forked from SoulProficiency/speechseparation-GALR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGALR.py
456 lines (382 loc) · 17.5 KB
/
GALR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
"""
author : wxj
GALA-tencent ai lab-global attentive local recurrent
"""
import torch.nn as nn
import torch
from torch.autograd import Variable
import math
from torch.nn.modules.activation import MultiheadAttention
# ------------------------------------------------over_lap_and_add----------------------------------------
def overlap_and_add(signal, frame_step):
"""
Author: Kaituo XU
:param signal:
:param frame_step:
:return:
"""
"""Reconstructs a signal from a framed representation.
Adds potentially overlapping frames of a signal with shape
`[..., frames, frame_length]`, offsetting subsequent frames by `frame_step`.
The resulting tensor has shape `[..., output_size]` where
output_size = (frames - 1) * frame_step + frame_length
Args:
signal: A [..., frames, frame_length] Tensor. All dimensions may be unknown, and rank must be at least 2.
frame_step: An integer denoting overlap offsets. Must be less than or equal to frame_length.
Returns:
A Tensor with shape [..., output_size] containing the overlap-added frames of signal's inner-most two dimensions.
output_size = (frames - 1) * frame_step + frame_length
Based on https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/contrib/signal/python/ops/reconstruction_ops.py
"""
outer_dimensions = signal.size()[:-2]
frames, frame_length = signal.size()[-2:]
subframe_length = math.gcd(frame_length, frame_step) # gcd=Greatest Common Divisor
subframe_step = frame_step // subframe_length
subframes_per_frame = frame_length // subframe_length
output_size = frame_step * (frames - 1) + frame_length
output_subframes = output_size // subframe_length
# print(subframe_length)
# print(signal.shape)
# print(outer_dimensions)
# subframe_signal = signal.view(*outer_dimensions, -1, subframe_length)
subframe_signal = signal.reshape(*outer_dimensions, -1, subframe_length)
frame = torch.arange(0, output_subframes).unfold(0, subframes_per_frame, subframe_step)
frame = signal.new_tensor(frame).long() # signal may in GPU or CPU
frame = frame.contiguous().view(-1)
result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length)
result.index_add_(-2, frame, subframe_signal)
result = result.view(*outer_dimensions, -1)
return result
# ------------------------------------------------2.1 encodering raw signals-------------------------------
class Encoder(nn.Module):
"""
INPUT [B,T] B is batch,L is length of every input
:arg channel_size ->the D-dimesional of 1D gated convolutional
"""
def __init__(self, basic_signal, feature_dim, kernel_dim=2):
super(Encoder, self).__init__()
self.kernel_dim = kernel_dim
self.feature_dim = feature_dim
self.ConvLayer1 = nn.Conv1d(1, self.feature_dim, kernel_size=self.kernel_dim, stride=self.kernel_dim // 2,
padding=0, dilation=1, bias=False)
self.ReLU = nn.ReLU()
def forward(self, input):
# in papers,author promise the result form conv has the same feature dim with input's
input = input.unsqueeze(dim=1) # ->[B,1,T] FOR 1D CONV
# take basic signal into high dims
conv_out = self.ConvLayer1(input)
# ReLu active
out = self.ReLU(conv_out) # non-negative [B,N,T]
return out
# in papers author don't mention the para normal,we can choose the parameters
@staticmethod
def normal_para(input):
pass
# ----------------------------------------------2.2 GALR Blocks--------------------------------------
class Separator(nn.Module):
"""
note: pad_segment,splite_feature,merge_feature come from dual path transformer
github:https://github.com/ujscjj/DPTNet
:args
segment_size to split our input
num_layer is the num_layer in local_recurrent
"""
def __init__(self, basic_signal, feature_dim, hidden_size, num_layer, segment_size):
super(Separator, self).__init__()
