-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun_models_covid.py
328 lines (243 loc) · 12.7 KB
/
run_models_covid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import os
import sys
from lib.load_data_covid import ParseData
from tqdm import tqdm
import argparse
import numpy as np
from random import SystemRandom
import torch
import torch.optim as optim
import lib.utils as utils
from torch.distributions.normal import Normal
from lib.create_coupled_ode_model import create_CoupledODE_model
from lib.utils import test_data_covid
parser = argparse.ArgumentParser('Coupled ODE')
parser.add_argument('--save', type=str, default='experiments/', help="Path for save checkpoints")
parser.add_argument('--load', type=str, default=None, help="name of ckpt. If None, run a new experiment.")
parser.add_argument('--dataset', type=str, default='Dec', help="Dec")
parser.add_argument('--datapath', type=str, default='data/', help="default data path")
parser.add_argument('--pred_length', type=int, default=14, help="Number of days to predict ")
parser.add_argument('--condition_length', type=int, default=21, help="Number days to condition on")
parser.add_argument('--features', type=str,
default="Confirmed,Deaths,Recovered,Mortality_Rate,Testing_Rate,Population,Mobility",
help="selected features")
parser.add_argument('--split_interval', type=int, default=3,
help="number of days between two adjacent starting date of two series.")
parser.add_argument('--feature_out', type=str, default='Deaths',
help="Confirmed, Deaths, or Confirmed and deaths")
parser.add_argument('--niters', type=int, default=100)
parser.add_argument('--lr', type=float, default=5e-3, help="Starting learning rate.")
parser.add_argument('-b', '--batch-size', type=int, default=8)
parser.add_argument('-r', '--random-seed', type=int, default=1991, help="Random_seed")
parser.add_argument('--dropout', type=float, default=0.2, help='Dropout rate (1 - keep probability).')
parser.add_argument('--l2', type=float, default=1e-5, help='l2 regulazer')
parser.add_argument('--optimizer', type=str, default="AdamW", help='Adam, AdamW')
parser.add_argument('--clip', type=float, default=10, help='Gradient Norm Clipping')
parser.add_argument('--edge_lamda', type=float, default=0.5, help='edge weight')
parser.add_argument('--z0-encoder', type=str, default='GTrans', help="GTrans")
parser.add_argument('--rec-dims', type=int, default= 64, help="Dimensionality of the recognition model .")
parser.add_argument('--ode-dims', type=int, default= 20, help="Dimensionality of the ODE func for edge and node (must be the same)")
parser.add_argument('--rec-layers', type=int, default=1, help="Number of layers in recognition model ")
parser.add_argument('--gen-layers', type=int, default=1, help="Number of layers ODE func ")
parser.add_argument('--augment_dim', type=int, default=0, help='augmented dimension')
parser.add_argument('--solver', type=str, default="rk4", help='dopri5,rk4,euler')
parser.add_argument('--alias', type=str, default="run")
args = parser.parse_args()
############ CPU AND GPU related
if torch.cuda.is_available():
print("Using GPU" + "-"*80)
device = torch.device("cuda:0")
else:
print("Using CPU" + "-" * 80)
device = torch.device("cpu")
########### feature related:
if args.feature_out == "Confirmed":
args.output_dim = 1
args.feature_out_index = [0]
elif args.feature_out == "Deaths":
args.output_dim = 1
args.feature_out_index = [1]
else:
args.output_dim = 2
args.feature_out_index = [0, 1]
#####################################################################################################
if __name__ == '__main__':
torch.manual_seed(args.random_seed)
np.random.seed(args.random_seed)
#Saving Path
file_name = os.path.basename(__file__)[:-3] # run_models
utils.makedirs(args.save)
experimentID = int(SystemRandom().random() * 100000)
#Command Log
input_command = sys.argv
ind = [i for i in range(len(input_command)) if input_command[i] == "--load"]
if len(ind) == 1:
ind = ind[0]
input_command = input_command[:ind] + input_command[(ind + 2):]
input_command = " ".join(input_command)
#Loading Data
print("predicting data at: %s" % args.dataset)
dataloader = ParseData(args =args)
train_encoder, train_decoder, train_graph, train_batch, num_atoms = dataloader.load_train_data(is_train=True)
val_encoder, val_decoder, val_graph, val_batch, _ = dataloader.load_train_data(is_train=False)
args.num_atoms = num_atoms
input_dim = dataloader.num_features
# Model Setup
# Create the model
obsrv_std = 0.01
obsrv_std = torch.Tensor([obsrv_std]).to(device)
z0_prior = Normal(torch.Tensor([0.0]).to(device), torch.Tensor([1.]).to(device))
model = create_CoupledODE_model(args, input_dim, z0_prior, obsrv_std, device)
# Load checkpoint for saved model
if args.load is not None:
ckpt_path = os.path.join(args.save, args.load)
utils.get_ckpt_model(ckpt_path, model, device)
print("loaded saved ckpt!")
#exit()
# Training Setup
log_path = "logs/" + args.alias +"_" + args.dataset + "_Con_" + str(args.condition_length) + "_Pre_" + str(args.pred_length) + "_" + str(experimentID) + ".log"
if not os.path.exists("logs/"):
utils.makedirs("logs/")
logger = utils.get_logger(logpath=log_path, filepath=os.path.abspath(__file__))
logger.info(input_command)
logger.info(str(args))
logger.info(args.alias)
# Optimizer
if args.optimizer == "AdamW":
optimizer =optim.AdamW(model.parameters(),lr=args.lr,weight_decay=args.l2)
elif args.optimizer == "Adam":
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 1000, eta_min=1e-9)
wait_until_kl_inc = 10
best_test_MAPE = np.inf
best_test_RMSE = np.inf
best_val_MAPE = np.inf
best_val_RMSE = np.inf
n_iters_to_viz = 1
def train_single_batch(model,batch_dict_encoder,batch_dict_decoder,batch_dict_graph,kl_coef):
optimizer.zero_grad()
train_res = model.compute_all_losses(batch_dict_encoder, batch_dict_decoder, batch_dict_graph,args.num_atoms,edge_lamda = args.edge_lamda, kl_coef=kl_coef,istest=False)
loss = train_res["loss"]
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
loss_value = loss.data.item()
del loss
torch.cuda.empty_cache()
# train_res, loss
return loss_value,train_res["MAPE"],train_res['MSE'],train_res["likelihood"],train_res["kl_first_p"],train_res["std_first_p"]
def train_epoch(epo):
model.train()
loss_list = []
MAPE_list = []
MSE_list = []
likelihood_list = []
kl_first_p_list = []
std_first_p_list = []
torch.cuda.empty_cache()
for itr in tqdm(range(train_batch)):
#utils.update_learning_rate(optimizer, decay_rate=0.999, lowest=args.lr / 10)
wait_until_kl_inc = 1000
if itr < wait_until_kl_inc:
kl_coef = 1
else:
kl_coef = 1*(1 - 0.99 ** (itr - wait_until_kl_inc))
batch_dict_encoder = utils.get_next_batch_new(train_encoder, device)
batch_dict_graph = utils.get_next_batch_new(train_graph, device)
batch_dict_decoder = utils.get_next_batch(train_decoder, device)
loss, MAPE,MSE,likelihood,kl_first_p,std_first_p = train_single_batch(model,batch_dict_encoder,batch_dict_decoder,batch_dict_graph,kl_coef)
#saving results
loss_list.append(loss), MAPE_list.append(MAPE), MSE_list.append(MSE),likelihood_list.append(
likelihood)
kl_first_p_list.append(kl_first_p), std_first_p_list.append(std_first_p)
del batch_dict_encoder, batch_dict_graph, batch_dict_decoder
#train_res, loss
torch.cuda.empty_cache()
scheduler.step()
message_train = 'Epoch {:04d} [Train seq (cond on sampled tp)] | Loss {:.6f} | MAPE {:.6F} | RMSE {:.6F} | Likelihood {:.6f} | KL fp {:.4f} | FP STD {:.4f}|'.format(
epo,
np.mean(loss_list), np.mean(MAPE_list),np.sqrt(np.mean(MSE_list)), np.mean(likelihood_list),
np.mean(kl_first_p_list), np.mean(std_first_p_list))
return message_train,kl_coef
def val_epoch(epo,kl_coef):
model.eval()
MAPE_list = []
MSE_list = []
torch.cuda.empty_cache()
for itr in tqdm(range(val_batch)):
batch_dict_encoder = utils.get_next_batch_new(val_encoder, device)
batch_dict_graph = utils.get_next_batch_new(val_graph, device)
batch_dict_decoder = utils.get_next_batch(val_decoder, device)
val_res = model.compute_all_losses(batch_dict_encoder, batch_dict_decoder, batch_dict_graph,
args.num_atoms, edge_lamda=args.edge_lamda, kl_coef=kl_coef,
istest=False)
MAPE_list.append(val_res['MAPE']), MSE_list.append(val_res['MSE'])
del batch_dict_encoder, batch_dict_graph, batch_dict_decoder
# train_res, loss
torch.cuda.empty_cache()
message_val = 'Epoch {:04d} [Val seq (cond on sampled tp)] | MAPE {:.6F} | RMSE {:.6F} |'.format(
epo,
np.mean(MAPE_list), np.sqrt(np.mean(MSE_list)))
return message_val, np.mean(MAPE_list),np.sqrt(np.mean(MSE_list))
# Test once: for loaded model
if args.load is not None:
test_res, MAPE_each, RMSE_each = test_data_covid(model, args.pred_length, args.condition_length, dataloader,
device=device, args=args, kl_coef=0)
message_test = 'Epoch {:04d} [Test seq (cond on sampled tp)] | Loss {:.6f} | MAPE {:.6F} | RMSE {:.6F} | Likelihood {:.6f} | KL fp {:.4f} | FP STD {:.4f}|'.format(
0,
test_res["loss"], test_res["MAPE"], test_res["RMSE"], test_res["likelihood"],
test_res["kl_first_p"], test_res["std_first_p"])
logger.info("Experiment " + str(experimentID))
logger.info(message_test)
logger.info(MAPE_each)
logger.info(RMSE_each)
# Training and Testing
for epo in range(1, args.niters + 1):
message_train, kl_coef = train_epoch(epo)
message_val, MAPE_val, RMSE_val = val_epoch(epo,kl_coef)
if epo % n_iters_to_viz == 0:
# Logging Train and Val
logger.info("Experiment " + str(experimentID))
logger.info(message_train)
logger.info(message_val)
# Testing
model.eval()
test_res,MAPE_each,RMSE_each = test_data_covid(model, args.pred_length, args.condition_length, dataloader,
device=device, args = args, kl_coef=kl_coef)
message_test = 'Epoch {:04d} [Test seq (cond on sampled tp)] | MAPE {:.6F} | RMSE {:.6F}|'.format(
epo,
test_res["MAPE"], test_res["RMSE"])
if MAPE_val < best_val_MAPE:
best_val_MAPE = MAPE_val
best_val_RMSE = RMSE_val
logger.info("Best Val!")
ckpt_path = os.path.join(args.save, "experiment_" + str(
experimentID) + "_" + args.dataset + "_" + args.alias + "_" + str(
args.condition_length) + "_" + str(
args.pred_length) + "_epoch_" + str(epo) + "_mape_" + str(
test_res["MAPE"]) + '.ckpt')
torch.save({
'args': args,
'state_dict': model.state_dict(),
}, ckpt_path)
logger.info(message_test)
logger.info(MAPE_each)
logger.info(RMSE_each)
if test_res["MAPE"] < best_test_MAPE:
best_test_MAPE = test_res["MAPE"]
best_test_RMSE = test_res["RMSE"]
message_best = 'Epoch {:04d} [Test seq (cond on sampled tp)] | Best Test MAPE {:.6f}|Best Test RMSE {:.6f}|'.format(epo,
best_test_MAPE,best_test_RMSE)
logger.info(MAPE_each)
logger.info(RMSE_each)
logger.info(message_best)
ckpt_path = os.path.join(args.save, "experiment_" + str(
experimentID) + "_" + args.dataset + "_" + args.alias+ "_" + str(
args.condition_length) + "_" + str(
args.pred_length) + "_epoch_" + str(epo) + "_mape_" + str(
best_test_MAPE) + '.ckpt')
torch.save({
'args': args,
'state_dict': model.state_dict(),
}, ckpt_path)
torch.cuda.empty_cache()