-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathstep5_export.py
406 lines (349 loc) · 16.7 KB
/
step5_export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# step5_export.py
"""Write Tecplot-readable ASCII (text) files from simulation data.
The resulting files can be used with Tecplot to visualize snapshots
over the entire computational domain.
Output types
------------
* gems: write full-order GEMS data in the ROM learning variables.
* rom: write reconstructed ROM outputs. The specific ROM is selected via
command line arguments --trainsize, --modes, and --regularization.
* error: write the absolute error between the GEMS data and the ROM outputs.
Examples
--------
# Export every 100th snapshot (default) of GEMS data (all variables).
$ python3 step5_export.py gems
# Export only snapshot 5000 of GEMS data (all variables).
$ python3 step5_export.py gems --timeindex 5000
# Export only snapshot 4000 of GEMS pressure and temperature data.
$ python3 step5_export.py gems --timeindex 4000 --variables p T
# Export snapshot 4000 of reconstructed pressure, temperature, and methane
# data from the ROM trained from 10,000 snapshots, 22 POD modes, and
# regularization parameter 3e4.
$ python3 step5_export.py rom --timeindex 4000 --variables p T CH4
--trainsize 10000 --modes 22 --regularization 3e4
# Export every 100th snapshot of reconstructed ROM data (all variables) and the
# absolute errors, derived from the ROM trained from 20,000 snapshots, 44 POD
# modes, and regularization parameter 3e4.
$ python3 step5_export.py rom error --trainsize 20000 --modes 44
--regularization 3e4
Loading Results
---------------
>>> import config
>>> print("Tecplot-friendly files are exported to", config.tecplot_path())
Command Line Arguments
----------------------
"""
import os
import re
import numpy as np
import config
import utils
import data_processing as dproc
import step4_plot as step4
# header = HEADER.format(varnames, timeindex, solutiontime,
# num_nodes, DOF, num_vars, datatypes)
HEADER = """TITLE = "Combustion GEMS 2D Nonintrusive ROM"
VARIABLES="x"
"y"
{:s}
ZONE T="zone 1"
STRANDID={:d}, SOLUTIONTIME={:.7f}
Nodes={:d}, Elements={:d}, ZONETYPE=FEQuadrilateral
DATAPACKING=BLOCK
VARLOCATION=([3-{:d}]=CELLCENTERED)
DT=({:s})
"""
NCOLS = 4
def main(timeindices, variables=None, snaptype=("gems", "rom", "error"),
trainsize=None, r=None, reg=None):
"""Convert a snapshot in .h5 format to a .dat file that matches the format
of grid.dat. The new file is saved in `config.tecplot_path()` with the same
filename and the new file extension .dat.
Parameters
----------
timeindices : ndarray(int) or int
Indices (one-based) in the full time domain of the snapshots to save.
variables : str or list(str)
Variables to save, a subset of config.ROM_VARIABLES.
Defaults to all variables.
snaptype : {"rom", "gems", "error"} or list(str)
Which kinds of snapshots to save. Options:
* "gems": snapshots from the full-order GEMS data;
* "rom": reconstructed snapshots produced by a ROM;
* "error": absolute error between the full-order data
and the reduced-order reconstruction.
If "rom" or "error" are selected, the remaining arguments are required.
trainsize : int
Number of snapshots used to train the ROM.
r : int
Number of retained modes in the ROM.
reg : two non-negative floats
Regularization hyperparameters used to train the ROM.
