvc7zZ07Vz09PXK5XEas+keByDmayGmH293drc985jPK5/P63ve+p8bGRsViMcXjcVvcpKRPPPGE4vG4Pv7xjyubzerNN9/U1NSUDRns6elRLjftmV1TU6NXX33VZDFkciz+bLY4c+vo0aO2qKE1gAFAdvP5fEbr37t3r20cJrR6PB6tWrXKUvhsNqsDBw4ol8vNGEGUSCSMLAlO4FyALBZOUTKEfD5vDQW4Zc7N4nxRNnEiMwzy/e9/v6Qir4nu2MaNGyUVyzMwKCxXeJ6UZ/w9GBQAN0GRIMh1gTERlPg+rpOv+T1kfJQo3AewQ4TWfM33oNZ/8MEHVVJSovXr1ysSiVg5jOB6cnLS3Cm8Xq/e9a53Wfd2cHDQfLIKhYKqq6u1ceNGlZeXW8ZId5P5h07zfCAAadrsDhCdgxPWM9k4L6fdLwlCKpVSV1eX4Z7hcFgrV640Ok40GtUzzzyjyclJK9UJDqytTCaj+vp6ffnLX1ZLS4vReMhoyN5REsDUZmDAwMCAcbry+bztYXzjkZg4h078IzNH5+uUmdKPf/zjAi13EHSAxPLycgP2TjvtNCNQjY+P26I988wz7dTIZrNmPj5//nx5PB6j2ePvSxsS4M/v92toaEg//vGP1dfXp+HhYc2ZM0e33XabzXQnxQSoHB4e1vHjx5XJZCxNRyxZVVWlZDKp1157TVNTU1YWsVgaGxtVKBQnrMKOBqNhkil+S2QrFRUVCgQCqqurUy6XU09PjxKJhA0qIKOIx+OWabrdblu0mMoDkDKwgBIMkp2TBwQDOJPJWBeMeWZgUixiyiMyHBYOwDObnowI+QdrAx8lWvscUiw0MqpNmzZJKnbPSO0BrmF08/sIigQneFJcF9fLJnYOO5VkgLSTywMvjLIql8sZZsMG6+3tldfrtQ08NDRknCJJRrP4y1/+Io/How0bNigcDpsSgBlpuDbg08UhxXphzDwVA9fJc3XuCyffrLy83NYK5RDeWRxQkUjEJEr5fN5GmJHF9/b22lijkpISLV26VLlcTq+99prZ9gJMV1ZWat26dYpEIqqpqVEmk9Gbb75ph1o8Htcrr7yibDarefPmmXkbGBO4HNQDDkXnf07RuyT98Ic/fHuZ0sDAgNXo8XhcL774ogF8sFBHRkb0hz/8QZOTk9qxY4eBhPX19dZe9Hg86urq0o033qhjx46ppKRE8+fP13333af6+nqztb3ooos0MTFhxv7ZbFaNjY3WTbvuuuu0d+9e0/nQRkfF39nZqXx+evItD5JMiJOmtLRUy5cvn+HUSFrOUEzSfzYmJEYU1XjDYBFaV1enkpISK2+am5vN18dZcjjBP9Ti1PswsSXZpFVU5EyoYJIqnyWbzZoA16n9YhPSXcM1gSYCICrBiesmeM62r+WU5YQjOKDiB8gmc+XeEbygBgCoU54BeDuxPunv7XHJpADAEf5iroaKHkY3QYOMtqury8oi2tcej8csbLLZrCKRiK6++mq53W4zYWttbVUikdDhw4dVXl6u6667TsFgUH19fZqYmNCePXsso0A1UF5errPPPts6uDC5sdqlvPJ4PGYKx5h75wADPhdBjGBBycjmBwin9CQ7BI44ePCgAc8VFRW64IILlE6nTYVw/Phxm1hCsCErd65FMqh4PG58OdYMOC+fiVIaEitdQfhQb/U6ZVCiG8HNb2trk9/vtxqbdBrwF7LgZz/7WTU0NKi+vt6Eo5lMxky18GQCBIfXs2bNGh05ckTbtm1TOl2cdPvYY48pGAxq2bJlCgaDBtotWrRIHo/HMIEVK1aYI6bH4zEVO2bmkCkvuugihUIh3XPPPVY3O8sAJplywqFCp16emJhQJpOxzKW/v1+BQEBtDsEmnxPJQ0lJiYGIuCOuWrVKLpfLsBBJM3ALXgQHTiKCFXwkNgCjlSG8senJTCinoDjMHko5G3sC6znttNMkFcsuCHQEC/6e03B2R5DMB4B7Nt+J3+uc5iEV+VNo3sj4yJS4/2it+HnKW7pzDHAguALuAidwALz88stmZ5zP542Zv3DhQstgC4XpUUu5XM5kKljHcAAPDQ0pnU4bzw0yptNznX3h1HeS4YJvOddkd3e3dYjJ/pFw0QABcnBmz7DLpenMExsVRru3/U0EjsMBgQTWNgcNFr40q0KhkInlnVABgZSDj/XgJCizPv631ynLtyeffLIQi8XMBWDdunXy+Xw6fvy41dOc2iUlJWpsbFQ+n9eBAwdUKExPPCgUpo3dJiYmjBFLvb9//365XC4bLvnOd75T5eXlGh8f1/j4uLZt2ya/36/rrrtOLpdLTz/9tKLRqLXoISeC8zhnWpGmO2n1AKLweB566CH5/X61tLQYCZG0lKjvVEnz8HmgdBTADFhIdnP/9v/OaRc8HJfLZWA3ZaSTqV4oFEccgwMQLJwYyOypKaT4Tj4Xm3n21BHnQpKKZRKnJK4B/Dwv3gcsDAdKyj+uk5Y+z4CvuS+zKQgA2wwWYPGywQgqBD+ukw0JUCxNB3AEsPwczGe0XSju6+rqlMlktGfPHuXzeZvUQakEEZIslUyU4E8Z5hwy6vV6rcSi3McAjY3MuoIfJ8l4S87miSSjjbAmnVN3KWHZ9GBSdIxZK1wX98Lj8VgjyFmSAkj/I6kNzwRYoaqqygIqfCQyI6moT6SJwti222677e1132699dYCHAluFi1np2bHOZ+cUxu8wwkI8xDJgEKhkLLZ4tRM6nJG2FDWDA0NGRuUTgq1O4ud8sftdlv0R+1P94/F6ZzgwOIkkNHNQc3tzFr4vbRwOa3IWOgs8uCc1PpcLmcTcznhIaaRdTpdOuFL5XI5lZaWGnbFScSCgQrgHOyAHe78+fOVyWRMmU1WxfhqTjOCutMBkQVEsMxms2afAtnUydSXigAzpRObm+DqfO5SMXiFw2HDRyTZ3DUGPHA//x9pZx5d51le+31G6QyaR8uyZVnyPCd27MQhI5koiakLpNDeJuVSykqBW3JL6T+Frl5WKU1Dby9dtCmstkCgFJKQkKkOIcZxghMbO/EQ27LlSbJmHelIR2ee7h/i9+g9vlx3NdVaLFbAsc75vvd9hv3svR/Xl52LCnOdZ+9eCAS2JALadapVJlxUJ/x9VMQA0ARPAN0rcZ4rWdckCf53cBXOvmt+SDBDJkLw42xiFEfwo1LhfRPoMO6nymttbbUAQdDibEsLq5l4nkzM0bnCKOcO5fN56xZ8Pp9VPK5NDpUdz8q1WrnSR+krX/nKuwtKn/70p8u8LHfEL8nwGS75rzo04E60azMzM4aBEO3h2xA8KIOrqqoqojD9uYupMFJ3X4TL2HWJZGjt6MOZeqBHI3MR7RnLMtqlR3eDLG6cbW1tFaxagjUHj7aLvy8YDJpjJvhAJBIxoHt6elrpdNoyLBUYhxrRqdsuUX0CzrsAu5sdIcFemSzARAhCZOVyuWxkUoIDARs8BQkSSxq56BxoLgfsZP4M2Zv/dgXI7giegMp5YpzNuJw/B4bkCnfdIM5z430w7aKy5Heypp42mUFGR0eHMZMxb+PchUIhqxwxhBsfH6/AHN3gyed2RbcEK/Rj/B63IiKxYUhH0uOd871dI0X+PQS9cN38fr96e3sViUQqXBCouKqrq7VmzRr5/X7bCu3KSzKZjElt0Bty1oB4gEY4i5yJd83oLpfLFf/hkjMarqurUzAYNGEs4juX/Uy5S+lMhcHkKpPJ2LSLwwKrGfvXxsbGisxEheRus6CUDIVCBsLxHchYLvmyVCqpq6urov8laFxZ0lIpodvhcgK0c0Da2toqLhcYByWsu6Y5HA5r5cqVFbqgvr4+Y+8SZNxRMW0i/8zndrElpnQEWSon2hDaPbJgqVQysJRKddkvnSDj8bi1BVSqVIpoG4vFoo4fP25nAkyN9iUcDpu8Z3h4WF6vVzt27FAoFDJdlOuxg0yGIEoFIsnG8FRaVBDwykgobF1G6kAFBmXDTUJVVVXauHGjCoWCfvGLX6hcLhtPh8pHWhCMezweww6XLl1aQUvgPdJG0z4SbPiOJJNkMmltksty9nq95pJKgIQPxyiewA0UgDCcKs7tXrLZrN544w3DXQOBgBUKk5OTGh4eNqWB64eEz7mLETY3N4ut05LMooQpMgnHpTC4uC1Dkqv9XLVS+tznPlemwqA05tLyoZkewPUpFufN3vz+hS0g8IWooHjwKLdxv6NNqaqqUiqV0i9+8QsVi/N+NB6PRwMDA7Y3ixGqKx1YuXKlLYtkOsaWB8pyRvoQPqWF0lNa0Na5wRAMgkOPWRyYWigUMm0V3wkMCf3P3NycLl++rMnJSb3++uvmr+33z3s0c9Dwlq6trTXNmSvgpD+n3SRIu6RJsiatIJgNFQQZmyB35WplF3zlUFGx+P1+c3ZEDrF//34VCgVzK6QNITFhfs/S0uPHj1vLDKZHu10qlSwou8mCoOQS8tg2A3+LP0/Sw9wNXVZXV5dVyGjlaIsIXplMxhZYMJFavXq1otGoWltblcvl9NZbb8nn8+n6669XOByuqORIUrlcTidPnrTEwgZnj8djZFmeM/eCykZaIElSMeHgSIB2sTMuP+oLzqIko91wZqjQ+K5MlFevXl0hg4LOgZidLodCgLVQ+DqRMPh8FA58D6pCqtpvf/vb/7X2jb8IEI+gxAMBawH7AZuA/8FCRuQV7qFnUuDz+Uxe4LY1NTU19vLT6bQymYxVZFx+KjjaRwzlOzo6FAgE7AK42QWgXpIJIV1vGUpSt32hd+/u7lZtba1N0yijmb4wFUGp/sorr2h0dFRHjhzRzMyMCWij0ajq6+t100032WFijAvPiooKxTXCzmKxWCEwZfLi4gJgD3iOU0HRJoPRuZUYlwOsgwPt8czvj8evCT5WqVSy4Enp72Ip4XBY69atUy6X08svv2zVF8tBQ6GQhoeHVSqVjKeEHQciVFZ0sQoJrIh/j0mtu1CC7M3/zvRLqnTKTKfTOn36tPx+v6699lr5fD6zhmlra1OpVLLpLtgbv99VCrh+3fCZXL5SPp/XyZMnFY/HbXrHwIV/j/2DjO/dapnqxcWrwPc8Ho9VMG51x1CmWKy0o0VVAN6XSqWMTtPR0aFwOGweUwyrLl68aLbQqVTKzOa2bt1qk8lkMllxJoBBoA5RqFRVVenLX/7yu2vf4B5Eo1EFg0E1NTWpWCzq/PnzhnXwgqurq7V+/XqjDHAg2OLACDyXy+mFF15QNpvVypUr1dnZqY997GPy+/06ceKEUqmUkRCz2axqamp02223KRgMqr+/37bTTkxM6IknnpA0b2DPpMMF5GkXIUXClMbQigrIBTThBUnz/B74LWyu9Xg8On36tKanpw0QJ0OCcYyMjNi0cXx8XK+88orGx8fNfa+9vV1tbW267777rOV0gfutW7dWVC5TU1N2cGgvSqWSiTGRGoCdUBmA+VApspuMy83KIdoJV6uYy+V07tw5lctldXZ2qr6+vkJ4WigUbHPN2rVrFY1GKyrL2dlZHThwQLlcTp2dnba4wePxaGhoSOPj4/rOd76j6upqrVixwqo1sjzMdRdj4rIx/ePs8a5TqZS18X6/3wYpnGOCG9PjhoYGo5eQxLj4oVBIN9xwg+rq6qzdAwOldWHAMjY2ZtSPRCKhw4cPy+v1aufOneYVDr+H9+WO28Geenp6rA1k4igtVEDSAm2C6tydZNKy8kz4jK7ThztJg8gbDoet7eNeuAtRY7GY7UykAq+pqVFTU5NNJqHJQAzmjFD5uhw53t+7Ckr8gBHwQPgCfCCyxszMjNmNBoNB3XTTTQoEAurv77fVSpTFVBNksGAwqI0bN2pubk5vvPGGtVAA0Xi8AOqOj4+bfOUDH/iAamtrbQcVuh/kCAMDA5qbm7OJA0A3GYrDD0g3MTFho1tIizMzMzpw4ICqq6vV29urmpoa1dTUWKvA92C6w0qneDyuzs5Obdq0SV/84hfl8/nMUqSnp0fRaFSLFi2yYD81NaX9+/drcnLS7HxZD86GYdqwrq4uA26p8NyRN5+NbEcLAGaUTCaVSCQUj8etLcWPKRwO6+677zbmPRVYoVDQwMCA/H6/3vOe96iqqkrDw8NGdPV6583iY7GYxsbGVCqV1Nvbq0KhoKGhIU1PT2vJkiXKZrM6ePCgtSHt7e3avHmzotGonTMU6mB77rSTrA8o6/K90HS5GkamiwhvJRk2xEaagYEBVVVVaf369bYOOxAIGFDN73RlIbQsrjTk9ttvVzKZ1Msvv2wuli51gPfPcyahunvvcF64EnMigZA4XDFvqTSv