-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgen_images.py
219 lines (180 loc) · 6.45 KB
/
gen_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Generate images using pretrained network pickle."""
import os
import re
from typing import List, Optional, Tuple, Union
import click
import dnnlib
import legacy
import numpy as np
import PIL.Image
import torch
# ----------------------------------------------------------------------------
def parse_range(s: Union[str, List]) -> List[int]:
"""Parse a comma separated list of numbers or ranges and return a list of ints.
Example: '1,2,5-10' returns [1, 2, 5, 6, 7]
"""
if isinstance(s, list):
return s
ranges = []
range_re = re.compile(r"^(\d+)-(\d+)$")
for p in s.split(","):
m = range_re.match(p)
if m:
ranges.extend(range(int(m.group(1)), int(m.group(2)) + 1))
else:
ranges.append(int(p))
return ranges
# ----------------------------------------------------------------------------
def parse_vec2(s: Union[str, Tuple[float, float]]) -> Tuple[float, float]:
"""Parse a floating point 2-vector of syntax 'a,b'.
Example:
'0,1' returns (0,1)
"""
if isinstance(s, tuple):
return s
parts = s.split(",")
if len(parts) == 2:
return (float(parts[0]), float(parts[1]))
raise ValueError(f"cannot parse 2-vector {s}")
# ----------------------------------------------------------------------------
def make_transform(translate: Tuple[float, float], angle: float):
m = np.eye(3)
s = np.sin(angle / 360.0 * np.pi * 2)
c = np.cos(angle / 360.0 * np.pi * 2)
m[0][0] = c
m[0][1] = s
m[0][2] = translate[0]
m[1][0] = -s
m[1][1] = c
m[1][2] = translate[1]
return m
# ----------------------------------------------------------------------------
def make_coords(resolution: float, scale: float):
coords = torch.linspace(0, 1, int(resolution * scale))
coords = coords.reshape(1, -1, 1, 1)
coords = coords.repeat(1, 1, 2, 1)
return coords
# ----------------------------------------------------------------------------
@click.command()
@click.option("--network", "network_pkl", help="Network pickle filename", required=True)
@click.option(
"--seeds",
type=parse_range,
help="List of random seeds (e.g., '0,1,4-6')",
required=True,
)
@click.option(
"--trunc",
"truncation_psi",
type=float,
help="Truncation psi",
default=1,
show_default=True,
)
@click.option(
"--class",
"class_idx",
type=int,
help="Class label (unconditional if not specified)",
)
@click.option(
"--noise-mode",
help="Noise mode",
type=click.Choice(["const", "random", "none"]),
default="const",
show_default=True,
)
@click.option(
"--translate",
help="Translate XY-coordinate (e.g. '0.3,1')",
type=parse_vec2,
default="0,0",
show_default=True,
metavar="VEC2",
)
@click.option(
"--rotate",
help="Rotation angle in degrees",
type=float,
default=0,
show_default=True,
metavar="ANGLE",
)
@click.option(
"--scale",
help="Scale of output images",
type=float,
default=1,
show_default=True,
)
@click.option(
"--outdir",
help="Where to save the output images",
type=str,
required=True,
metavar="DIR",
)
def generate_images(
network_pkl: str,
seeds: List[int],
truncation_psi: float,
noise_mode: str,
outdir: str,
translate: Tuple[float, float],
rotate: float,
scale: float,
class_idx: Optional[int],
):
"""Generate images using pretrained network pickle.
Examples:
\b
# Generate an image using pre-trained AFHQv2 model ("Ours" in Figure 1, left).
python gen_images.py --outdir=out --trunc=1 --seeds=2 \\
--network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-afhqv2-512x512.pkl
\b
# Generate uncurated images with truncation using the MetFaces-U dataset
python gen_images.py --outdir=out --trunc=0.7 --seeds=600-605 \\
--network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-metfacesu-1024x1024.pkl
"""
print('Loading networks from "%s"...' % network_pkl)
device = torch.device("cuda")
with dnnlib.util.open_url(network_pkl) as f:
G = legacy.load_network_pkl(f)["G_ema"].to(device) # type: ignore
os.makedirs(outdir, exist_ok=True)
# Labels.
label = torch.zeros([1, G.c_dim], device=device)
if G.c_dim != 0:
if class_idx is None:
raise click.ClickException("Must specify class label with --class when using a conditional network")
label[:, class_idx] = 1
else:
if class_idx is not None:
print("warn: --class=lbl ignored when running on an unconditional network")
# Generate images.
for seed_idx, seed in enumerate(seeds):
print("Generating image for seed %d (%d/%d) ..." % (seed, seed_idx, len(seeds)))
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device)
# Construct an inverse rotation/translation matrix and pass to the stylegan3 generator. The
# generator expects this matrix as an inverse to avoid potentially failing numerical
# operations in the network.
if hasattr(G.synthesis, "input"):
m = make_transform(translate, rotate)
m = np.linalg.inv(m)
G.synthesis.input.transform.copy_(torch.from_numpy(m))
# Construct an input coordinates and pass to the creps generator.
if hasattr(G.synthesis.b4, "input"):
G.synthesis.b4.input.coords = make_coords(G.img_resolution, scale).to(device)
img = G(z, label, truncation_psi=truncation_psi, noise_mode=noise_mode)
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
PIL.Image.fromarray(img[0].cpu().numpy(), "RGB").save(f"{outdir}/seed{seed:04d}.png")
# ----------------------------------------------------------------------------
if __name__ == "__main__":
generate_images() # pylint: disable=no-value-for-parameter
# ----------------------------------------------------------------------------