"""
utils.reset_logger(trainsize)
# Parse parameters.
timeindices = np.sort(np.atleast_1d(timeindices))
simtime = timeindices.max()
t = utils.load_time_domain(simtime+1)
if variables is None:
variables = config.ROM_VARIABLES
elif isinstance(variables, str):
variables = [variables]
varnames = '\n'.join(f'"{v}"' for v in variables)
if isinstance(snaptype, str):
snaptype = [snaptype]
for stype in snaptype:
if stype not in ("gems", "rom", "error"):
raise ValueError(f"invalid snaptype '{stype}'")
# Read the grid file.
with utils.timed_block("Reading Tecplot grid data"):
# Parse the header.
grid_path = config.grid_data_path()
with open(grid_path, 'r') as infile:
grid = infile.read()
if int(re.findall(r"Elements=(\d+)", grid)[0]) != config.DOF:
raise RuntimeError(f"{grid_path} DOF and config.DOF do not match")
num_nodes = int(re.findall(r"Nodes=(\d+)", grid)[0])
end_of_header = re.findall(r"DT=.*?\n", grid)[0]
headersize = grid.find(end_of_header) + len(end_of_header)
# Extract geometry information.
grid_data = grid[headersize:].split()
x = grid_data[:num_nodes]
y = grid_data[num_nodes:2*num_nodes]
# cell_volume = grid_data[2*num_nodes:3*num_nodes]
connectivity = grid_data[3*num_nodes:]
# Extract full-order data if needed.
if ("gems" in snaptype) or ("error" in snaptype):
gems_data, _ = utils.load_gems_data(cols=timeindices)
with utils.timed_block("Lifting selected snapshots of GEMS data"):
lifted_data = dproc.lift(gems_data)
true_snaps = np.concatenate([dproc.getvar(v, lifted_data)
for v in variables])
# Simulate ROM if needed.
if ("rom" in snaptype) or ("error" in snaptype):
t, V, scales, q_rom = step4.simulate_rom(trainsize, r, reg,
steps=simtime+1)
# Reconstruct the results (only selected variables / snapshots).
with utils.timed_block("Reconstructing simulation results"):
q_rec = dproc.unscale(V @ q_rom[:,timeindices], scales)
q_rec = np.concatenate([dproc.getvar(v, q_rec) for v in variables])
dsets = {}
if "rom" in snaptype:
dsets["rom"] = q_rec
if "gems" in snaptype:
dsets["gems"] = true_snaps
if "error" in snaptype:
with utils.timed_block("Computing absolute error of reconstruction"):
abs_err = np.abs(true_snaps - q_rec)
dsets["error"] = abs_err
# Save each of the selected snapshots in Tecplot format matching grid.dat.
for j,tindex in enumerate(timeindices):
header = HEADER.format(varnames, tindex, t[tindex],
num_nodes, config.DOF,
len(variables)+2, "DOUBLE "*len(variables))
for label, dset in dsets.items():
if label == "gems":
save_path = config.gems_snapshot_path(tindex)
if label in ("rom", "error"):
folder = config.rom_snapshot_path(trainsize, r, reg)
save_path = os.path.join(folder, f"{label}_{tindex:05d}.dat")
with utils.timed_block(f"Writing {label} snapshot {tindex:05d}"):
with open(save_path, 'w') as outfile:
# Write the header.
outfile.write(header)
# Write the geometry data (x,y coordinates).
for i in range(0, len(x), NCOLS):
outfile.write(' '.join(x[i:i+NCOLS]) + '\n')
for i in range(0, len(y), NCOLS):
outfile.write(' '.join(y[i:i+NCOLS]) + '\n')
# Write the data for each variable.
for i in range(0, dset.shape[0], NCOLS):
row = ' '.join(f"{v:.9E}"
for v in dset[i:i+NCOLS,j])
outfile.write(row + '\n')
# Write connectivity information.
for i in range(0, len(connectivity), NCOLS):
outfile.write(' '.join(connectivity[i:i+NCOLS]) + '\n')
def temperature_average(trainsize, r, reg, cutoff=60000):
"""Get the average-in-time temperature profile for the GEMS data and a
specific ROM.
Parameters
----------
trainsize : int
Number of snapshots used to train the ROM.
r : int
Dimension of the ROM.
reg : float
Regularization hyperparameters used to train the ROM.
cutoff : int
Number of time steps to average over.