/ayurtbNN9+sUChk+sCuri7V1dVp9erV8vv9NtkkILt+S9ICNwy/tHg8bt5JsVhM//RP/6RUKqXLly+rpaXFqszBwUF7H0zQwWchZbr42a/6uWr79uijj5bRbtFOhEIh682JnPSRHAIiJL12W1ubUqmUfvrTnxr63tnZqUceecRYuEwdXBIgP66VJhcQR0zAdJdECN+I1u7y5ctKp9N2mAg2cDLIxFRnQ0NDCgaD2rlzpyKRiIF4bB1ZvXq1tW/RaNQ8bWhVDx8+rGw2a6Ae2zLA1srlsurr63XPPfeoVCrpmWeeMdp/MpnUoUOHlM/nzSSvubnZSmkuPU6gMJMJ9rwPlxHsEtaoJFg5hCUswQy5C3iMtEAzOHbsmKR5pjXAKkGxXJ63TJ2amtKzzz6rYrFY0XbncjnT9lHiA+ZSQXZ0dJgpYD4/72VdLBaN38T0jsoQfhLBmLZyeHhYHo/HzilYFc9FkgUhn29+O43X69WFCxfU0NCgz3zmM7Z6yW0HEejC7wL7PHLkiHK5nFWOyE48nvlNKy+++GLF0MDlo8FTK5fLVm0UCguuoe5klXdIwmQSKcnaIpeeEo1Gdc0116ihocHkIel02pYZlMtlNTc3V0zx+OGfeb4vvviixsbGdPLkSfn9flu7dfDgQTurVJhgYLwDt5LijD722GPvrn2DEHWlbw1lIJgFQCxj1/b2dgP6MIZiBQ0+R8uXLzccxaUSADQzpaIigxowMzOj1157TeVyWVu3brVJDaK/bDZr/XY8HlcqlTK5BQ6FTD3ciY/L5IbBm0gkbIupJKuMGOuSgSG6kT27u7s1NTWlAwcOWACm/w8EAmYsf/DgQZvU1NXVafHixcYARscFb4tBAvgB0zwuGFwQl3TpbmkBCwwEAtaOk+np9wm2bIKliikU5i1Brrvuuoqxs0sqTCaTOnbsmDKZjG677TYbWDAZkuZlJohd3YlZIBAwSgiYSjA4v9UllUpVbApGcc95hKritmkbNmww7JIkMzc3p6GhIdO8RaNRWwnG6rB7771X0WhUnZ2ddrnBerLZrGnUaIeRfiSTSY2Pj5up3c6dO63t488zmGFYQncBxinJzhITS9pgSYZXElRJqjgWuKvkEcnX1dUZrwizucOHDysej5sB3czMjHw+n61kamlpUW1trTZs2CC/36/h4WGNjIxoz549unTpks6fP18RwFetWqWamhp1dHQom83acGrdunU25eP8+Hw+m1Bf7eeqQYkyt1wu2zTD611gPuN+R7RlxE+PPTExoZmZGR08eNBMrrq6uvTwww+ru7u7YsROVZNMJnX+/HlbWlkoFGxjbH9/vxKJhAYGBmx8j+6NQwkHgyASCoXMagWuBYcaYJERMweZAzQ+Pm4VBKNmtoY0NDSovb29ouq6cOGCTQdTqZT9fVwq1uP8/Oc/V3V1tbZs2aJyuazDhw+rWCwaZoemjAoHSxW3lKcilGSjfrhRVGgwz1F5M6LmkmA9sXr1altr7WZbl53rBgewKFp3nj9toluRoAgolUq68cYb1d7errvuusuCUCwW09mzZ5VMJs0l9MSJE3bpGWAUCgWNjIwoEAgYq3loaMgCj9frNddD2iSAfy4YUzuCn1vtSfOVCxUITosMYlKplC5cuGCUgEAgoKmpKU1MTOiHP/yh4vG4vQfabhwC+HvAvBhQsNEY/djo6KhN2Nwq1+VUMXAaHx9XqVSyVUhu9RqNRu1sejzzMph9+/ZpaGhIP/3pT5XJZGz7Mgl2cHBQkUhEN998s6k2PB6PDTt27dqliYkJcx3gLOGq6XqPlctljYyMWIBFU8f//18KSkRwHgQVDS+1q6vLmLEY6+dyOdthNjQ0ZEzRhoYG3Xrrrert7dWiRYsUDoetHEcr5vozTUxM6F/+5V9sTTGj6Egkop6eHjU3N6u1tdWCE8EzkUho3759xoGhzSFo8lMuzztK8r8B6NOO5HK5iqkQvTwtHhskuDDu87l8+bJmZmbskPHvJhIJVVdX65prrlFtba1pyAiKYDbscqcaqKmpsUObz+ftgJ89e7aC6MYonovGFJT28/Lly2YyRwJxSaMcFjRZJImjR48qHo/bMkd4MCdPnpTP59N1111nwdbn8+mOO+6w9+v1zrsrNDQ0qLOzU+Fw2MBOeD+7d++2diqRSNh0ivcC7gPTH2yJKoIfBMaYq83MzNglraqqsj/PxBGAHfkR7Szn8dSpU8pmsxXCaqaZ7th91apVmpyc1OXLl5VKpYyhfvnyZQWDQW3ZskU1NTWKRCLK5/M6e/astboES86ftOAeyTvkkksLCyFdsB9TtqamJt14441qbGy0lndoaEgjIyP66U9/qunpaVvsSsUDvQW/cIIxk0boHySxHTt2GFUCvWcul9OhQ4eUTqcN9x0aGrKWORAIVAxjXLD9Px2UOKTQ5PkPACoA4aFDh8x6tLGxUWvWrFFNTY3uv/9+xeNxPf744woGg/r0pz+tzs5OIxPS4544ccLAW4/HozNnzmhmZsZW6PAiksmkWlpa9NBDD6mhoUGDg4PKZDIms+AwEkROnTqlUqmkixcvWvCAbEeWIdDAW+ESUWGBIRDwoAq0tLQYr4oJ1+uvv65UKqWOjg7jMNHDM4HAYgIuDgQ3Kg6oAvBiaNnAxKgqcf2jeqKV5v/z+Xy2dYUlimTfmZkZTU1NmX3L1q1bDf/jEoN1wG1hTx9OmNFoVLfffrtyuZxeeuklu5RsUK6trdXMzIxCoZCWLl1qyeNKLs3s7KwuXryoyclJvfrqqyqVSlq7dq2N5hmdSzJqAkD3smXLKiZFtG9cJDzT+/r6DNcLhUJm0wFPjIxeW1urQCBgFarXO29QePToUfl8Pm3dutUmpS4ZdfHixcrn83ruuedULBb1vve9T42NjdqyZYtN5yYnJzU1NaVIJKL3ve99KpfLeuutt5ROpytMAIEA3GqC98L9I2HgZsnnRUYCRYOE39LSonvuuUexWExvv/22ksmknc3jx4/L7/fr+uuvV2Njo3p6emxqSXspzROVafvn5uZ05swZJRIJHThwwGg6gUDAnhETYvBKpE8E3HcdlKLRqHEd4JxI82Q+VtQEAvNWmjU1NYb9ANY1NDSoqalJDzzwgAHZbukHeeuNN95QLpfT+vXrzUQumUyqu7tbfr9fhw8fVjgc1oMPPqiOjg6TrqCIptqB+g73gpIRghilvbtCx8VI0BvBS+LCo2HjxTOOBSin6jh69KjhJVVVVZZdCXZTU1M2gq+trTXnRdaJs2UU5jQHi8+xceNGZbNZ9ff3mzkXMptCYd5eguCWz+fNbAxW+pWMYo/HY5qzeDyuyclJC3bBYNA28XIJ+RzLly+3qWo+n7d9fWgfwcVuvfVWNTQ0aOXKlRbA4T/F43G9+uqryufnN9kAEtOqBoNB2/LBc4CAyzvr6+uT3++3S8j0ipYV7g0jbHa/8f5IXkzOIGOCdXV0dBi+RntIAJFkLeKePXs0MjJilVNfX5+qq6u1ePFi1dbWavPmzSqVSjp48GDFBa6rq1N1dbXtkXOtS5YtW2bqA6pjvpv7HyyWW1tb1djYaFU0/z/vnW5l165dBpDn83ndeeedCofDuv766xWNRiuCiMfjsaleLBbT1NSUjhw5ouHhYe3du1eZTMYmtiQCF38lICM14sz9Rz9XDUpDQ0Py+Rb2ifELKX/BWJqamqxMo2oAGIQ3w5+rra21DDw4OGhcIOQFbIOYmJiwfWhf+tKXVFdXZ+NPsjjGVXi+tLe3a2ZmRs8++6wmJycNA+nu7jZsBqo8ujkAezxnYKQjE5BkL6i1tdV0UIyYIfVNTk4a4/rUqVPKZDImk+np6VFLS4vWrFmjXC6nf/u3fzMJARYQHo/HLhGyEC6NO82BwJpMJq3dBUjmpSMg5ZJSXREkwWmQXYBh0JaT1dBrrVixQkuXLjXAPpPJ2PJNv9+vkZERu7SxWEyPPPKISqWSduzYYYp6gkk6nVZ/f78ymYz5Wo2PjysYDOr3fu/35PP5rKo5duxYhXskraY7zpZkZE0CEJgb7aY7MEin0zpw4IA9d0h+Xq/XqhYuJwAtlSeUA/hGkHmBFxh8sLS0q6vLJDZVVVW69957VS6XNTw8rEQioUuXLtn0GFIqSgCCMZebBMsKpXg8boHb5/Pp7bfflt8/vw+usbFR1157reGdNTU1es973mN/Zy6XU3t7u1XBtMgEQbRq5XLZ7FpqampsM08mk9HKlStN+wnAHgwGNTQ0pFQq7R8MqgAAIABJREFUpZGREaMqgPEVCgWbhL7roIT8gQyHKRYPaXR01KZN0rz/TaFQsB1bBJvly5dXgGIIcqGyX3fddQZkgkPU1NRo586d8vl8On78uCKRiDZv3myaqYsXL+qpp55SuVzWXXfdpVKpZDvgN27cqPb2diMzAsRz0NATAeiGQiFzJQQAdzMyB7uxsdFsT8EIyCw86Gg0qu3bt9vkIRQK6cYbb1Q4HDbwv6amRmNjY/rWt76l6upqbd++3Qzdw+Gwlv1yB/2rr76qYDCo3/zN31RtbW0F+ZN1zai/ufAcWIJrJBLRtddeK7/fr8uXLxt1AO4VUy6vd94cjXIfsiBBzefz2VgZnyECJVtv2Bqzdu1aq9YSiYSV/bCSm5qabCDAeDmfz+uNN95QoVDQsmXLrLKJRCIGBBNk+byHDx+2dk6SKeohHkLVcIW/YHRM2QKBgHUCiFQJbkzDOjo6jFjLc8WkPx6Pa9WqVYpEInrhhRfk8/l0//33KxqN6vTp0woGg9qxY4c8Ho+OHDli5wwYgKAKE57KGMkMeCmBHWkMZxp5B8//jTfeUFVVlS5cuGALLMLhsBobG033R6Ci4GC44tJo3nzzTfl8Pq1du9Y6JKAP3GK9Xq+uvfZahcNhS+RUdO6uQ7/fb95q8Jau9nNVntLDDz9clhYAb0mWcRFSSrKRKpkB7ICSHfwkHo9rbm5Op06dUrlcVk9Pj5qamsypD6YxFxh/m2XLlhl5M5FI6Pjx4yoUCjZeBLBesWKFstms9u7dq1KpZBR416aBIFMqlUwLB/OZ70fQhYdFCQ/u8J73vMceLsEZXSCAPONbNHSZTEZvvPGGqayp3KT5qU84HNby5cuVSqUqNuM2NDSot7dXdXV1tgTz7NmzmpubMw3XzMyMcUBg5JbL5Yr120yR4GlJsgnhqlWrjIkPEEky4v37/X4tXbrUJAihUMgwOVT7tCCjo6OqqqrStm3bDGQuFApGsoQqQLKLxWJKp9OamJhQKpWyP0fAp4Xh8oJ3SAu+PrQcXFxJ5q91JWi+ZMkSe5eS7PmhR0Oacs0116iurq7CSsXj8RjjXJKRhUdHR/Xkk09qYmLCSKqI1Tds2GDv+ErpBe+NYEQAQlXA+6Aq5x3xTuPxuHK5nFWPcJR4JoDSvb29ikajNmF1zxx4I++CKS64Km11LBbTj370I0sOSHRKpZKWLFlilXVV1fyCUNaOZTIZ48aBLV5tGeVVKyWCCZoh/HuYmjFNOHfunAFnNTU16urqUn19vdauXWvANUBmLpezdmRwcFDxeFwdHR1qaGiwiopscOedd1aQKWm1amtrNTExoWeffVbBYFC7du1SIBDQ/v37VSwWbc01o1gOKdM1l0hID8/ED40YmdLVVIG7nDx5UvX19fr1X/91m1KEQiH19vbK7/cb1kW7S4Zm2tbT0yO/3288qkuXLmlubk6vvfaaisWiMaChMNx4443GuIWXgqd0Op02vhJWI7FYzEh6LlgJPhCPx+2Q0QpSIdGWS7LgQFW4YsUKFQoF7dmzxyQFJAvcHgKBgDZs2GD+OTxbXAISiYRVJgiYcXZghVdvb6/K5bL6+/s1MzOj8+fPq1wuW+VDUHcTCUHHlW9gucPG44sXLxpfy50MEWQgZAJb0LYz4Wpra7MKEWoBxMJLly7p4MGDKhQKRiSkFVy+fLm8Xq/eeecdzc7Omu/XkiVL5PP5LKC4Fi7QUQi8JHjXqcElllJNQgJGDA4Mcf311ysSiWhoaEjF4rxveTQaNbzUNeKDeU31zJ2rra3VPffco9HRUT3++ONKJpO69tprVS6XbR041AQqQu4RCQ6I4Go/V62UHnzwwTIMYPgOHo+nwpGxUChUlG61tbW2mZZ25fvf/75yuZyuu+46A+Z8Pp/ZbMAg5mDV1NRoampK3/jGN2wVElovpiCFQsE4FwCKrJ1GI0c5XCwWjcnMQWGsTcbhOVAlEURKpZL5NbmrfMABwLcYj3IYXWyAgAJvqLGxUdlsVkeOHNHo6KiBhosXL1ZjY6N27Nhhn9Hv99tBAcC9ePGiAcIA3xw0xrFkfSw2JNliUESZUANcs7JcLmfC6kgkomw2q+PHj8vj8Wjz5s3WlkIXkGTUg9HRUbW1temLX/yi2trabG12b2+vYRa5XM60gSdPntTc3Jy17NjLjoyMKJlMGum1paXFgie/z+OZN8d3+XMEYNjxixcvtsECmFKpVKpwCfD7/SbX4XMA9JNUqHqhv2zevFnV1dWam5tTIpHQwYMHNTw8rOeff15+v18f+tCHLHEy+pfmrVOwEaGCcS8t07/q6mqbkLEGDHoKbZe0YM7m9/ttSEL1PzAwoOnpab311ltWYQKl1NTUmMjbdbLw+/1as2aN6urqrIWGk0UFziTxxRdftImrJCOc1tTU2JksFApWgID/UeX+3d/93burlFzBLaPycnlBIFkozK96OXTokIrFotavX69IJGLTJZbb0WIdOXJEHo/HrDkA0IeGhiwbcakJeK5tiDRfLh86dMj6/lAoZJfp1KlThh0BEFL+QmEgy9GSUFEAnFIZEbT4nsVi0dTfbr/PIgJ4In6/3/gwYDMA6osXL9b09LS++93vamhoSIcPH64wVLv55pu1aNEiw25cdz94RgQjKh6yUaFQ0MWLF21iwvJCsqrP59Py5cstuVAh8vdK81o6LDaSyaStrYahjcXq2rVrbb98PB5XLBZTTU2NPvCBD6ilpUXnz5/XxYsXje/iVi60KC63jGfMYASwmiWOuVzOgj84FrgjZ4AqyX3uVVXziyHffvttc46orq62JZJ4ffMOwGcGBwcrggXaN9o9/j+U/GBMy5cvt824kvTzn/9cs7OzdiEnJycVDM4vxywWizp58qRtnSbwkcxIkPDhWLrAVC2VSimXy2lwcNAmk5x5qjzoFIiC+ewk+EwmY0TVLVu2KJfL6fHHH1ckEtEDDzygxYsXmzMEd4Ykn0ql7LNLC7Y4bW1tikQi6u7u/n+sUjwejzl3XO3nqkEJD2oA46mpKQNSc7mcIfVbtmwxolU0GjUEHkb2+Pi45ubmtGbNGqP1ZzIZPffcc8rlcurp6VFra6vuvPNOQ/1ra2t16623mmKaSoJMHwqFdMcdd0iaB9hdgylGkxcvXqwQ/zItIOjwcFzSpKsZI8NBQ8AGAlyAv4cNLt/73vcUiUT00EMPqbm52UBoLFBgGN9www0qFAr6rd/6LcuQXBhpYYSPkyWM2fPnz5ukJJfLGY8H5jpZEgmBi0Nw+auqquy9uqAqY1+eCSLpcDisnTt3GnN+ZmZGr7zyilKplGFGa9euVSQSsQnp3/7t3yqXy2nXrl2GD0LQSyaTOnz4sGKxmM6dO2f8KC4jh5hkBODu8/kMt4CKQTAD2Ed5gByoqanJtuLMzc3p/Pnzmp2dtaqgoaFBoVDIqBQ8n/Xr19sky+PxaNGiRVZdMIVieltXV6ebbrpJqVTKCLssDli5cqWSyaTx8PBeeu2116wlgkHOdJekAVUB1jqtMOcPOQjbgJnYQsTErO22225TMpnUiy++qFgsZhgQk/D77rtPgUDArEcYLECb4IfJ54ULFzQ2NmYQAHYzaOngJrlaOjhj0rwjgrtU4D8dlAC0p6amDLBl2kGrRsXCCJYpBj1rTU2NrrnmGs3MzGjv3r2KxWJGMnO3gfh8Plti+cADDxjlPxaL6V//9V/tINEfS9K+ffvk9XrV3d2t6upqe+CdnZ0GzNIuuCRIggCAI1QBjOhd689AIKDu7m7D0ihjKYdTqZQdOkD6xx9/XC0tLdq+fbuxkMn0XHiY3ozkJdlkg6A+OTmpZDJpsh0yaFNTk43qqVxdYhoVEu02JEwIeACliJx7enrsMLu8J9rGF154QeFwWFu2bFEoFNLOnTsNqMcWg0rK5/Pp7rvvNuwgk8mYDozdfX19fRobGzPGNM8dHhS0i40bN1rrQsUpVa7vpoLlezIlY4rmUkiW/VJL19/fL6/Xa9UHJnXRaNR4Yq2trSaY/slPfqKJiQmbRFGtMQx5+eWXjdhKBZfL5Wzv3KJFi4xk7PP5dMMNN5gKAgwon8/r0qVLKpVKRiqWFjy4qQb5Z94Vk2S6gv7+fpNOlUolo2t0dXVp9erVuuOOO0z+lMlkdO7cORsm1dfX64EHHpAknThxQlNTU/YuxsfHlU6nLVHyH2lBIEyVDtjN9C2Tydg6MmQn7zookZXhT0xMTFT48uLRQsYikJBZKemWLl2q5uZmTUxMaGpqSjU1NQaEkdnC4bA6Ojps6V+pNL/xtaurS/fee6+Z1qNtm5ubM44JLwUmMs4DbMfAT4lxJX/PsmXLKsasLqDPNIYKiykVmAU8pHK5bNgMEw0yKoDl3/3d3+ny5ct66623bGze0NCgj370o2biD7nUFQbTwg0ODqpYLJoXNG0EhvPooiCMxuNxlUrzwmJ+yKaApvCyXFIibeaGDRsMIwoEAtq4caM8Ho/xrwBl0cCNjIwoFovpH//xHzUzM6NFixapoaFB119/veEbkUhE6XTapobpdLqCUQ+/jb/X7/dXTLGQlVDpAgkQBMDsaG0DgYBZx0JO5AfKxeHDh+Xz+XTNNdcoEAhoZGREPp/PpnYvvfSSgsGgNmzYoOrqaqMAwHvr6+vT+Pi4zp07p1wuZ9pGAHu3ikB+A/5I+5zNZs3iBUsgJn1UU9KCOJ6AC0AdDofN1pZA6/F4TLe6atUq5fN59fX1KRwOa/Xq1Wpubjah7rZt2zQ1NaUnn3xSsVhMP/jBD+T1zvu1t7W1ac2aNSbpAg/CGiWRSOjMmTOGzRL8GQqBS7o6TbfN/v/9XBXo/uxnP1tm4lMqlYykhu6lu7tbPp/PVtsAxN16662qr683VTrYFNgHbR9jT0bvBIPz589rcnJSr732mo0Ty+WyRWuAWKIuJMOWlhblcrmKfWWBQMA8YmCcUzHhDEjbR4uTSCTse5Kd6PfRKOVyOZ05c0aBQEA33HCD6uvrTQ4xNTWlZDKpCxcuaGpqyraS0hKtWrVKDQ0NRnxDKkCbxViXjOhuH2WyIi2sYgILofoDG8PLh++BAJp2AcwFSxVIc3fccYc8Ho/279+vbDZros/GxkalUint27dP5XJZ1113nfFREJqC1QQCAXNk5BAS+IeGhpRMJo1VTOYGB6GlI9szibrSKfPYsWP2/dxgRdVANnedRBlLg8EhmiX4Y+SGnMnj8Rif7M/+7M8sYNI+p9NpzczMaHZ2VkeOHFEikbAKFZY6lBJaMjSRnCmSH22kax3N3SMwcxaqq6srEhgVCqzud955R4VCwTy4XOM+6DQej8fuAGx8AjoT8RtuuEGhUMgm2TMzM0okEjp69KgVB3RUnEHIpMQOEp60sMTi61//+rsDujkclNdYXRDNE4mEaaso30ulkg4dOqRAIGAeLxDnGL2CCcDuTCaTmp2dtZFqd3e3stmsLl26ZH263+83v51169Ypm83q1KlTNnoPBoPWZuJFg7ATLAlsDEYxF5MJg8sJofSH++FiHvweyv+33npLfv+CYb2746q2tla9vb0Vo2W+3759+2wcD2AqqWKTLn18uVw2IB2wE2oGVQAUBqZGCEP5ewkOYGUccCpGLGiOHTtmAlmCH9VluVy24QX0jePHj2t6etrIgnfccYdZWUQiEXV0dMjn85llxpkzZ2w1e6m0sM/OFT1zPvhnacF1kSBFhUWl/qtYyNlsVufOnZMkG2Jw/lzZTWNjo3bu3KlCYX6BgMfj0ejoqJqbm/Xnf/7nqqmpMUoA3CfoJqdPnzbOV2Njo7GlwWm4F6gXqqurFQwGDaiHj+WKzwlCjOYZ7+MdBZGTAEigogAAuoBIClfuwoULtimHqRi0jIaGBl133XUVZFcCJPhSPB7XzMyM0VIoSCDw8i7BJkl2V+r5rvZz1Urpi1/8YpnLQknHS6dScfk8jF5ZQzwwMFCh50GMirzB3epAQADlR0XOBQO7kGQYES8TzRJBAk9lMqvLK6Hf5gHx+2C3SjJmtzslwLGQYMQEI5/P21SIsp+sAREPD6MtW7bYJgi0g2j1PB6PYXb490xPT9uUkIPnTkMhcDJNY1pERcR0CMN9vi9aKncrDcEMkScHEUCYz8UBdNsj1Pn19fWqqanRpk2bKigeDBKoBqnMaF8wc8Ne+MofN0G4MiFcBjiDMKTZjuO2bFRYUAMKhYLOnTtnLSXuDZiUsSzV5/Pp2muvVVNTky3J5PO6liNUNOAn0Ep4BmB5LkzAxccL/NKlS4bluS6bVLf8Xb+q5XZJyyR63gkyD4IDVb7XO6+nxNXU4/HYhHDt2rXWigFZMORiAg1pEzE0kz93aMQPMQAx9dX2vl21UoLkxgGjT2X/Fm0XpSOXmC0irLYh86MpSqfTisfjRibDUuO9732vAoGALQ6gQpmZmTHMhi/L2J/2xr20jKD5Z1YmAQq6m2PdS0u7gwsCwYnDDUN6cnKygnzHv4d6vre3V16v14DqgYEB0+1RKUqyiUpLS4symYwOHjyoXC5nPCgymOvhTanNCNtlOAN+wocio7ssYA4mVYMkA28bGxttBI8rAZUnLSCaNzA7sDmSEe+XFpnKEVJiMpnU8PCwVeF4fIMN8uMy6t3loPl83tZhu8p5RuwkE86IO9onSI+Ojlqm53z6/X4jf6KS52w8+eST5n8VDAZtXyByKSgbJBEAb94J/CjXVhjcheknrTP/3NXVZQRazhoTMColJt5MgsvlshFZqboINu6iT/czkBiGhoZMVyjJ8DtXjcGwiArM6/VaN8S9JBARlNmJSDDm3V/t56qV0kMPPVTmoYIHUQGQFag8yIQcfg4Q7ROXkIoEUMwdtcNWhfy2ZMmSipfHQyRIElxwM0CASfakl/9Vf552gj6dz09JziSBHp8X4vV6TWTKs6OS4WVQObjWI/TXXFRpgUj2K1/MLy8Vf6ekikvoVqjSAl7Ds5cWkgclNlWWe7CZnABsuxUw2BZZG8yKSowAS4Zn8uWCs24LAu8IU3mXiY2VicfjMVAUKsXAwEBFJcX3gFzJu+B7u9QO3g8VPxWptFARg++4CS8YDNogx51UuQHXbUd8Pp8B1bxj91y4QmL3HfI8OZ+8F/5OniV3ifvHfbjy34UGwp2j2nEnbnQVXq/X6Db4oPP70TfSSgNmE+jdO0UgpoChYqOLkWQQBYn0XS+jXLZsmb2kubk5HTx4UMFgUB/84AdVXV2tEydOmCE/I1wyCaUcP/l83qYpvKSRkRHjdVRXV2vVqlVG/KOySaVSZmzf3NxslAOfz2fTJeQh9fX1qqqq0qZNmwzEhbjl8/m0fv16i+rSPKUAKgNZBUW5WwJTJfCiAfzJKmQd2hsuCiRKQFe3XXIPL9gR2jTXG5qgKS1sFyUZuA6R/B7aVLKme4Bp07i8YIRMVeFREfDAEcDS3P30kuySYwkCoQ5MDVyEigSDuGW/FNSCTXAxaOmYTvX19dnFwseHS8n5pML1eDwVrQotmJsEwBSRLJEceX7uNtpyeX6tEN+Dfw/s0L14vA/gAoYjyFsgB7O8k0mZK+dhSMQwgzPI2aficNc3UZG5XEISgbu1mSqMf581Xvwepnz8XbTnLlePCSd3r6Wlxe6CpIqCgj/v0ojcIMn5+//9XLVS2r17d5met7a2VuvXr5cknTx5UuVy2YIWGA8ZgMw7NjYmn89nehgc7OCJbNq0ydTr5XJZLS0tyufzxpE4efKkwuGwPvzhD5vEI5vN6vTp0yoUCuajE4vFbJrH+NO1rKB95EEDdEJMIwtxiYn2ZABaDS4jmdJ9gQQFSRXZkcByZZDjz3g8ngoVO21qPp/XxYsXzdqC1klaAH7BlNxVypKsb3dJntLChtkrWwE+C2fBrQDAcqSFdpPAhiqfCpmSHcyO4ICnNZ47VEBcRr4H4Def361EaQ95325l7U5+aGm4CIDDkiypgWHyXgi27oCBC0eFSSVKgvH5fPZ5yP58Vjc4kSQIdkyfXfyFqtSdrBHIOCsuPsmk0qUMQNWgFWTyzVICF1d0Ex5tH5/JZZAT1CCfMmWTZH8vXQ2LNhlCgEPy3Zlq8vd873vfe3fLKL/3ve+VYWQDLMN1yOVy2rt3r9LptAk5W1tblUql9NJLL9mXRGNVW1urtWvXqra2Vh0dHYpEIlq8eLESiYR+8IMfaGBgQK+//rqqq6v10Y9+VLW1tYrH4xobG9P3vvc9ZbNZbdu2Tc3NzVq9erVaW1t1++23q1gs6umnn1YsFrNDDYgOAxic49ixY/L5fNqxY4fC4bCeeeYZK/vL5XJFZg0GgxWLBgApecDuJZVkI+VCoWCZngOCTIF2FTGlO/2jGrsSiEaj5fP5bNsoWYcfLhWVAmU4l4ug4wYXvq+0YDNB20mb5G7QoCKRFpj+PDtat2W/XFnEyBwy4JVqfLI3gxMscQik2FwQFEkOBFE+F+RK93NKC8mB90WbBs8HdwkqQDdY0K6AdxE0uAe8G6bAEImpzLjAPGdaU3eMj4wFQa7L6QEzW7FihVXDnC8X+yGBcfldmgjqAIIX75jvIcmKCCZtkHzR/OHEgYNqMBg0HBmBNZxAaaFboXqnG+G9YimMo8a73pD7xS9+sUzmk+YzAlMjpjDV1dVmWRIKhTQ1NaXvfOc7FULavr4+NTU16Qtf+IIaGhp0+vRpBQIB3XTTTWpoaLD+lZ1S3/zmN21LKhtIPR6P+vr6NDExoX379qmhoUF/+Zd/qcbGRp06dUrT09P232fPnlW5XDZbBjI7pSilLGA6mBJlOMA4cgEoCUx32GqBJgtKhEtdKBaLOnfunIrFBaHs4OCg8vm8AcvIDtAvIXvo7OxUqVQy+QwBC6Df5YBQsQFUl0olAxN7enpUKpUs25FNCaqMphG8upUiB4tLn8lkTHtHdciiA9qcFStWWEXMpSZLs1CCy8DvJejD04FTUygUbIrqYlpue0pF5GJZSDMKhQWLFIIZk0wwQbBKLhxANS0ZpnsMRFgcsGLFCtXX12vlypUKBAL2+SHzUunx7NG4MX6HVElyoorneUI2dVt0N3hCg6DKA9ynq/H7/RW+Z1dWUB6PxzhhBG+A7RUrVhgbG2A6lUqZPRB74wikDLho09ypHDHC5c5RHb7rDblsPOWL1NbWanZ2VqdPn1YulzNzr5/85Cd2wckyyD6i0ah+67d+S4sXLzaV9PHjxxUKhXT//ffbNKC/v18f+chHNDQ0ZA+2VJq3JL333nsVDod1+vRpu/gez7yqe3R0VJ/73Oc0PDxsl4nMAHmNCoqdYlh/vvLKK3Z43MNOG0JwIoNSKXCZCUpoxJYvX24uAn7//CofKiGPx6Ph4WFNT0/r0KFDisfj5kNEec6SR8ryrVu3qlSa9xinAnMBbiovKiq+OxXH5cuXraX2+/2WXK4EVAGMyeiu60GpVLLnTvaF6b106VI1NDTY4kMAcIBnXCoHBwdNtMol5/0Vi0Xbz8bWFNeKNZ/PmzULzo+cM96HC8BKC6BwdXW1tVNu5Qpug37LHUDAKHcBcZLF7t27VVNTo9WrV5uRoTtoAMBHq3jmzBllMhljX8Mxmp6etnaUdUrSAg+rubnZqmNpwXZXkgmtAa6BJEgiGNWRaPlsfE880MCQCMqrV6+2M5pOp83+hmIBMzda85aWFmWzWQta8LTAyZBd8TlcKcx/CVO6/vrryw0NDXrf+95nspF0Oq1z584pGAxWbEgdGRnRd7/7XcXjcYVCIXV3d+vRRx9VV1eXQqGQ+vv7tWvXLuVyOT3yyCOqrq7W448/rnA4rL/4i7/QokWL/p+2iC8zNTWlvr4+PfjggwoEAnruuedUKpW0a9cuI8Zx+ZcsWaLf//3fV3t7u5qbmzU9Pa3HHnvM/Ii9Xq8OHDhgl8Tt5XmBrtmZi4nAjwEPcJm6CDNxj3RLaKZO0CS+8Y1vaGBgQG+99ZZKpZJWrFhhJm5uRmFK6E7BksmkXnvtNWWzWVvVAzBLZqISBFSkTXG3lZbLlWZvZHo3i9L6XLp0SVVVVfb9kAV1d3crEAgY/wstX2trqw0qyNjY4E5MTOhnP/uZPB6Pbr31VpNvuPYxPHdX0CzJ+EDgFM3NzSoUCjZYIQgRbFlptGzZMoXDYdObwbzO5eaXXdxyyy0mg2H6CsubQUltba0+/OEPq7W11Vod3g0VIduG9+3bZz72BAAqYGke2M5ms4Z5kfT47tICk5tKGDwT+gkBEwNDqkCCgiutoTqkIoONXi7PS6QkmWcVEEEqlbLlEPDP8vm8EXlpPanC4dW9+OKLJkb2+/221MN1w/D7/frCF77w7iol9oFJ80zON954Q16vVzt27JDf79fevXslyTIq7da9996rjo4OWzmzceNGw6NgNC9fvtzWQhMQyBgVH9A/bx3R3Nys48ePS1qY6pw8eVJnz57Vrl27JEnf+MY31NXVZWSuvXv3Kh6Pq76+XnNzc/rWt74lSbYIk2kZiwVYsdPe3m7ZHiyKrMTeddT2ALesAALD4vKj7p+amtLBgwc1OjpqZnes7WYRYDgcNkN7pn0ctEwmYwxwAFsXJJUWRuEEVw62a6zlylTQ3RGkeP6wgFld3dHRoXA4rLa2NtXX11dsY2V8LC1MYpgAQS6ELAjm0tXVZV7ZHGa/328YIIGFiwgg7hqR+Xw+481Rmbv8rVJpfpNuLjdv7QpRkCWUNTU12rJli/x+v02Bw+GwbeqIx+NWNSAwHx8fr6B4MEVDa0lLc/PNNxtIzfmanp423yyCLGJZtJkEis7OTvO45h2OjY1ZMGKiSbuVy+V0+vRpS7RUe9I8ez+TmV9fFgwGtW7dOtXW1mrnzp2W9CVZ18M7xPIkFAopm82aoBaohu+WSCSUTCZ16tQps6ph0guUQAdSKBTMm+xqP1cNSosWLTKrBQ6EJD3//PMGrLJAEKykoaFBn/rUp8zmd2gfAAAgAElEQVS6wuv16tlnn9WKFSv01ltvWeXDBONXMXjdH/dBhcNhnT17Vvfee698Pp+ee+45rVy5Uu+8844uXbqkz372s/J6vfrqV7+qcDisp59+2szZa2pqbB8ZvB2mJ3BO6MGZwLS0tCidTpv5O2zXVCql+vp6bdiwoaLKgqHtave4oOFw2Nq5lpYWxWIxnThxQtXV1eaB3NDQoGg0qg0bNiibzeqJJ55QIpGwdpDJHFtN8ZjmOTGV4jPx3KgcmMBAEaDFWbdunSRZ9QBAHgqFFIlEzO2gp6fHWPtUYIlEwqaEVEU8z7q6OkUiETMW27hxo3K5nHbu3KnZ2Vnt2bNHiUTCMB634sDgDEtZ2MTSAs8MsNXVjMGbYzJUKBSM70b1t3TpUlO+08ZNTEzoBz/4gdLptFauXKn29nZ95CMfkd8/v1yyqqpKmzdvViQSqdjG4vV6dfvttxvj+8rK1dWu3XbbbUqlUvZ7kaPgZ7V582YVCgX19fVZFQt3jpYbvGpiYsI8nUKhkDZt2qRsNqvBwUHTF9L6+v1+rVy50rSitP6Qcwnow8PD+vSnP63x8XEtW7bMFse2traaEwRkzFgsZvKwZDJpy0D4XOvWrTO9HS6pJHYS5LsKSv39/aqrq9OHPvQhI+IxCk0kEnr22WcVCAS0a9cutba26k//9E81PT2t73znO/J4PHr99ddVV1enqakpjY2Nqbm52SoRN+jQttG6XDktwgpiYGDA9Fi8fKYefr9f9957ryYmJvTlL39ZU1NTOnr0qAqF+c2tLS0tBqiPjY1ZawCpjvGo1+u1CQGLEADA4dk0NzcrHA7r3LlzFUb/r732mvlIhUIhffSjH1VdXZ16e3sVDAZtarFt2zbNzMyYN82LL74oScZod6dRCI0BSfP5vAYGBqxkLhaLBoAzRYOyAPBNpgK45jmwb46K1uVJUYkUi/NGYTU1NZa9fb55EfaePXs0NTWl2dlZwyWampq0ZcsW1dbWmqsBEx5EoHzGrq4uTU9P6+2337ZKBWKeSz3A0gXmNJUe38/dkOGScvk++BTBsF++fLmB5jMzM3r11Vc1NzdnY+1gMKhsNqtjx46ppaVFv/3bv23iYJxUWSRZW1tr7OnW1tYK/pJ7Xxi9T09P69ixY2aLQ1AiKdL2Q+rkMiPVmZmZUVVVldasWWM4VTqdtuWPPBMcJ4EZtm3bpkWLFpnvOEMCBO7/8i//ouHhYVVXV6ujo8OKjccff1zNzc2644471NDQYEmWALNo0SIlEgnDR6nQ2DmI/hLhM+f6XQclCH8/+clPDFxjhRGbMnp6evSJT3zCWLtNTU365Cc/KUnGh4GXQqBxtT8XL1601Trf/OY31dXVJWlhFDw7O6s333xT0vzWkxtvvFF9fX0aHBzUZz7zGUnSX/3VXymTyeirX/2qvF6vnnzySdXX1+uJJ55QKpXSsmXLlE6n9dJLLykWixkGcc0111SQMvlcENHAJKLRqJXhyWRSfX19qq2tNfEi2y4QofL3QwPAvc/r9Ro4Pjo6qjfffFO5XE5//Md/bDbBCI2xQyVIEkSgChSLRauwUMFDhnQnK1QgYE3IfSD1YTkTjUZtCsfnOHPmjC5fvqxvfetbNh3CgTGVSumdd96R1+s1D3EWC9D2RaNRhUIhw9i4eJBa5+bmNDExof3792tubs4Ex4C2VFAugxqgX5LJPUhmtIcMXZhmkVSQwQwODlrbncvNO2+WSiXdcccdWrRokbZv365cLqdnnnlGw8PD5ibwz//8z2ZxK83DDe3t7aqtrVVTU5O1mFSaBCYwKjCo2dlZa/VyuXn7Yd4RARHSpKvHDAQC6urqMhwP/R1GeqlUyha0BgIB9fT06KGHHlJnZ6dVh7SeSFGeeOIJzc7OGp64f/9+TUxM6OjRo0ZbWbZsma677jp7/wTeubk5DQ4OGn7GmZMqMbFAYN4SGW7gfyQzuWpQ2rRpk5HhEomEXn75ZTNtWrp0qb7+9a8rEAjoj/7ojzQ2NqZIJKLW1lZ97GMfU0dHh/FWwDoYi3/+859XsVjUH//xHysajeq3f/u3baqTyWS0bNkySbLp0V133VUhjpXmrVufeeYZe/m5XE4//vGPJc37J8ViMV28eFHnz5/X//k//0ehUEgf+chHtHnzZhtNu7wSslQwGLSMiUaKUTruAbR07IHjc16p7Kb3vlL2kEgkND4+bjatbNwFdBweHlYsFrO9dfgfU6lxUAHjyeKAiu6olx+yGxwi2mKYxVh6pNNpHTp0yLhZaPLy+bz5Yt1+++1qaGiw9et33323IpGITpw4oVQqVeHkyHgY+gjBbnR0VM8995y1ZJFIxCogLieTm+npafuckC5pC6qqqqzioyJkqHD06FHl83lrcXiOLC3FUnbZL7flhMNhxeNx/c3f/I3ZfmQyGT388MPKZDJqaGhQMBhUfX29VfShUMhWNvEZTp06ZVQQqCdUZKlUSp2dners7DSdGozxiYkJo1vAWRoYGJDH47GhxtTUlFUgQAGFQsEE45OTk4pGo9q2bZva2tpsI46r0sfD6fz58/rhD3+ooaGhCvyyvr7eAGy2UuOS6aodpqende7cOQPfIXcyqS+Xy+aC2tfXZ9w5l5z7nw5K69atq+AqBINBLV68WLt379bixYvN+fC2226TJL3//e+3bIQtgluqkcWPHDliFPTe3l6tWbNGFy9e1B/8wR9oenpaW7duVVdXlx588EHzXGIKJskOgDSfQU6fPi1Jhvgj5PzkJz9p7d3U1JT27Nmj6enpCpW5tACww9ymNQRjoQRF48UDHxsbM0V/oVAwoI9LyljVnSpy2TCBY3KSzWY1Ozurubk5jY6Oam5uTosXLzZMhaDt9/ut/WD1EKNxDg1BlqkaI2nGspLs80rzlABIl4FAQFu2bFEqldKPf/xjzc3NafPmzSoWixoeHrYNLK7k4cSJE2psbDT5BSTUzs5Owy7gK01PT+vNN9+0bcFwdjjQVKbwyqgIPZ4FSxjImMhSGIlT8ZbL815Y27dvN8IhTP9oNKq77rpL2WxW//zP/2zj+fr6erOC7erqUiKR0P79+yXJKqgbb7xR+XxeTz/9tAqFgrZv366mpiYjx0I1cLV2kC4zmYyam5srhLv8WXyomGYdPXpUq1atkiSrFl3ZB+/SfddsZgZTxO8d7hedx9zcnC5fvqwvfelLtgyWhM/kFMuSpqYmfexjH9OiRYtsKzJCZtaQc7aR1PCOOGN4gV/p2PGug9K+fftUVVWlrq4udXR06Nprr7UHRetVV1enBx98sEIsSq8M/gNlHfIlGINLn+/u7tZzzz2nc+fO6aMf/ai++93v6k/+5E/U3d2tJ554Qj09PQqFQhobG9P/+l//S/F4XF1dXWpvb9dv/MZvGGh99uxZ7d69W6VSSV/72tfU3Nyst99+W3Nzc2pra7MKySUeulozSUYOpfVhXM3++fHxcc3OzurcuXMKhULGEaLa4DlQITE+5vLV1NRo+fLl+vznP69cLmcYAnwq9tdxGSE8EnwAPzkALtmTrAq2QoXGJcEBgH+P98W4tqqqylwflixZYiTMmpoawwtg795+++1KpVLau3evisWirRYKh8Nm8tfU1GTTOfCI97///YrFYvrWt75ly0lphSBCzs3Nqb+/3wzxMRakTaOKc434uAjT09