self.basic_signal = basic_signal
self.feature_dim = feature_dim
self.hidden_size = hidden_size
self.num_layer = num_layer
self.segment_size = segment_size
self.local_recurrent = local_recurrent(self.feature_dim, self.hidden_size, self.num_layer)
self.Global_attentive = Global_attentive(feature_dim)
def pad_segment(self, input, segment_size):
# input is the features: (B, N, T)
batch_size, dim, seq_len = input.shape
# 50% overlap
segment_stride = segment_size // 2
# calculate the rest length if the inputs can not divided by stride
rest = segment_size - (segment_stride + seq_len % segment_size) % segment_size
if rest > 0:
# zero pad for segment
pad = Variable(torch.zeros(batch_size, dim, rest)).type(input.type())
input = torch.cat([input, pad], 2)
pad_aux = Variable(torch.zeros(batch_size, dim, segment_stride)).type(input.type())
input = torch.cat([pad_aux, input, pad_aux], 2)
return input, rest
def split_feature(self, input, segment_size):
# split the feature into chunks of segment size
# input is the features: (B, N, T)
input, rest = self.pad_segment(input, segment_size)
batch_size, dim, seq_len = input.shape
segment_stride = segment_size // 2
# torch.cat([pad_aux, input, pad_aux(ignore)], 2)
segments1 = input[:, :, :-segment_stride].contiguous().view(batch_size, dim, -1, segment_size)
# torch.cat([pad_aux(ignore), input, pad_aux], 2)
segments2 = input[:, :, segment_stride:].contiguous().view(batch_size, dim, -1, segment_size)
segments = torch.cat([segments1, segments2], 3).view(batch_size, dim, -1, segment_size).transpose(2, 3)
# segments [batch,dim,segment_size,segment_num]
return segments.contiguous(), rest
def merge_feature(self, input, rest):
# merge the splitted features into full utterance
# input is the features: (B, N, L, K)
# B*nspk, N, L, K
# the opposite operation of padding
batch_size, dim, segment_size, _ = input.shape
segment_stride = segment_size // 2
# print("merge_feature1:{}".format(input.shape))
# B*2, N, K, L*2
input = input.transpose(2, 3).contiguous().view(batch_size, dim, -1, segment_size * 2) # B, N, K, L
# print("merge_feature2:{}".format(input.shape))
# get speaker1
input1 = input[:, :, :, :segment_size].contiguous().view(batch_size, dim, -1)[:, :,
segment_stride:] # ignore the zero pad
# print("input1:{}".format(input1.shape))
# get speaker2
input2 = input[:, :, :, segment_size:].contiguous().view(batch_size, dim, -1)[:, :, :-segment_stride]
# print("input2:{}".format(input2.shape))
output = input1 + input2
if rest > 0:
output = output[:, :, :-rest]
return output.contiguous() # B, N, T
def forward(self, input):
pass
class GALR_Block(Separator):
def __init__(self, *args, **kwargs):
"""
SUCCEED FROM Separator ,all parameters define in Separator
"""
super(GALR_Block, self).__init__(*args, **kwargs)
def forward(self, input):
"""
:param input: [B,N,T] from encoder
:return:
"""
# segment
enc_segments, enc_rest = self.split_feature(input, self.segment_size) # B, D, L, K: L is the segment_size
B, D, L, K = enc_segments.shape
PE = poision_encoding(L * K, 8000)
position_information = PE(enc_segments)
# print(position_information.shape)
# i'm not sure the position encoding
position = torch.zeros(0)
for i in range(self.feature_dim):
position = torch.cat([position, position_information], dim=1)
position = position.view(B, D, L, -1)
# local recurrent
output = self.local_recurrent(enc_segments) # [B,D,L,K]
output = output + position
# global attentive
out = self.Global_attentive(output)
out = self.merge_feature(out, enc_rest)
# [B,D,T]
return out
class local_recurrent(nn.Module):
def __init__(self, feature_dim, hidden_size, num_layer, Bi_LSTM=True, batch_first=True):
"""
input [B,D,L,K] L is segment size
"""
super(local_recurrent, self).__init__()
self.feature_dim = feature_dim
self.hidden_size = hidden_size
self.bi_lstm = Bi_LSTM
self.batch_first = batch_first