"""
utils.reset_logger(trainsize)
# Read the grid file.
with utils.timed_block("Reading Tecplot grid data"):
# Parse the header.
grid_path = config.grid_data_path()
with open(grid_path, 'r') as infile:
grid = infile.read()
if int(re.findall(r"Elements=(\d+)", grid)[0]) != config.DOF:
raise RuntimeError(f"{grid_path} DOF and config.DOF do not match")
num_nodes = int(re.findall(r"Nodes=(\d+)", grid)[0])
end_of_header = re.findall(r"DT=.*?\n", grid)[0]
headersize = grid.find(end_of_header) + len(end_of_header)
# Extract geometry information.
grid_data = grid[headersize:].split()
x = grid_data[:num_nodes]
y = grid_data[num_nodes:2*num_nodes]
# cell_volume = grid_data[2*num_nodes:3*num_nodes]
connectivity = grid_data[3*num_nodes:]
# Compute full-order time-averaged temperature from GEMS data.
_s = config.DOF*config.GEMS_VARIABLES.index("T")
gems_data, _ = utils.load_gems_data(rows=slice(_s, _s+config.DOF),
cols=cutoff)
with utils.timed_block("Computing time-averaged GEMS temperature"):
T_gems = gems_data.mean(axis=1)
assert T_gems.shape == (config.DOF,)
# Simulate ROM and compute the time-averaged temperature.
t, V, scales, q_rom = step4.simulate_rom(trainsize, r, reg, steps=cutoff)
with utils.timed_block("Reconstructing ROM simulation results"):
T_rom = dproc.unscale(dproc.getvar("T",V) @ q_rom, scales, "T")
T_rom = T_rom.mean(axis=1)
assert T_rom.shape == (config.DOF,)
header = HEADER.format('"T"', 0, 0, num_nodes, config.DOF,
3, "DOUBLE "*3)
header = header.replace("VARLOCATION=([3-3]", "VARLOCATION=([3]")
for label, dset in zip(["gems", "rom"], [T_gems, T_rom]):
if label == "gems":
save_path = os.path.join(config.tecplot_path(), "gems",
"temperature_average.dat")
elif label == "rom":
folder = config.rom_snapshot_path(trainsize, r, reg)
save_path = os.path.join(folder, "temperature_average.dat")
with utils.timed_block(f"Writing {label} temperature average"):
with open(save_path, 'w') as outfile:
# Write the header.
outfile.write(header)
# Write the geometry data (x,y coordinates).
for i in range(0, len(x), NCOLS):
outfile.write(' '.join(x[i:i+NCOLS]) + '\n')
for i in range(0, len(y), NCOLS):
outfile.write(' '.join(y[i:i+NCOLS]) + '\n')
# Write the data for each variable.
for i in range(0, dset.shape[0], NCOLS):
row = ' '.join(f"{v:.9E}" for v in dset[i:i+NCOLS])
outfile.write(row + '\n')
# Write connectivity information.
for i in range(0, len(connectivity), NCOLS):
outfile.write(' '.join(connectivity[i:i+NCOLS]) + '\n')
def basis(trainsize, r, variables=None):
"""Export the POD basis vectors to Tecplot format.
Parameters
----------
trainsize : int
Number of snapshots used to compute the basis.
r : int
Number of basis vectors to save.
variables : str or list(str)
Variables to save, a subset of config.ROM_VARIABLES.
Defaults to all variables.