Om5XPJiVQV3//+942t3NbWZpUOCXVubk6hUEi/+7u/q1wupyNHjpgOs6WlRR//+MdVV1dnyRHuDUs+cUOgdezr6zMrWd4lwYh7QVVZLM47jEKgdYmv0kJLCD1nYGDAnhVtbmdnp303hgczMzOKxWJ65plnzK0gGo3q6NGjKpfLuuaaawy28Pl8uu2229TW1maVExiXNF9pvf3224YnUhhEIhHdc889KhaL+v73v6/Z2VnDO4FGGJS866CEEVQqlTKEnqWTdXV1tjb75z//uSTp2muvtR1eHs/89o7Z2Vk9/vjj8ng8+sAHPmAcD/pNghJt3fnz5zU0NCRJdtjYT5VKpTQ1NWXG65/5zGeMg8JPV1eXnn76aZ07d07/43/8D5VKJf3P//k/1dzcrLfeekvlclnr169XKBQyY3gONEZaZHoyDOU+eiQWIExPT2tmZqai74/FYjp8+LCxXpl8uJfa9fpBnQ+fBsEq/KBYLKZ9+/aZ2R0G/LRhBD9+yIjSwrooVPctLS3mu8PvppIqlUomXObv3LRpk03rUPHX1NRo27ZtyuVyOnHihIrForZv327TPnAPv9+vTCajiYkJ26bCAaWV6+7uNtN/Dns6nTZ7WPyL+DNAAFxiF/yF8e1q7FzCISRUnr072Egmk3ax6+vrdf/99ysUCuntt9+Wz+fTfffdp8bGRi1zVmhBPERoPjc3pwsXLlgLmc1mdeHCBc3MzOj48eMqFotm97x582b5/X6roHhvnMVwOKzh4eGKd0oVhGwExwpE0AS5e++919pDktrY2Ji+/vWva2RkRGNjY7aDL5fLadGiRcbKRj3R1NSkdevWmWSFs0oRUSqVbBhx9uxZzc7O2qonsOatW7fK6/XapJG2rlgs/tcwpeuuu87o93ygmZkZ/fjHP1ZjY6OWL19urYEraHW3ZdTV1el3f/d3debMGW3btk1DQ0PasGGDVq5caQxlSYZleL1evfrqqwaMSQsCQsbLjz76qFVUkUhE//qv/6pCoaDdu3drampKv/Zrv6YlS5boH//xH1UoFPTUU09ZpcR4v1AoVCz4A3OBue2KB8GTqBSnpqY0MTFhhxwi3yc+8QlJ0te+9jWNj49rdHRUDQ0Neuihh7R8+XIjpp07d05jY2N6/fXXrRKBvQymJc1XpJOTkzYtxPFxcnJS2WzWDgaf333pBCxJNu0kSNEWIflAvAkZVJofQmzbts20UOw746AWi0WtXLmyAtxE/uBOxwDWc7mcjh07ZoBoMBjU3XffrVwuZz5SjMinpqaUSCRsygjnh021gLxwdcCwqDThErHPDfEo00lpvmp7/fXXVSwWtW7dOjU3N+uuu+5SuVzWs88+axhadXW1fvGLX6i5udlWUFE5A208+uijmp2d1ebNm1Uulw0kJrmgicRPjHPNs+bSutIRdgXyXZnk4QM+PDyscrlsEhgAZSphfgft3Ic//GGNjY3p6aeftm0kwWBQ0WhUzc3N+uAHP2juHNXV1WaBDBaF5czZs2cVj8eNewf22N3drWg0as8MTBEIB0ItFsjvOigdOXLEgkJ9fb1uvfVWNTY22vqVSCRiLE6fz6d169aprq7OHqJL8Fu5cqXOnj1rFRGEroMHD+oP//APTergmt1fCYiVy2UNDQ3p937v9+T1evX0009r8eLFpnU7cOCApqam9Mgjj+jo0aM6fPiwZaD6+npzROSSQwADc7iSS+GCjlQUgcC8zW+xWNTixYs1MzNj7eGhQ4dUVVWltrY2NTU1aePGjero6NBv/MZvmHTmzJkz+sQnPmGiS7/fr5deeknNzc367//9v9sKdLCafD6v97///cpkMnr55ZdVLM7v16NCzWQyisfjqqqqqjDQLxQKtkzTVYgz0aQSBIjFQgbwnIkSbN7q6mqr1twgyPPxeBZU+TxzvLCxvwXs7O7u1uzsrP7hH/5BhUJB733vexUOh9XX16dkMmnr2xlb83fGYjETocJydsmhkBhd3AMMDn9sLGGp6Gh3wZS8Xq96enpsgtXQ0KAPfOADBm4jNEfeMz4+bhaxFy9eVH19ve6++24FAgGbkq5atcrkS/l83giEuBowqMCIraurSxcuXKjAm5CJXLx40Yz2AoGA8YQSiYRNhBnp8yzS6bRNGB966CHNzc3p3/7t3xQIBPTJT37SqAyZTEZnz5614Iiynyq0VCqZTQ++8r/5m7+p6upqw5eYxCG25lycOnWqogW82s9VZSYf//jHy/TiRHUwGIS3mUzGgOnf+Z3fMRCZDAZA6/JfwuGw+vv7dd9999l2VyqEFStW6Gtf+5qWLl1q6P1TTz0lr9erD37wg4YdXfnD2uvJyUmdPn1aExMTevXVVxWNRvXwww+rvr7eBLJE/z179hgWRACEe1EqzW/GBfzlOUQiES1btkz5fF5Hjhyxnh8SYk1NjT2vqqoqk78wuWPNcywWs0MIluLuaZNk/w7/DADvTluYNBEEmA55vV4NDw9bQgFkLBQKJnbmwoNVQRkAi4Ifs23bNsPOpqen9cILL8jj8ejuu+9We3u71q1bZ2x9qBXQSZLJpM6cOWNWNMlkUhMTEwqHw7rxxhvl9/vNigYGNquywCLBZ8AlaD97enoqsDVcEsjSbM657777jH2P9Q0WHfhqh0Ihq8So9MAaqToILPDI+Ofx8XFls1nzW1+9erVVmKlUSqdPn1Y8HregvOyXrhAMHlyLFH4AjnE4cIcp4XBYt912m6qqqsySGblTb2+v6uvrtX79epM5SZXyFc4S1AsCLIWEOxyh40Ei9dhjjxl2Cd4M81uS+WKdP3/ePrO04EnGXfv7v//7dyczkeb7/IsXL6qqqspIgOl0Wo2Njfr2t79tXBTUz4lEQk899ZQuXbqkPXv2qLm5Wd/85jdVLBb1/ve/X5L07W9/21olXnguN78n68yZM/rpT39q+EFvb6+efvpp9fT0SFLFJY1EIkaek+bJh5OTkzpz5ozK5bI2bdqktrY23XrrrfL7/Tp58qSmp6cNV+FF8eBoB2DTUhbz/7E9A96QNM9pKhQKamxs1I033qhIJKKBgQGjEmDZAG5VU1Oj973vfRodHdU//dM/2YoetsA0NzdryZIlSiaT+tGPfqRMJqNVq1apqqrK1PaXLl0yUiP/u0tFcBnDbtAl0ND7Hzx4UJlMxoDkcDhsS0BJIPB4BgcHNTg4qHK5bNhhIBCwNjgajdolICjQuqXTabW1tWnVqlXGzZmenta///u/K5fLaenSpQqFQhoaGpLHM7/iCcFuOp22zblgVWB+vEMwMaZUTJBWr16t6ur5VdIEoEAgoJUrV5rbRTKZ1OnTpxUOh3XrrbfaVJTLSRLF1xqTNM7F+Pi4/uEf/kGZTEbvec971NnZqU2bNplEhioFfhzBlbG+JDP/5/2x0pvLzO+KRCJatWqV/H6/BUY0buXy/KKEVatWWQUFBknFT3ciSWvXrq1oRWnRoLfwrGnPmH6TsNEvhsNhhUIhmyhC8l32SwM+WlcKgf+IOCn9B5XS97///TK6l3w+X6G6TiQSeuGFFxSLxRSPx7Vo0SJ96Utfsh3yPp+vgkxHdqOXP3v2rP72b//WxJhLlizRV77yFUnSF77wBYVCIf3gBz8wfMX9cT8zX/L8+fN64IEHVCgU9JWvfEVdXV22wODMmTO2wTQWi+n555/X7OysbT1xswklu0suhN7Q1tZmHtzlclmnTp3SzMyMLl26ZP19bW2tNm3apPr6equQCJ4TExPKZrNKJBK6fPmy/vqv/1qJREJbtmwx3RsC6JqaGtNdvfPOOxWTG6aarIdGq9ba2moZk2CEfo/WhZIa/hlWH7Q/XOK6ujrt2LGjog04c+aM8vm8XSaY3Bs2bDBjPEDZ6elp7dmzx3bkhcNhbd26VYVCQXv27LE99K6if82aNUaTyGazZs9LUAG45Z3Pzc3ZlBCWeTAY1Jo1a2yCFwgEbJ02yYagQkJ7+eWXNT4+bkD3H/7hH6qlpUXFYtGe1/T0tJ588kkDcql6XZ5XfX29GhoadMstt5gGbGJiQt/5znc0NjZmwDaVKTItVm2x3w9eEa23JHu+JI+1a9faGWSSSICDmBoOh7Vjxw7V1dX9P2vKkCShEqDw2L59u60Lg/ybTqf1+uuva2JiwlpsjAX5Pddff728Xq/efvttE5n7/X5zF6Xt5Tz97//9v99dpfSjH/3I2hlGpalUSseOHVOpVFJPT49uueUWfepTn1JLS4vK5bIuXLigz372s/J4PHrsscdUX1+v8+fP2zQuFArprrvu0l133aVPfepTv/L37t69+//7mdxKiUNKSfzyyy9rYGBAn//85zU3N6c777zTMjUvFkoCHi+UrgB8SAHcSQfTNWQlrrWKO0rfsGGDCoWCnn/+eXm9Xl1//fWqq6sznO3SpUsGXE5NTVmggfu0e/dutbW1GRZ0/vx5m7IUi0UzzGeCSbtHm8f0C0bx8ePHjWwJIx/QuFgsamRkxASo2F2Ew2Ft375dDQ0NdjDBhhBd06bBUqbU51K89NJLunz5sn72s58ZkI8bgDvKh3LAUoWRkRGrBtCuYagmzVclbNrAMI1nyUWk5aitrdWaNWtsQShkV9oWgnV7e7va29sVj8e1d+9ea29HR0d1+PBhlUolrVq1yjqGRCJhOq/BwUHbvNvU1KT29najUxSLRbMZvvnmmzU3N6fTp08rk8lYJeYOVhAQ08JRgQMPAHSzieX555+38b/f77eKhKBEgM7lcmppadEtt9yifD6v5557TsPDwzp69GjF1p62tjZFIhFduHBBHR0duv/++xUMBg2f7O7utk5oamrKAvLWrVtN1Ozz+bR9+3YFAgHjsEEqXrRokYrForkaXO3nqkHJVQ7T19bW1upzn/tcxUi9r69Pw8PDWrZsmRobG206dt9992l4eNg8W5YuXarW1lbt2rVLXV1duuWWWzQ6Oqrdu3fL6/XqqaeesjbtV/0Q6R977DGdO3dOe/fuVTAY1O/8zu+ora1Nzc3NyufzJny96aabFA6HjSPS19enqqoq3XPPPfL7/frFL35hvsulUsmyEyUxBwQ1OPyrffv2mTNle3u7jchff/11zczMmITg+eef1+LFi/X5z3/eLjzM2VAopM985jMKBAJGckTmAcYAPgf2Q3AlqCJnkRZwFoKsJCvdCVKxWMyyFodcWqAKwCHBAQAyJkAnJFIuHUxePmcymVQ8HtfRo0c1OjpqpNQ333xTfr9fa9euNYIi7HlpoeLjc3KxSDrIlAiMMJ8Z9fOMuOi4kGJNsnbtWlOtoyfkgpdK886YbW1tam9vt9YSh0W/368NGzZIWmDaM8bv7e01oTG+XbxL3BUymYwtIqVyD4VCSqVSNnXE6ZMOo76+vmLDCRebZ8NUO5/Pq7+/vwIewNZFkmFDs7Oz+tM//VOj9mDYFwwGK2yJIF02NzfbO2JiyWQPYu+aNWtUKs0b30FXgNoTDAYrHCulBdkJnLyr/Vy1ffvyl79szpNgKsVi0fyyWba4detW1dbWGimSw8I0B/zBZWL39/frQx/6kLxer374wx9q+fLlkubJj7/+678uj8ejH/3oR1q+fLmNEBmncunq6+s1PDysP/qjP5LH49Ff/MVfKJPJ6L/9t/9mQRJtmjuKdYFLRurSgvUGrFNXSwWQDHkPbRVlezKZ1CuvvGJkv87OTn32s59VY2OjVQL46nR1dRl5lGAP85y2ZWpqSvv371cymbTfe6WWyrWzRWZSKi1sU+V7UNG5o3OAS7/frxUrVsjn8xnZ7fbbb1dbW5vZvcIncxnh0Av4vIODg/rrv/5rpdNp3XnnnfL5fDpw4IAKhYJ6e3tVKBRsGtrT06NIJGJaKkbRrPRiC61LYQDfA5PieVJ5QYXw+/22l6+/v19VVVW64YYb1NLSYtYlBHW33SQYYdHj9/t1xx13KBgMqr+/31aCSfN4TH19vZ1ZPOdpP5lC0uLA+h8fH1cymbTpm7uyC3IuiVeSBVo0cOgO8/m8TZy7urrk8/k0OTlpwlyPx2PLKA8dOlTBqGYxxw033KBgMGjbjLds2aLGxkYb6bu+7kxmJyYm9Nxzz2l2dtYSF0UEi19dz7FCoWAWy0xMoSt89atffXd2uI888kiZA0hmpGcvFot655137Je0trbq4x//uBoaGkwg6nq/SDLS2a/ChP6zP7FYTN/97neVz+cNYJbmd849/PDDmpub06/92q9ZNgyHw9qyZYuKxaL279+vRCJhGRgmLcHBXQzAgy+Xy+rv75ckI/Vh2QELGaCYz0P5SpuVTqdtYAA+x5iXi5FMJnX8+HHr23lW8MUgDUIsJZhRSQH4SjKtGMEEgBhhK1mQCmpubk7RaFTvfe971d7erk2bNhkviQDK75NkADBWLQcOHFA6na5Q+cP2pQ1zp11U4kyQqNTcEblbBRAc+X6xWEw+n8+CG+eNbTNM4qjKFi9erIaGBm3dulXRaNTwq6GhIRWLxYrk6Qp8aaHcBQlge4zNqcA4B4Dk4JTpdFrHjx/X7OysdQ90EKw7crfNQk9gCQcEWLhuVy474J6iCcRhcvHixaqtrdWKFSvM6A6eE3SBmZkZ7du3TzU1NfqTP/kTm0JCRZiZmdHPfvYzjYyM6ODBg5Kka665xkjNPENpQRaDxAY6BwmFf/7GN77x7jAloi6Bg0j3xhtvmM9Oc3OzNm/erNnZWT366KPq7+/Xa6+9pvb2dj311FPq7Ow0DpJbIVz54/rKuD5Bly5dMuzpr/7qr7Ro0f9t70xj4zqv8//c2YczXCXuJilKokQt1i6HMh1VtV1viOsELYwCRWG4LVDUXVAUbYp+KdIWCNoC7YcgSIEELdI0LQIbsBMnXrI4bmxHkWQtZiRRlKhdIsVtOOSQs2//D/Tv8B2lVRH9gSIfeAFDsUMN5977vud9znOe85xO8/GBqMZv59vf/rbS6bR+53d+R8ViUaOjo8pms9q7d6+i0ajND6MB9sSJEzVtFgQ2eJ6lpSVTAofDYdMQURFxZ2xR9QkGg1alIyBfvXpVfr9fe/fuNX6pVCppbGzMqmSSzFoDQpy0GWRGyfu/e3akIWwEF9HR8Mlz53vDa42PjysUCml4eFjNzc1mEzM6OqpYLKYjHzszZjIZc5DEtA7eLRqNGodz4sQJJZNJg/IHDx60tIHTk1I0imxpdZSRqxeTVDMoAZEnSmOeM89JWh2VJNUGMjbKf/7nfyocDmt4eLimXQRuDoUyaeczzzyjcOuAVTgAACAASURBVDis8+fPa2Zmxg41aUUg+pu/+ZuKxWKGgPr6+lStVm0oq2ueT+rreZ4NLU0mkybuJFUnDXTvm38HhbG2SP0bGhrMuA7h7Xe/+12zyOU50aXAOmxvb9dnP/tZ9fT0WIrpCjmxBmpsbNS+ffvk8/nMRRO9Ep8NMiL1p6cS9AcKvtd1T6T0xS9+sQpCYqoG1YZYLGZ9MUwOpRfm9OnT8vl8OnjwoJ20NCYGAgFt2rRJfr/f9B1ulYQ0olJZsf6YnZ3VP//zP2tyclJzc3Pq6OjQ5z73OXMZrFZXGj0x3aK7vlgsGmTFDbKpqUn5fF6nTp2y/JoqlevzxNhnXpo7EVWSjZTiNGxqajIitVJZGb+cyWRssTU2NkqSNTUPDg7K5/PZoi0UCopGo3rwwQfN1gQykKCCWJBNB8mLaZ4kE/jRpAmawmGSrnjXWoVNTxAg+KKJKhaL1vIAwU9AAcbTjnLs2DH73Zi04WldqVQ0MjJi/Y+sJ0ScICSXwMeWGE0VPknorPhcN31DF1aprAxeIKXw+VYsUOBTAoGAdu7cqWAwaIMgCIahUEhLS0t699135ff79eyzz6qhocECDG4MtHeQspC24GrQ0dGhaDRqtiAQy24rD/sCwSc0AUULhiug+aHw0dTUpFKpZH2alOaZgnLz5k3Ti0UiEWsJ+/DDD8221+/3q6+vTy0tLXrooYesV7FQKOjs2bN24KTTaR0/flylUkmbNm2yih0cExVSUmIORfcf+EXW9Re+8IX7H9sdDK7MgKKUL63Y30J6zs/P680339TS0pJ5HyeTSbW3t+uhhx4ywuzq1at68cUXdePGDUuJ/uVf/kVtbW26c+eOLl++rCeeeEKpVEqHDx82z5+Ojg79+Z//uZaXl/X888/r3LlzlmMTjZligc8wjY6IChE/kkrxgmZnZ2vSt5mZmRoxGymLW5ULBoPq7+9XtVq1UTlu46MkqyohdyC4wAtQFaFxFIh+584d0+e4DcMQoViNQB7yHVHkEjDolgfCLy4u2nvkpMxkMpYukDJAAMNtkc7yuRCXkcjKWKFEImG2tnBzpF4gD9TD6KpccSdqZRfe814CgYCNuCKIzc/Py/M8c0mgt40UDUU3FR4CK6JZv3/Ft3xoaEh+v9+0PuXyyiDTz3zmM1bWTqfT6u/vNyQZi8X0/PPPKx6Pa3JyUktLSzp//ryhP2kldYnH4zp06JC1jZA+Ux3E95v3hAyEnwHVuY3UBL5SqWQVXDY/RDgHKweMtKr9Q8jc3NysRx991BpqU6mUbt26pcnJSaXTaQs2rFVJJtCl7QVKgYDF+4akp5ULGRDPF4L+7i6NnzsoYeZ/9uxZ5fN5U6JiDctFjru0tKRIJKKXXnpJnZ2d5gHDCY29LloJemP27NmjdevWaf/+/bp69ap+/OMf1zSbfvOb31Q8Hte2bdtUX1+vWCymcDisrVu3yu/3Wx/Qgw8+aCZ0nufp2WeflSR9//vfV6lU0vbt201MWV9fr6985SuWh0uyk4veMDYPmxIrUJAjjcDT09M16lbITtIwxHKQiKimd+/ebaI5UB8Bkvt3FwAcCactSI+/SwkdhIG5PNXHpaUlg+ENDQ3mUug2B0uy98VQBohwql7r16+3Hjc646XVIZt8DjCdg2P79u3yPE/j4+Mmg0Ax7FYX2RD4QlOuZtO46IDKFNUradVnqrm5uabiQzC/ffu2gsGVaSwoq0F6qJErlYqZ3G/ZssXK41NTU7p27ZoqlYp6enpsPdBDyHMqFFbnALrWtiBIVwQKmoC7cmUXiBqvX79uRSOqt64glhaW2dlZOzCkFZ99t6p5584dK3LQn0fzNFNkKN3T5hKNRq1oBW8G2KAIA9/G+gR18j6gGFzh6f903TN9+9a3vlVdWloy58eDBw8qEAhYHw0TElgY9ISNjY2pWq2qt7dXlUpFt2/fViqVMnsFYOiFCxckSTt37lRHR4f1QC0uLmpxcVHHjh1TMBjUr//6r1tbyPz8vBGcPT09piZm4ft8PoPWiPPYIO7J5Pf79corr1i6wglLFzlBiFSF50RQrVarFrTYhCwke7gfLzY4KDgq0hGQCcEN7sQVznEKU3WTVkciuyV/EB6wmrTGrbpRcCCYEYz5ztw3PWW0B/H3ufhcTnjm2XGfBBfIWhCdO5KIYA/yg2vyPM90cTwr0jx+3nUD4Huj0eHZ+nyrU2pcWQUbmCDIe6bXsFKp2Bw/UiWXqwsEAjXSDZAN+ibaRdB9ob8CufHe3ODtKu7dghI8JxwQSIR0rlJZHVlECsufEOFQGK5GjQDp8/msR21ubs72Dc+dtcDBQYBhzQQCq/7orG2oGrd1SZINecBv/m/+5m/ur/r2F3/xF1U2FaV4NAuc4O7LRcjFg2LR8984wSXVKIrJSzH5ou3BVUJXq1XjpxA9ujdeqVRsOkR/f79VM+gT43uwKCWZZB4RI+ZlzLtzS9CS7PfeXXq/u42DE+NumxAQBScn01TYSFQnWeTT09OmdgbhsEDYLBDW3JNbZUNO4Y5VDwaDVsFBLQyXgyDRnbPmVqGQIrhma3cTzZyKiCNpaSEwudwYz8N9f3B3Pp/PECtrxq0yUWDguZFq8z25L74b6AGRrHvKkzbSroOntzu6SZKlTTw/OBueI58LMqFQwRoAwbniSYIZEgeCX0dHh61xngFBCuEqa5pU2W32bWtrswDhHlAov10RI78HKoAUnT3PHvL7/UYVcPBxYPO9ObxA/Oit0C1x/f3f//39BaU//uM/rlIJcNMMN31wHxC/FBKYExciD98bHhgvNZ1OW04NDA6Hw0bQ3r15OUUQdAGnaYSlnOn6BKPxcU9QDN8pAXMfEHb4/7CAQDKkJe5cMp9vxdsG/RAbyV04LFp8mC9dumT9dnV1ddb5nUwmayYRu4uYjQ3SIoAhaXDLsAyf5PveDaFBI+4Ybe4DZIl+yA0OriKa9xKJRGxiBugIHyQ2B5uc1IOgDoIAaXFIuCV43hvBq1gsmic5CJBDh3/nOUmy50a6y/rluXB/hULBxtSz2RobG83OgwM2l8vZYInW1lZFo1EbjEA7iWu6B5nP9+E98N7cdQdpDuJxNVoUm9wJN9wDe5k17ab7rmaKP4PBFe/sWCxmRRLeGRINWnYSiYTxYsVi0TzG4PkYT8b34R26aLNardrAzn/913+9P6L77rIqD89FKPTiVCoVy6F5WGw4DNx5uHx5ILI7DhrEAVELhwFxXSqVTOLO5zJyiEmmpA8sYmA2i5a2EnQyboMvixBlMOkQuh6CgEsu0sbB94f0dp8TEJlNWldXp02bNlkVqlwu6+LFixZ0QaDV6uoYbZABXfyumwCbGv6LdIUF4nmeIVDXjRApAZs1GAxqw8ce6UyQ5b2BXAnmPT09plfjXjllSacR2WWzWY2OjsrzPH3iE59QJBLR0tKSBV/XIgMujMBAm4k7VJPLTVn4+yAtDgnK1DimgqBoIB0YGDBxJygDREcQQcLh9/vV399vdAUHhZvCkHa7ejIOPbcSxcYFbXKxyanMgVTQWnmeV1PSl1TTFE9xIBAIqLu7W/l8XseOHVO5XLaDjxaYubk50yy5PBtIcGRkxGIBezkcDhsaJf2jiswe4SAmfrB23Xf3P133REqf/exnqyAMoCZRmk0SCAQsatM1jgsdHNPZs2d/ZtrB3aX4cDhcM1kW07dKZcUpwPM83b59W+l02kq47pSLSCSigYEBm8pBkITA8/l8RtCyCeAG3NIlQcytegFFCWzr169XJBKxahL+Uq4FCekMvj6ZTEY3b960eXCofAOBgG2CdDptjasNDQ1m0+Iq2AkmxWLRStSMgwbFup3fpAvSqm0FvAKbBJ0O9+iiPBYVUJ1TD/+mTCaj999/X+Vy2dpIQKIQ07du3ZLnedqwYYNKpZI1GLPRent75ff77bAAwd2d7t69EUF0LsKTZDQAwQxUwPw3KkpwVXA5U1NTymQyNpwym80qGAxq69atZoaGWZ3f79fQ0JCJB0FyoVBIjY2NKhQKunDhgq3RUChkCvAbN27Yu4DqkGTBi3cNmqQyjMBTWi1KcBDyv3k3yFdAbawZ0ODU1JSy2axVlLdt22bVO/e7Xr58WZlMxgTRAAHGQu3YsUOhUMiqchjqsWbdVBf0W61W9W//9m/3l7790R/9URWEBNLx+XzGbRDh4SJg6FHKUnJFvOWKIrlKpZIR15ilX7x40VKj+vp6feITn7B+oVwuV9NPJ612fQP/2ex3jxYmTeQE5kS+21uGF+COn4b4C4fD5rKHEyEIxfXzIS1B70KDZyqVqllgTU1NNeO+8RPipK2rq9PmzZsVCATM0OvixYsmAqXixXPke3NPcErlctn4CEYQQYKCxFyeAq6DcT8sSFodyuWyzRqjWgY0J5hIso72YrGod955R4uLi8pkMmpoaNATTzyhaDRq8+QoO9PBTqoL9+eav/l8PrPNdfU98Dfu6QzB7qZ5bOxsNqtLly7J5/Np79698vv9VulC8c994laAtzmbcM+ePVas4DAqFlcGOvj9fnV1dalUKuns2bNaWFjQ9Y8n4bopGIUMn29lCi7UB2iZn0Oekk6nrfGWrIGufg4jUGK5XK5ZJ6FQSJs2bbI1lclkdPnyZVWrVZtQw2xDJuxcv37dhJRUKIPBoLmTYgNz8+ZNVSoVuzf2FHPyQGKf//zn7y99W15eroH969atU6lUsvYKOA0G5O3YscN8W1gQTHFwp3i+9dZbyufz2rJli3p6evTbv/3bCoVCNqIH2wiaBB977DHrQWLky+zsrF555RVJ0q/+6q9aykVQ4WRnUVSrVYOsTDuBSwBpkIK5NhB8Rjwe165du+R5npl2UTIGKdG2MT09bd33MzMz+sEPfqDp6WkLNm1tbWpra9OnP/1p659DA+J5nh566CFDLqSnKKnRblUqFes3ojzLoUHpH3QK8gPB3b592/RcTEglLYbAz+fzunLliqW5jY2N2r17t0KhkAUfNsL27dsVj8etQAAKOXr0qAqFgh544AEbN05aOzMzo69//euqq6vTwMCABUwsYig0sAEJUm7aCroFyWUyGdPk8M54v+46uHXrllWPWdtwnaS+sVhMn/zkJ9XY2GijnuDsCLoMaAVZocI/deqU/H6/hoeHFQ6HNT09rUwmY+kah1dHR4dxUJ7nadOmTfL5fGaxwwUC8jyvBpG404Lc2XcEZUlmdYwXt3uFw2ENDg4qGo1apRku1rWtTSQSevPNN02kCzBpaWmxtYdMZtu2bXYPkOzBYNB65Gifutd1z6BESkD0JadHIetWC4BsudzK2OpQKKTDhw8rGAxqfHxc2WxWIyMjymQyZjFBRM/n8wqFQtq5c6eWl5dNGSzJSv6NjY2Wv0Ke0wbzmc98RvX19bp27ZqWlpY0OTkpz/NMknDr1i0tLS1ZyfbuqhGLHxQH4kBqsLS0pFQqpZ/85Cfm7seYJAIzJzMvIZvN6tvf/raSyaQ6Ozu1detW/eVf/qX8fr9JIXp7e615lyCzsLCgH//4x5qbm9Pp06dVqVRsPDhBkBO/t7fXSrNuMCbYwjXxHLh/OCPGLieTSUsj4YSi0aieeuop092AwEBIgUBAn/zkJxWJRHTnzh2lUinjO2ZmZjQ/P2+Npps3bzZleDKZtGbREydOGAKn1w6vrmq1alwllSKqkzxzqrYUSEjj3AZngiz3VSisjv92kW6xWNTExIRCoZB27NhhaVAgEKhBpJVKxZT60WjUiHvSaZ/PZ1NefvCDHxj6oVxerVY1Pj4uSabCpj+T9NXzPBvK6nYOEEj4s1AoWHbCZyBOPnLkiJmv+Xw+G/YxODioQCBgTc50O7C3cAVFIDw/P69kMmkonYEMX/3qV21yy/r167Vv3z75/X4bG353pTWRSMjn+59bpdzrnunbP/3TP1U5MUulkurr6xWNRk3HwaKDeHU1DmwOkEc6ndY777xjLSQ9PT36h3/4B9MIUa6m5E6KxX93dTmkaNeuXTMrUMg10kh4Fdz0QEjSqvWHOyECZMWcsHA4rEOHDtn00Xx+ZYBfIBDQ4OCgGhoa1NPTo1gsZlIIBKQnT540R0c2fyaT0ejoqFXwGhsb9eSTT6pcLuvVV181/5tsNqtTp06pVCrZRIp169bZc/c8z5T2W7dutTQmn8/X9KFBvrJpXd6ipaXF2mLcionb7kJli4uJuJJs6APVJLisfD6v+fl5fec731GlUtHQ0JCi0ailGi63BlJzewDx28KW4+rVq4Ys2CCS7HRmnaGBwWsIG2AGLbjtLKy1QqGgGzduyOfzaefOnfL5fLp27Zqam5v1h3/4h2bYx8+TSpVKq3P8wuGwstmsTp48qUKhUMM18kwXFxf11ltv2Xht1hsZiNtWA7ooFouG1uGc3CoclWFQmrTSL0pRge8cj8e1b98+NTc3GzkPzwlaRmvoggtp1QoHBP32229rampKFy5ckN+/4ptUrVZtUGlPT4+lj2QLvAOQlFuZ/vKXv3z/6VulUjHXOlIAl4Mhd+ZGgKWFQkHnz583GJ/JZHT9Y9PzI0eOaOPGjVZqdXN8Ss2IzdDnAF0XFxd19OhRVatV7d2718jgUqlkUz5QJDM4EadGggdG+sBT0hd0LAMDA9b/BCHNZoC3cqs9cB8smoGBARu6yAtjI4RCIT322GPy+/06fvy4lpaW5Hme1q9fr+7ubuOaCoWCbXzUzCwc0iA6x93gTxrIIUJgQmoRCoWsqZjAMz8/b0EOpTfpIPcaDAa1f//+GrW2i5TT6bRGRkaUz+d15MgRc8Dk+cJX0KfIgcBnc6h53mrne19fn7LZrE0KRvfEwgZ5NDU12Tr0+XzatWtXjZATMzt63kBk+/btUyQSUVdXl2KxmJ566ilDrmzuSqVi1rJTU1M2LcQVXWYyGc3MzOjll1+WJD3yyCM2UZbeTrr3QdKumJP1T7EITY8rQmxsbKyp0oGY+dxLly6pvr5eQ0NDZtPS2NhY0zvH+K9UKmWTrhkDxgFIYy99mJOTk5qamtLbb7+tGzduWAMwAXxwcFD19fXq7Ow09FupVIzKAeWyT5DP3Ou6Z1DiBJJkpWj0Pa4+yI22lUrFTm5GuZw8eVL5fF7Nzc3q6OjQn/zJn6i/v98Uvyx+rDswjiLqMlfr8uXLZiULB0GTLaI5PkOSGavt2LHDgg6LCs0Hp460asxPZW9ubs4QH6VmxJ2Mrab/jpM3nU7b6Bk2Bj1yjMc5evSoQqEVG9lqtWppGm0RkKbouIDscEY8M4IShQcEitzP9PS0oUqCWyAQMOQSi8VMi4IpGaetWwqH03Jtf0npXe6L7niXbE2lUjZp9uGHH1ZHR4chRNDr+Pi4MpmMuYSeO3fOqqWk1YhsUVQHg0FrFMaloa+vzw5MDinP82yDsM44ZFwTMtYLCCSXy5mmJ5FIKJ1Om3UNbSepVEqzs7N69dVXlUwmjQg/c+aMJJmmx0UJrCOeMxIFEB/tMyAkijaU2slE6NPkXWzdutVkAfF4XB0dHbZHsCaZmJjQO++8o1wup+7u7pp1devWLcXjcf3SL/2SgsGgOXZw0D/33HOamZnR97//faXTacs25ubmtLS0ZLwfRaeJiQkzDqTX09Ut3XdQArlA9tKC4ebkPLBsNqvz58+bOyX2F3BDjGjavHmzEawQzuFwWPl83qZdIGD76le/amN1QEyxWEybNm3S+vXrbbqIW3FJpVJ67733LECFQiENDAzUCPT4WXq5sHMl3QoGg+ZJg26FRc2DZ6OTcnLiw3XQZ+SWcekN3Ldvn3FE6H8kWTrDCevm5QR7+CIqJrRMhEIhSzfgP1Cgc6JOTk4qEolYVZLNSRpEICGdJcCPjIwomUxaKRs5yNjYmAKBgB566CFVq1UdPXpUfr9fjz/+uKLRaE0Vs7m52Xr/0um0VRF9Pp9+7dd+zdbL0tKSEfiSDJ27jpWQumhlWKvokdzKFH+X34vwt66uzkr9pLM0VtO7eO7cOeXzeSv7s4HZcF1dXWppadGmTZvMQheiGSlEKBTS/v37rVm5UChofHzcAjIBFB8nDkWoC1AmaRqpJKk67zsWi2n9+vV65JFH1NLSYs4UExMTunPnjt59913Nz88rFouZjY/neeY62tzcrHg8bsEY/3MGKdA4PjQ0ZLKBSCSivr4+FYtFnThxwkYrIXCtVCo1Wj7QNwfefQUlHsLdokZyc9IMkBAIYsuWLYrH43r++ee1sLCgr33ta4pEIvqDP/gD9fT02CYjxx0dHa0R6V26dEmLi4saGBjQhg0banL6trY2vfTSS2pqajIdEm0WaF/I7RnVQ/CAZ6LM6g5pRK3q8/lsjPS2bduMQ2AhoOCmosiDTqfT+slPfqJcLqeuri5r0SCAUYblJVFJ4oRnYyFmrFaram9vt0CHVoSXCsfEgSHJus9BtFNTUwqHw5bvc9IuLi4amkMbBjmJ/ojyMykGpfN0Om0m/I8//rgKhYK+973vKZFI6Pbt24rH49q4caPi8bgWFhYUiUQsNSDdJW3v6upSKpXS9evXNTc3VzMc0ufz6fr161blo5DCd/Q8T/39/UagI3KlUhWJRLRnzx6VSiVdvHjRCizRaFQHDx5UY2OjyU7C4bAVU0C9pIdLS0saGRmR3+/XgQMHTEDKYeHz+dTV1aV8Pq/vfOc7KpfLevLJJ9XR0WHDKaenp23ARiwW0zPPPKNKZcXKxZ1cwu+l383dg9wzvA8HjTvNhBQeSoOg0NraqqeeekqJRMIcEEKhkDKZjM6ePatAIKBDhw6ppaVFmzdvtqolh7AkkykEg8GarIUm5lu3bplEIBKJWIWY7AM+jYB730EpHo8bVETvIa3oUbLZrM6cOaNgMKg9e/aYzahb/WhpaVFLS4t+67d+y4Lb0tKSQT+IUSbF7ty5U5lMRseOHVM6nTarzzNnzqiurk4vvviiGZAnEglTXAMH4X+Wl5etOZWufwITymxplcxDU4T+hhcNVwOS4rSkagIvggxiZGREqVTKxteANOE6GEMUiUTM9aBSqejUqVMql8sm/qSSQlUPXdHOnTvN2IvgWywWDVnAO6DFItixYV0OjfsHgTFrPhqNqr+/X+Fw2KxJ+C5otTZv3qxgMGjfY+PGjRocHFRXV5ep0aPRqA4fPqzm5mZt3brV+DHWUzKZ1Hvvvad8Pq/e3l4TopKyRqNRC05sML4L/6AvghQGwVMJvXLligWXhoYG871yK05ow0BvLpfG4UJAp1rnprYzMzN64403rArleZ4NXe3p6TG/Md4zwTsUCtnvh6tC3Oj3+63bgN43F6lxj9Vq1SrAbW1tamlpqXGJYO2wR5qbm/Xcc88ZQV4sFvXkk08aAiLoVKurzhSsxdnZWSWTSZ0+fVqTk5P6r//6L+VyOSuWcNBQyEEugcYP3ux/Q0n/a1CiisFiR52KNgftA9UhKiL0xUxNTcnn81kpsbW1tUYkePPmTcuj0Zegh5mZmdH4+LgaGhr0t3/7t2pqarI+G8zItm/fbkGnVCqps7NT8/PzeuONNzQ9PW2Ol6hiXdN+Fx0AgbHygGtisaMIZ5IquTslYZTaNJaeO3dOuVzOut43btyo1tZWbd26VcViUS+//LJpQYDHPp/PBGwEIUq2CNEIDJD12BGTHnLBFcAJskDdhR0KhdTW1mYVE9JzN30jkGzevFm9vb3mEwUJv337dvn9fmsHeuCBBzQ/P69//Md/VLVa1cGDB22jws1lMhmbn7Zjxw6rlgaDQf3u7/6uiV2Xl5dtzDcLGXKYRl238dWlGQh+pJv0nTHs8sSJE7YBm5ubDfmn02kTh4IS0J8haiRthCNibbDp6FCIxWI2YgxDwaefflrVatX8i/h+0AqIUEHskiylc32JKOIgo/H7/froo48UCKxMFcEGCA6xvr5ew8PD9pmFQkHt7e0WBCnUIKPwPK+mSbparVq3PxzuwMCApXEInEOhkCYmJqy4UK1WLXYQWGltuu+ghLiLYONOBi0UCpqenraTtVqtmt1sXV2doRHaP9BGpNNpI4w3btwoz/M0NDRkPjmuRmh4eFh+v18//elPrVoCVzE/P6/XX39dlUpFjz/+uEqlkl5//XUVCgXt3r1bnZ2dZj2LZYmrVC4Wi1Y6J8IDMSkhk9czFmfdunWKxWK6fv26IUNXoY5mZf/+/VZ5ADHAE83MzCgajSqVSukb3/iGwuGwmeE1NTWprq5OGzZsUD6f13vvvadgMKjf+I3fUDwe1+zsrLLZrBYWFoxcpGfQrVqyaUGlWKROTExY+wTpIE6NPp9PiURCkUjEAgmcE6kBdsZwbKSg9IBhl4uCu1BYmT9Puk7Vaf369Wb7S1pEsCgWi+rv7zcqIBaLmdYFJMT3/eijj0y3hH6NIOd5nnlfg5DRbfGZIDsOD9pW2DRuGxQpN64AmUxGk5OTWlhYsEECb7zxhgKBgM3xu3TpkkKhkA4dOiRJOn36tK0zFPIceohcuQeKNS6a5526xSV4Nd7/8ePHFQqFdPXqVaskIishgBCo6POEJwNJFwoFHT9+XH6/X9u2batRq/NeIaz37dunuro669/kMxAS48uEayn86b2ue+qU/uzP/qzKQ3J/Di0FZuF4V2/4ePgi0gBOYJTE8/PzpnSWVsYur1u3zmZFYeDOKKLz58+b2I/8fnl5WaOjoyqVVryFJZnnMw2uP/rRj1SpVLR//36FQiElEglLPUAitDVUKqteNLxcUAUSgaamJqteNTY2anh42Ko09BFBVpIGUioPBFbsaHO5nI4dO2YpJgQ0aXFdXZ02btyobDZrk3EHBwfV2NiogYEB+xPOjSof6mkaeN02GncB4NwIZ8FmCIVCNlWVTQF/yPPi3jj54dM6OzslqSb9oLUhFAr9jEE/c+tAhmxyytMEXdqISCWoXlHhcXv7pNWqKb2AtF7QPwZClFaQfA3vxQAAEj9JREFUTF9fn+mhJFlfGOvC1fg0NjYa94gAEL8n0PeVK1c0NTWl1157zaZ+cJ+4P0DUw8+ix0N0SVWN3+/yQnBKBH6QL0Un3i0yFffdwVnBFVF1Y81t2rTJ3od7oHFYM6EFquW1116zDohsNqsLFy6Y7pAiATxmLpfTBx98oHw+bzMEoW7uexglFSdgPaZVpFz19fUmcqPjv76+Xn19fWpqatK2bdvkeZ4uXbqk2dlZvf/++8rlclbSvXHjhubn59Xa2moCL1c53tXVVfPyeNixWExzc3P61re+pXA4rE996lMKBAI6evSoSqUV72Y2WTKZtNOErm9OVYInfV9IACilggSA78lkUjMzMzp//rwaGhr06U9/WnV1dabJYaQy0gO316qurk6dnZ3q7Ow0L/JEIqFMJqNbt24pnU7r6NGjKpfL2rJli1WTcrmchoeHrTzO56LHQn8irXTBSzI3AngBNiWQnO5/vMfd9Lqurs56/iYnJ1Uulw0VbtmyRaVSSd/73vdULBbtOTNO/M6dOwoEVuakNTc3GzIibcNGFo6SaheH0MjIiEqlkk2LGR8fVyqVMpvjrq4u4/Y4RCQZ8iDQdXd3W3tKpVKxkV/Xr1+3YEVqFgqFrK2FYgi+XKSF1WrVyFtSQYLC4uKiaXhAer29vZYW19fXa2BgQD6fTxcuXFAqlTLfKMSdBAIqxOFw2IwECb6k0qBO1iqBlXfLs0GOAAXw8MMPKxaL2cHf2tpqvZXoDUnbQFA+n89mHtJu8/TTT2tqakr//u//rnQ6rQMHDqhSqej8+fOqVqsmrM1ms1ZIcMWZHMT3uu6JlF588cUqJ70kswxxHRk5wYB1DQ0Neuqpp0xzMjs7q2984xsqFApGpiFMo5TJ2GcEmfX19Zqfn9dXvvIVpVIp83K+cuWKAoGA9u/fr1KpZJoL1LeDg4O2mElRQHrwB1SX/P7VGVSuFw2LDT0JixkRqcvxAOlpy+jv77deMjYFRGy1WrW2iKamJoPa09PT+uCDD1QoFKzEfOjQIUsNXagNqrt+/bqd6vl83nriaDAGirPxent7JcmcOJEQIEZ0e7qKxWKNqV4ul9PZs2clSbt371YwGLQCA1VMkNDMzIza2tr0V3/1V2pvbzdv8IGBASP+QZapVEqjo6NaXl5WMpk0TsrzvJrmTkk1To/Sap8XnKXb6sMhRnsNKRiSCaQgpFFYtXBI+P1+bdiwwYoXcC4cUvF4XHv27DH7jsXFRR0/flwTExN66623FAgE9Pzzz9saRqBI+T2Xy9kUGII266ihocEOOJwNWPuTk5OqVFYN+iVZJTUQCJjuD4cM+NqPPvrIxLQ0k9fX12vLli2mWeNgI11rbGzUho99+NF+sddnZmY0Nzent956S7Ozs6Zn6urqUiQSMTnQ+Pi4USfsFVcw+sUvfvH+kBKBghfDAwJGE5E//PBDVatVa8xkgkNvb6+98NnZWZ05c0ae5+nAgQM2r55+GSQGNBreXZIkaDBZlBME94BisaixsTETxKH2Bf5SReOUc9M5cnoWO6cH/k38g4G9qxFxRwtRQfrvbBukFafLZDKp//iP/9Dt27d1+vRpE9StX79eR44cUWdnp02MQIpAqofvFC8WxAP0xiKE0w6VOXk9HB49Vnw3/h6c0YYNG5TJZHT69GmVy2U9+uijRkB7nqdt27bZwICFhQUlEgnV19frueeeU2trqy5fvqyrV68ap9Xe3q76+noLejw7NlapVDKOkhPV5/NZkyeHBOp//n+qvdAEfCa9maQdKM3ROMGB4u1O8SCVSpnwD2EoBZhIJGJaGwIUnCWd9v39/SZ18DxPx48f1/Lysq2r2dlZ45jK5bJGR0dVLBZtH4Ag4DRd4W5XV5ftA9YsLVQQ1IgweVflctkOYg4aUscrV64ol8uZx9WuXbtULBb19a9/XbFYTC+++KK6u7vtICbgQ1iD0kFqVPjg63A95f26g0bvdgr5uYISOTn8CZuAPBbdCCdHfX294vG4JiYmlMlkDO7Pzs5qeXlZO3bsUDgctnHGr7/+uvL5vDZu3Kj29nY988wzVoGoVCo6fPiwUqmU5ufnlc/n9cADDxhvEYlE9MQTT0iSxsbGzGCKqJzL5XTjxg0rURJkULwCKyXVODSiBYEDk1ZGC1HeLJdXp3vw+xhX/fLLLysWi+n3f//3tW7dOmtHYD4dacvw8LDK5bJeeOEFg+RUBXnBcBy4BNKmg3ixUFg1k6cn0UW0hULBFhOIkNMSj3L+GybviUTCTm+qVnV1dRoeHrZUPZVK2SRgOCOCcmNjo2ZnZ/WFL3xBxWJRzz77rPUOclCl02mdOXNGiURCV65cseqTJBPcEYjgNnK5nNloEGjgVUBG/CxIm/XI90aUubCwYEGaSipBHAS5c+dOBQIBS6HWrVtn6KK+vt6aSskMDh8+bIMZ4HeKxaK2bNmidDqt0dFRW5/FYtE873EoKJVKhqR8Pp+hn3K5bH74VAhZf7SDABSoAhKUsAh59NFHtby8rDfffFNzc3MaGxuTJJtu/alPfUrBYNDGccN9gTC5SMOvXbummZkZW2Mgs4mJCQukpGtcoVBIu3fvtj3gWtv83EEJpS9pG6pP4Lo7n71cLuvGjRu2SbGFiMfjOnDggBYXF/Xuu+9qbm5O3/zmN1UsFo27ocH05MmT6ujo0AsvvGAK2IWFBb3yyiuam5szwdrQ0JAk6d1337X2jbq6OiPduru7zbuFdhdSB0mWJvK9kQoQEF3rT+C9JBt37Srdk8mkXn/99ZpS+de+9jW1trZqaGjISHKCDgEP7gruQZK591EypoEVbgm/Y/iazZs315CfpKEETRw5cRdwO92pqEUiEWt/QTt29epVlUols0h94403bMJwNBrVI488UnOKuyOtAoGAnn76aePTMpmMmpubVV9fr9u3byuRSOjixYuanp7WhQsXVCwWrdxMRzx6ol27dhmiIVC65WQKBlSCcJakAwCUTdWJXjr6tyDqP/jgA5VKJetXw8rjl3/5l1WpVPTOO+8okUho+/bthsrgR+bn5/XDH/7Q5BcExUKhYHa59IKeOnVKPp/P+B2+Pyk1XkRUC0FkLhrk3wmK6IBYU5cvXzainpI+KHj79u3q6emp8R3DsWDDhg3asmWLXnjhBUnS+fPnlUgkTH/EBCKKKRwa3DOeVfRXku1QxGAyTV1d3c9YqPxcQYlTGaKQ0TGU7Zl2CawDuj388MOmmK1UViaGrlu3TrOzsyZ1x18GziUWi6m7u9t0EGw+v39lGCABwUVobHj399NciCLY8zxbfBC+nMR9fX01EgCCVjwer7GiyOfzNbapfBemffCiY7GYmbIRvGdmZvSlL31JExMTGhkZUTqdVjabtcmqLS0tdlKiFcHkDDEhJmMo1UF2uDRAxJPGIrgbGBiQtCq4I+0E4VF9JBUgFXzwwQeNaA8Gg3rwwQfleV6Nk2IwGDQeASnHl7/8ZS0uLqq9vV0tLS0aGhoyTi4Wi5mLAh7k3d3dtpkogweDQZv3RhWLZuRUKmVVUJ/Pp5mZGTuoJNn7YGOTRvE5UABUhs6cOWMlfJpPWUeVSkVvv/22QqGV4aGRSEQTExOam5uzID42NqaZmRlDfBs3blS1WtVHH32kcrlsyPXWrVs17TdwjgQ23iNcLfdGKi6tNscTcKEYKBJASCODAOWjjbt48aLq6uq0bds2a9Hy+/06ePCg5ufn9eqrryqRSOiVV14xANLW1mY/j65JkjXVp1Ip429d/aLP57MK3d1jxwmq97ruSXT/6Z/+adUVblGNQJWM4todatjQ0KAjR46oubnZZPt3T+lgcgIvDX8a5O3Xrl1TIpHQe++9p1wuZy4FRGt8geCfEG+2traqUCjo9OnTkqS9e/eaXohKBekAVUSiNw+Kxt5yuWxWKaR1kqz6VywWNT4+bhL9pqYmux/0WFQXT548af1YlOCbm5vNEIvBCvAA/D6qg3T7U1ygn5DSvjuVFi7F8zxTkrOpqT66JV+IbEZ8NzQ06PHHH5fneXr//feVz+ct+DQ3NyubzepHP/qRiSNJSTASq1arhpj37dtnB4UkC/wTExNKp9M1o4fcVgSXn4CYZoEHg0Fb+BcuXLByOe+FFIfUFOsNn89nYtFYLKZSacWsEN4Qzg4NTmtrq37v935PnudZm9Rf//Vfm2CYhnRXN3bq1CktLy/XrG9EuRDYSCY4iEAsfr/fxJkcvhygbkrkjtfiAGNt87sKhRUr3lKpZHom/JfcaSfSavEKzRapImr2Q4cOKRqNmtPB4uKitd4sLy8biU7hxUVykizV5n5YC1/60pfuj+gGThOtSTOI5lQICE4sqg8//NBOPLcbGmc/boATHbMxRgP39/dbGkGe7p7Mg4ODKhQK5gAJV0TzLnk27Rc0z2LVwfw50AnVFk4vdFWkaOTqlJhJJdGv0BuFYT3VlubmZvX19RnBTLnXFUfS+IiSXNLPLOLrjn0qPBhB1X3hpGfcG1J/PpeFwilKsOvr67NgLEk//elPraGU4Ae/Va1WzdcJ+ca5c+eUTCY1NjamUCikX/mVX1FXV5cFF5ArPXeXL182X61KpVIzokhabQSnYEAQ5efgekDUBDYkK6Q0DQ0Nto644LhAVBxKLS0teuSRR1QsFm3sfDKZ1Lp16/T5z3/eOu85MAh69IGh2oYzxdcJuUSlUqmZ5kJVFTLdfS8EIL/fb7wu7Td3+7Gz1ghUODz09PSYh5Uk4zgJpBMTE1YMiUQiqqurU3Nzsw4ePGhuB/THgVZZc4uLiyZLwQOKohHviHtCruEe/P9fSOlzn/tc1V00tGEAk8lz3RMaOT/VIBrwePnYnbpcCic9mw2NzdjYmC08lLWSfkZchxKXCgXlUxwE+Dk+C6Kbe6fHDU7JdZDkQqjm9/vV3d2tUqmkK1eumDI8GAz+DBIjyEFmu6VkvMbpyiaNBeGgIwI5ocFxERtKW5TOLGbuj+oQ1VKeLxwGf4/TlxMaQh9NDkI+3hPoC8U/0BzuaOfOnTX9he6ssnQ6bW04pC8cHtjY3n25BwSVykAgYL1vvGM8tScnJ20T8w7gZejTKpVKtkFTqZS5N4BAstmsxsbG5PP5dODAAWtWlWScGxIDOh1ADDdv3jS+jYDBfVQqFePbkCq0t7erUllxjeRzIbaRO7j8TaVSqWlwBfUSyDhAJRkpz9+nxQuHht27d6uhocGQE8WOHTt21PxuiG2mMIP8KX5xyMC3udVE1p17P3/3d393f0jJ1YH4/f6aIYRAR/4dtaa0Mm45l8uZ5wslVeA32o3R0VGlUilNTEwoGo3qscceUzAY1KVLl0x4xQMB6bBBXasO/qRyBFKC8HX1Ka6CluZeNi3pDukmP0cuzebivghGGLXFYjGzVkF4ht6GFJKeu2p11Qmxvb1duVzOHAwpPfPc6bEDand3d8vv95tAjnRFklUJCbguwuOClOR+qP7R0InYkUkXra2tlgJGIpEap0bEggSvYDBowjkuxK8Q+HT1c1IzW8wNIsVi0ZADU2V4F64ynIBDid1NY1krFBoozExNTSmfz9vhwedPTEyYIh/+cXl5Wa+99prC4bB27dqlcDhsaT/ICeKXzgE2JxvRDV7SavsWDqsUMPi92WxWvb291lXAWuO5SKuGcFQOOQQ48BDGMmp+amrKfjdrDkqF1BVFtyTj70DxBCPcCWgRoiJK4CUQ8X4RppKWAyjudd0TKb300ktVXiZsv7Q6csdt3nOrI5xq5PT8d1ckRkMrgqxSqWTwm80H4cmAPPfEk2QvE2LaHV3jitFI29DZwHPMz8/XcDakKBj4o2oFwhIo3Qm6d58KiAjZTGwQ+BT+DvoYnqf7QrmoUvBzrmSBwMxngQT53y5HR5oMbHYXtiv5uBsB87s43TiJQaCsCSxGeL8Y7dNY6jaa0g/nti5xEICESTloI7p586ZKpZIFD+4DkzeeAYHX1TrxfkiP4Xo8b7XxmL/HPaJn6ujoqGlhuXr1qtnJUnXmnRHU3dTEfT9sePfvERQ4zF3CuFwu24HKO+OZ8Xnu30XWgQyEQ8Ed/Alvh+rd51vpd8zlciaIpYgBFwVX7BY43D3I3uC++H30EFJcYS3D195rGOU9g9LatXatXWvX//V1b8Zp7Vq71q616//4WgtKa9fatXb9Ql1rQWntWrvWrl+oay0orV1r19r1C3WtBaW1a+1au36hrrWgtHatXWvXL9T1/wDoCScRd1vi7gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "aTt1oCKJM6Yh" + }, + "source": [ + "plt.imshow(gen_imgs[0][0], aspect='auto', cmap='gray')" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "FIx4d7TlNBG-" + }, + "source": [ + "" + ], + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/03. Conditional GAN/images/cgan.png b/03. Conditional GAN/images/cgan.png new file mode 100644 index 0000000..bc8cbc9 Binary files /dev/null and b/03. Conditional GAN/images/cgan.png differ diff --git a/README.md b/README.md index 101a15d..cf485d0 100644 --- a/README.md +++ b/README.md @@ -2,6 +2,7 @@ - [Introduction](01.%20Introduction/README.md) - [DCGAN](02.%20DCGAN/README.md) +- [cGAN](03.%20Conditional%20GAN/README.md) ## Contributors: