forked from brettviren/wire-cell-toolkit
-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathwirecell.jsonnet
398 lines (320 loc) · 10.5 KB
/
wirecell.jsonnet
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
/**
Jsonnet version of Wire Cell System of units. This is a one-time
manual/Emacs conversion from the WireCellUtil/Units.h file.
Below the units is some helper code.
*/
{
// constants
pi: 2*std.acos(0),
twopi : 2*self.pi,
halfpi : self.pi/2,
pi2 : self.pi*self.pi,
sqrtpi: std.sqrt(self.pi),
//
// Length [L]
//
millimeter : 1.0,
millimeter2 : self.millimeter*self.millimeter,
millimeter3 : self.millimeter*self.millimeter*self.millimeter,
centimeter : 10.0*self.millimeter,
centimeter2 : self.centimeter*self.centimeter,
centimeter3 : self.centimeter*self.centimeter*self.centimeter,
meter : 1000.0*self.millimeter,
meter2 : self.meter*self.meter,
meter3 : self.meter*self.meter*self.meter,
kilometer : 1000.0*self.meter,
kilometer2 : self.kilometer*self.kilometer,
kilometer3 : self.kilometer*self.kilometer*self.kilometer,
parsec : 3.0856775807e+16*self.meter,
micrometer : 1.0e-6 *self.meter,
nanometer : 1.0e-9 *self.meter,
angstrom : 1.0e-10*self.meter,
fermi : 1.0e-15*self.meter,
barn : 1.0e-28*self.meter2,
millibarn : 1.0e-3 *self.barn,
microbarn : 1.0e-6 *self.barn,
nanobarn : 1.0e-9 *self.barn,
picobarn : 1.0e-12*self.barn,
// symbols
nm : self.nanometer,
um : self.micrometer,
mm : self.millimeter,
mm2 : self.millimeter2,
mm3 : self.millimeter3,
cm : self.centimeter,
cm2 : self.centimeter2,
cm3 : self.centimeter3,
m : self.meter,
m2 : self.meter2,
m3 : self.meter3,
km : self.kilometer,
km2 : self.kilometer2,
km3 : self.kilometer3,
pc : self.parsec,
//
// Angle
//
radian : 1.0,
milliradian : 1.0e-3*self.radian,
degree : (self.pi/180.0)*self.radian,
steradian : 1.0,
// symbols
rad : self.radian,
mrad : self.milliradian,
sr : self.steradian,
deg : self.degree,
//
// Time [T]
//
nanosecond : 1.0,
second : 1.0e+9 *self.nanosecond,
millisecond : 1.0e-3 *self.second,
microsecond : 1.0e-6 *self.second,
picosecond : 1.0e-12*self.second,
hertz : 1.0/self.second,
kilohertz : 1.0e+3*self.hertz,
megahertz : 1.0e+6*self.hertz,
// symbols
ns : self.nanosecond,
s : self.second,
ms : self.millisecond,
us : self.microsecond,
//
// Electric charge [Q]
//
eplus : 1.0,// positron charge
e_SI : 1.602176487e-19,// positron charge in coulomb
coulomb : self.eplus/self.e_SI,// coulomb : 6.24150 e+18 * eplus
fC : 1.0e-15*self.coulomb, // femtocoulomb
//
// Energy [E]
//
megaelectronvolt : 1.0,
electronvolt : 1.0e-6*self.megaelectronvolt,
kiloelectronvolt : 1.0e-3*self.megaelectronvolt,
gigaelectronvolt : 1.0e+3*self.megaelectronvolt,
teraelectronvolt : 1.0e+6*self.megaelectronvolt,
petaelectronvolt : 1.0e+9*self.megaelectronvolt,
joule : self.electronvolt/self.e_SI,// joule : 6.24150 e+12 * MeV
// symbols
MeV : self.megaelectronvolt,
eV : self.electronvolt,
keV : self.kiloelectronvolt,