"""
utils.reset_logger(trainsize)
if variables is None:
variables = config.ROM_VARIABLES
elif isinstance(variables, str):
variables = [variables]
varnames = '\n'.join(f'"{v}"' for v in variables)
# Read the grid file.
with utils.timed_block("Reading Tecplot grid data"):
# Parse the header.
grid_path = config.grid_data_path()
with open(grid_path, 'r') as infile:
grid = infile.read()
if int(re.findall(r"Elements=(\d+)", grid)[0]) != config.DOF:
raise RuntimeError(f"{grid_path} DOF and config.DOF do not match")
num_nodes = int(re.findall(r"Nodes=(\d+)", grid)[0])
end_of_header = re.findall(r"DT=.*?\n", grid)[0]
headersize = grid.find(end_of_header) + len(end_of_header)
# Extract geometry information.
grid_data = grid[headersize:].split()
x = grid_data[:num_nodes]
y = grid_data[num_nodes:2*num_nodes]
# cell_volume = grid_data[2*num_nodes:3*num_nodes]
connectivity = grid_data[3*num_nodes:]
# Load the basis and extract desired variables.
V, _, _ = utils.load_basis(trainsize, r)
V = np.concatenate([dproc.getvar(var, V) for var in variables])
# Save each of the basis vectors in Tecplot format matching grid.dat.
for j in range(r):
header = HEADER.format(varnames, j, j, num_nodes, config.DOF,
len(variables)+2, "DOUBLE "*len(variables))
save_folder = config._makefolder(config.tecplot_path(),
"basis", config.TRNFMT(trainsize))
save_path = os.path.join(save_folder, f"vec_{j+1:03d}.dat")
with utils.timed_block(f"Writing basis vector {j+1:d}"):
with open(save_path, 'w') as outfile:
# Write the header.
outfile.write(header)
# Write the geometry data (x,y coordinates).
for i in range(0, len(x), NCOLS):
outfile.write(' '.join(x[i:i+NCOLS]) + '\n')
for i in range(0, len(y), NCOLS):
outfile.write(' '.join(y[i:i+NCOLS]) + '\n')
# Write the data for each variable.
for i in range(0, V.shape[0], NCOLS):
row = ' '.join(f"{v:.9E}" for v in V[i:i+NCOLS,j])
outfile.write(row + '\n')
# Write connectivity information.
for i in range(0, len(connectivity), NCOLS):
outfile.write(' '.join(connectivity[i:i+NCOLS]) + '\n')
print(f"Basis info exported to {save_folder}/*.dat.")
# =============================================================================
if __name__ == '__main__':
# Set up command line argument parsing.
import argparse
parser = argparse.ArgumentParser(description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.usage = f""" python3 {__file__} -h
python3 {__file__} (gems | rom | error)
--timeindex T [...]
--variables V [...]
[--trainsize TRAINSIZE]
[--modes MODES]
[--regularization REG1 REG2]"""
parser.add_argument("snaptype", type=str, nargs='*',
help="which snapshot types to save (gems, rom, error)")
parser.add_argument("--timeindex", type=int, nargs='*',
default=list(range(0,60100,100)),
help="indices of snapshots to save "
"(default every 100th snapshot)")
parser.add_argument("--variables", type=str, nargs='*',
default=config.ROM_VARIABLES,
help="variables to save, a subset of "
"config.ROM_VARIABLES (default all)")
parser.add_argument("--trainsize", type=int, nargs='?',
help="number of snapshots in the ROM training data")
parser.add_argument("--modes", type=int, nargs='?',
help="ROM dimension (number of retained POD modes)")
parser.add_argument("--regularization", type=float, nargs='*',
help="regularization hyperparameters in the "
"ROM training")
parser.add_argument("--temperature-average", action="store_true",
help="compute temperature averages of GEMS / ROM")
parser.add_argument("--basis", action="store_true",
help="save basis vectors for visualization")
# Do the main routine.
args = parser.parse_args()
if ("rom" in args.snaptype) or ("error" in args.snaptype):
if args.trainsize is None:
raise TypeError("--trainsize required")
if args.modes is None:
raise TypeError("--modes required")
if args.regularization is None:
raise TypeError("--regularization required")
if args.temperature_average:
temperature_average(args.trainsize, args.modes, args.regularization)
elif args.basis:
basis(args.trainsize, args.modes, args.variables)
else:
main(args.timeindex, args.variables, args.snaptype,
args.trainsize, args.modes, args.regularization)