self.num_layer = num_layer
self.Lstm = nn.LSTM(input_size=self.feature_dim,
hidden_size=self.hidden_size,
num_layers=self.num_layer,
batch_first=True,
bidirectional=True)
self.liner = nn.Linear(2 * hidden_size, feature_dim)
self.norm = nn.LayerNorm(feature_dim)
def forward(self, input):
# intra_LSTM
inputs = input
B, D, L, K = inputs.shape
input = input.permute(0, 3, 2, 1).contiguous().view(B * K, L, -1) # [B,K,L,D]
inputs = inputs.permute(0, 3, 2, 1).contiguous() # [B,K,L,D]
inputs = inputs.view(B * K, L, -1)
local_recurrent, _ = self.Lstm(inputs)
liner_out = self.liner(local_recurrent) # [B*K,L,D]
out = liner_out + input
out = self.norm(out)
out = out.view(B, K, L, -1).permute(0, 3, 2, 1).contiguous() # [B,D,L,K]
return out
class Global_attentive(nn.Module):
def __init__(self, feature_dim, nhead=4, dropout=True):
"""
input [B,D,L,K] L is segment size
"""
super(Global_attentive, self).__init__()
self.attn = MultiheadAttention(feature_dim, nhead, dropout=dropout)
self.norm = nn.LayerNorm(feature_dim)
self.dropout = nn.Dropout()
def forward(self, input):
B, D, L, K = input.shape
# print(input.shape)
input = input.permute(0, 2, 3, 1).contiguous() # [B,L,K,D]
# print(input.shape)
input = input.view(B * L, K, -1) # [B*L,K,D]
# print(input.shape)
output = self.attn(input, input, input, attn_mask=None,
key_padding_mask=None)[0]
# print(output.shape)
out = self.norm(self.dropout(output) + input)
# print(out.shape)
out = out.view(B, L, K, D)
# print(out.shape)
out = out.permute(0, 3, 1, 2).contiguous()
return out
class poision_encoding(nn.Module):
def __init__(self, dim_model, max_len):
super().__init__()
pe = torch.zeros(max_len, dim_model)
po = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, dim_model, 2) * (-math.log(10000.) / dim_model))
pe[:, 0::2] = torch.sin(po * div_term)
pe[:, 1::2] = torch.cos(po * div_term)
self.register_buffer('pe', pe)
def forward(self, input):
l, *_ = input.shape
return self.pe[:l, :].unsqueeze(1)
# --------------------------------------------2.3 signals Reconstruction------------------------
class Mask_estimation(nn.Module):
"""
input [B,D,T]->2DCONV->[B,C,D,T]->[B*C,D,T]->[B*C,N,T]
"""
def __init__(self, feature_dim, basic_signal, nspk):
super(Mask_estimation, self).__init__()
self.nspk = nspk
self.feature_dim = feature_dim
# the number of basic signals
self.basic_signal = basic_signal
self.conv_layer = nn.Conv2d(1, self.nspk, kernel_size=1, stride=1, bias=False)
self.conv_tanh = nn.Conv1d(self.feature_dim, self.feature_dim,
kernel_size=1, stride=1, bias=False)
self.tanh = nn.Tanh()
self.conv_sigmoid = nn.Conv1d(self.feature_dim, self.feature_dim,
kernel_size=1, stride=1, bias=False)
self.sigmoid = nn.Sigmoid()
self.conv_relu = nn.Conv1d(self.feature_dim, self.feature_dim,
kernel_size=1, bias=False)
self.relu = nn.ReLU()
def forward(self, input):
B, D, T = input.shape
input = input.unsqueeze(dim=1) # [B,1,D,T]
conv2d_out = self.conv_layer(input) # [B,2,D,T]
est_src = conv2d_out.view(B * self.nspk, D, -1) # [B*2,D,T]
conv_tanh = self.tanh(self.conv_tanh(est_src))
conv_sigmoid = self.sigmoid(self.conv_sigmoid(est_src))
est_mask_c = conv_tanh * conv_sigmoid
mask_c = self.relu(self.conv_relu(est_mask_c))
mask_c = mask_c.view(B, self.nspk, -1, T)
return mask_c # [B,nspk,N,T]
# ----------------------------------------Decoder---------------------------------------
class Decoder(nn.Module):
def __init__(self, basic_signal, feature_dim):
super(Decoder, self).__init__()
self.basic_signal = basic_signal
self.feature_dim = feature_dim
self.liner = nn.Linear(self.feature_dim, self.basic_signal)
def forward(self, mixture_w, est_mask):
"""
:param input: [B,N,T]
:param mask_c: [B,C,N,T]
:return:
"""
print(mixture_w.shape, est_mask.shape)
source_w = torch.unsqueeze(mixture_w, 1) * est_mask # [B, C, N, L]
est_source = torch.transpose(source_w, 2, 3) # [B, C, L, N]
# don't be confused by the name of basic_signal,it just use for convenience
# we want to use the function had been written before and do the galr_block for n times!
# please set basic_signal is 2 to avoid error!
est_source = self.liner(est_source)
est_source = overlap_and_add(est_source, self.basic_signal // 2) # B x C x T
return est_source
class GALR_model(nn.Module):
def __init__(self, basic_signal, feature_dim, hidden_size, num_layer, segment_size, nspk, galr_block_num):
super(GALR_model, self).__init__()
self.basic_signal = basic_signal
self.feature_dim = feature_dim
self.hidden_size = hidden_size
self.num_layer = num_layer
self.segment_size = segment_size
self.nspk = nspk
self.galr_block_num = galr_block_num
self.encoder = Encoder(basic_signal=self.basic_signal, feature_dim=self.feature_dim)
self.Galr_blcok = GALR_Block(self.basic_signal,
self.feature_dim,
self.hidden_size,
self.num_layer,
self.segment_size)
GALR = []
for i in range(self.galr_block_num):
GALR.append(self.Galr_blcok)
self.GALR = nn.Sequential(*GALR)
self.est_mask = Mask_estimation(self.feature_dim,
self.basic_signal,
self.nspk)
self.decoder = Decoder(self.basic_signal, self.feature_dim)
def forward(self, inputs):
encoder_out = self.encoder(inputs)
GALR_out = self.GALR(encoder_out)
est_mask_out = self.est_mask(GALR_out)
decoder_out = self.decoder(encoder_out, est_mask_out)
return decoder_out
@classmethod
def load_model(cls, path):
# Load to CPU
package = torch.load(path, map_location=lambda storage, loc: storage)
model = cls.load_model_from_package(package)
return model
@classmethod
def load_model_from_package(cls, package):
model = cls(package['basic_signal'], package['feature_dim'],
package['hidden_size'], package['num_layer'],
package['segment_size'], package['nspk'], package['galr_block_num'])
model.load_state_dict(package['state_dict'])
return model
@staticmethod
def serialize(model, optimizer, epoch, tr_loss=None, cv_loss=None):
package = {
# hyper-parameter
'basic_signal': model.basic_signal, 'feature_dim': model.feature_dim,
'hidden_size': model.hidden_size, 'num_layer': model.num_layer,
'segment_size': model.segment_size, 'nspk': model.nspk,
'galr_block_num': model.galr_block_num,
# state
'state_dict': model.state_dict(),
'optim_dict': optimizer.state_dict(),
'epoch': epoch
}
if tr_loss is not None:
package['tr_loss'] = tr_loss
package['cv_loss'] = cv_loss
return package
if __name__ == "__main__":
model = GALR_model(basic_signal=2, feature_dim=64, hidden_size=128, num_layer=2, segment_size=64, nspk=2,
galr_block_num=6)
galr_input = torch.ones(1, 1024)
galr_model_out = model(galr_input)
print(galr_model_out.shape)
# file_path = 'D:/my_python_project/Conv-TasNet-master/my_save_stage_for_GALR/epoch1.pth.tar'
# tr_loss = [0]
# cv_loss = [0]
# optimizer = torch.optim.SGD(model.parameters(),
# lr=1e-3,
# momentum=0.01,
# weight_decay=0.01)
# torch.save(model.serialize(model,
# optimizer, 1,
# tr_loss=tr_loss,
# cv_loss=cv_loss),
# file_path)
#
# package = torch.load(file_path)
# model.load_state_dict(package['state_dict'])
# optimizer.load_state_dict(package['optim_dict'])
# start_epoch = int(package.get('epoch', 1))
# tr_loss[:start_epoch] = package['tr_loss'][:start_epoch]
# cv_loss[:start_epoch] = package['cv_loss'][:start_epoch]
# print(optimizer)
# print(model)