GeV : self.gigaelectronvolt,
TeV : self.teraelectronvolt,
PeV : self.petaelectronvolt,
//
// Mass [E][T^2][L^-2]
//
kilogram : self.joule*self.second*self.second/(self.meter*self.meter),
gram : 1.0e-3*self.kilogram,
milligram : 1.0e-3*self.gram,
// symbols
kg : self.kilogram,
g : self.gram,
mg : self.milligram,
//
// Power [E][T^-1]
//
watt : self.joule/self.second,// watt : 6.24150 e+3 * MeV/ns
//
// Force [E][L^-1]
//
newton : self.joule/self.meter,// newton : 6.24150 e+9 * MeV/mm
//
// Pressure [E][L^-3]
//
pascal : self.newton/self.m2, // pascal : 6.24150 e+3 * MeV/mm3
bar : 100000*self.pascal, // bar : 6.24150 e+8 * MeV/mm3
atmosphere : 101325*self.pascal, // atm : 6.32420 e+8 * MeV/mm3
//
// Electric current [Q][T^-1]
//
ampere : self.coulomb/self.second, // ampere : 6.24150 e+9 * eplus/ns
milliampere : 1.0e-3*self.ampere,
microampere : 1.0e-6*self.ampere,
nanoampere : 1.0e-9*self.ampere,
//
// Electric potential [E][Q^-1]
//
megavolt : self.megaelectronvolt/self.eplus,
kilovolt : 1.0e-3*self.megavolt,
volt : 1.0e-6*self.megavolt,
millivolt : 1.0e-3*self.volt,
microvolt : 1.0e-6*self.volt,
mV : self.millivolt,
uV : self.microvolt,
//
// Electric resistance [E][T][Q^-2]
//
ohm : self.volt/self.ampere,// ohm : 1.60217e-16*(MeV/eplus)/(eplus/ns)
//
// Electric capacitance [Q^2][E^-1]
//
farad : self.coulomb/self.volt,// farad : 6.24150e+24 * eplus/Megavolt
millifarad : 1.0e-3*self.farad,
microfarad : 1.0e-6*self.farad,
nanofarad : 1.0e-9*self.farad,
picofarad : 1.0e-12*self.farad,
//
// Magnetic Flux [T][E][Q^-1]
//
weber : self.volt*self.second,// weber : 1000*megavolt*ns
//
// Magnetic Field [T][E][Q^-1][L^-2]
//
tesla : self.volt*self.second/self.meter2,// tesla :0.001*megavolt*ns/mm2
gauss : 1.0e-4*self.tesla,
kilogauss : 1.0e-1*self.tesla,
//
// Inductance [T^2][E][Q^-2]
//
henry : self.weber/self.ampere,// henry : 1.60217e-7*MeV*(ns/eplus)**2
//
// Temperature
//
kelvin : 1.0,
//
// Amount of substance
//
mole : 1.0,
//
// Activity [T^-1]
//
becquerel : 1.0/self.second ,
curie : 3.7e+10 * self.becquerel,
kilobecquerel : 1.0e+3*self.becquerel,
megabecquerel : 1.0e+6*self.becquerel,
gigabecquerel : 1.0e+9*self.becquerel,
millicurie : 1.0e-3*self.curie,
microcurie : 1.0e-6*self.curie,
Bq : self.becquerel,
kBq : self.kilobecquerel,
MBq : self.megabecquerel,
GBq : self.gigabecquerel,
Ci : self.curie,
mCi : self.millicurie,
uCi : self.microcurie,
//
// Absorbed dose [L^2][T^-2]
//
gray : self.joule/self.kilogram ,
kilogray : 1.0e+3*self.gray,
milligray : 1.0e-3*self.gray,
microgray : 1.0e-6*self.gray,
//
// Luminous intensity [I]
//
candela : 1.0,
//
// Luminous flux [I]
//
lumen : self.candela*self.steradian,
//
// Illuminance [I][L^-2]
//
lux : self.lumen/self.meter2,
//
// Miscellaneous
//
perCent : 0.01 ,
perThousand : 0.001,
perMillion : 0.000001,
// some constants of nature.
clight : 2.99792458e8*self.meter/self.second,
//// Above are Wire Cell system of units.
//// Below are some Jsonnet helpers
// at 500 volts
nominal_drift_velocity: 1.6*self.mm/self.us,
// vectors
point(x,y,z,u) :: {x:x*u, y:y*u, z:z*u},
ray(p1,p2) :: {tail:p1, head:p2},
Point :: {x:0,y:0,z:0},
Ray :: {tail:self.Point,head:self.Point},
Track :: { time:0.0, charge:-1, ray:self.Ray },
// WirePlaneID is a packed integer. WARNING, layer is NOT what
// most people call "plane number". It is a bit field. For
// 3-plane detectors the outer most wire plane layer is 1, then 2
// and collection is 4 (not 3). layer=0 is undefined.
Ulayer:1<<0,
Vlayer:1<<1,
Wlayer:1<<2,
WirePlaneId(layer, face=0, apa=0) :: (layer&7) | (face << 3) | (apa << 4),
// Base class for a configurable.
Component :: {
type:"",
name:"",
data:{}
},
/// example usage:
TrackDepos :: self.Component + { type: "TrackDepos" },
/// Return canonical "type:name" or just "type" if no name from a
/// configuration object. Use this instead of bare names to
/// better guard against typos and changes in dependent
/// configuration. So instead of using:
///
/// anode: "Anode:myanode",
///
/// use the more robust:
///
/// anode: wc.tn(myanode),
///
/// This function can also be applied to objects which happen to
/// be produced by pgraph.pnode()
tn(obj) :: if std.objectHas(obj, "name") && obj.name != ""
then obj.type + ":" + obj.name
else obj.type,
// Return a new list where only the first occurrence of any object is kept.
unique_helper(l, x):: if std.count(l,x) == 0 then l + [x] else l,
unique_list(l):: std.foldl($.unique_helper, l, []),
// Return an array. If l is array, return it. If string, split it, if object return field names
listify(l, d=',') ::
local t = std.type(l);
if t == "string" then
std.split(l, d)
else if t == "object" then
std.objectValues(l)
else
l,
// Round a floating point to nearest integer. It's a bit weird to
// go through a format/parse. Maybe there's a better way?
roundToInt(x):: std.parseInt("%d" % (x+0.5)),
// Like the shell command of the same name.
basename(name, ext="", delim="/") ::
local parts = std.split(name, delim);
local base = parts[std.length(parts)-1];
if std.endsWith(base, ext) then
base[:std.length(base)-std.length(ext)]
else
base,
freqbinner :: function(tick, nsamples) {
nyquist : 0.5 / tick,
hz_perbin : 1.0/(tick/$.second * nsamples),
// A function to return the frequency bin holding the given
// frequency. The frequency is specified in the system of
// units.
bin :: function(frequency) std.floor((frequency/$.hertz) / self.hz_perbin),
// Return a frequency bin range holding meanfreq +/- deltafreq,
// both freqencies in system of units.
bin_range :: function(meanfreq, deltafreq) [
self.bin(std.max(0, meanfreq-deltafreq)),
self.bin(std.min(self.nyquist, meanfreq+deltafreq))
],
// Return something suitable to set to chndb's
// channel_info[].freqmasks. The "meanfreqs" should be a list
// of frequencies in the sytem of units and delta is a common
// detla. See bin_range.
local _br = self.bin_range,
freqmasks :: function(meanfreqs, delta) [
{ value: 1.0, lobin: 0, hibin: nsamples-1 }
] + [ {
local br = _br(mf, delta),
value: 0.0, lobin: br[0], hibin: br[1],
} for mf in meanfreqs],
testfreqs :: [f*$.kilohertz for f in [51.5, 102.8, 154.2, 205.5, 256.8, 308.2, 359.2, 410.5, 461.8, 513.2, 564.5, 615.8]],
testmasks : self.freqmasks(self.testfreqs, 2*$.kilohertz),
},
// This is std.get from 0.18.0
get(o, f, default=null, inc_hidden=true)::
if std.objectHasEx(o, f, inc_hidden) then o[f] else default,
}