-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththesisdiscussion.html
444 lines (402 loc) · 45.2 KB
/
thesisdiscussion.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<title>7 Discussion | Dissertation_Duco_Veen.utf8.md</title>
<meta name="description" content="" />
<meta name="generator" content="bookdown 0.14 and GitBook 2.6.7" />
<meta property="og:title" content="7 Discussion | Dissertation_Duco_Veen.utf8.md" />
<meta property="og:type" content="book" />
<meta property="og:url" content="https://github.com/VeenDuco/Dissertation/" />
<meta name="github-repo" content="VeenDuco/Dissertation" />
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="7 Discussion | Dissertation_Duco_Veen.utf8.md" />
<meta name="author" content="Duco Veen" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black" />
<link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
<link rel="prev" href="elicitlgm.html"/>
<link rel="next" href="nederlandse-samenvatting.html"/>
<script src="libs/jquery-2.2.3/jquery.min.js"></script>
<link href="libs/gitbook-2.6.7/css/style.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-table.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-bookdown.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-highlight.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-search.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-fontsettings.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-clipboard.css" rel="stylesheet" />
<style type="text/css">
a.sourceLine { display: inline-block; line-height: 1.25; }
a.sourceLine { pointer-events: none; color: inherit; text-decoration: inherit; }
a.sourceLine:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode { white-space: pre; position: relative; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
code.sourceCode { white-space: pre-wrap; }
a.sourceLine { text-indent: -1em; padding-left: 1em; }
}
pre.numberSource a.sourceLine
{ position: relative; left: -4em; }
pre.numberSource a.sourceLine::before
{ content: attr(title);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; pointer-events: all; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
a.sourceLine::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
</head>
<body>
<div class="book without-animation with-summary font-size-2 font-family-1" data-basepath=".">
<div class="book-summary">
<nav role="navigation">
<ul class="summary">
<li class="chapter" data-level="1" data-path="index.html"><a href="index.html"><i class="fa fa-check"></i><b>1</b> Introduction</a><ul>
<li class="chapter" data-level="1.1" data-path="index.html"><a href="index.html#bayesian-statistics"><i class="fa fa-check"></i><b>1.1</b> Bayesian Statistics</a></li>
<li class="chapter" data-level="1.2" data-path="index.html"><a href="index.html#prior-information"><i class="fa fa-check"></i><b>1.2</b> Prior Information</a></li>
<li class="chapter" data-level="1.3" data-path="index.html"><a href="index.html#expert-elicitation"><i class="fa fa-check"></i><b>1.3</b> Expert Elicitation</a></li>
<li class="chapter" data-level="1.4" data-path="index.html"><a href="index.html#aims-and-outline"><i class="fa fa-check"></i><b>1.4</b> Aims and Outline</a></li>
</ul></li>
<li class="chapter" data-level="2" data-path="fivestep.html"><a href="fivestep.html"><i class="fa fa-check"></i><b>2</b> Proposal for a Five-Step Method to Elicit Expert Judgment</a><ul>
<li class="chapter" data-level="" data-path="fivestep.html"><a href="fivestep.html#abstract"><i class="fa fa-check"></i>Abstract</a></li>
<li class="chapter" data-level="2.1" data-path="fivestep.html"><a href="fivestep.html#ch02introduction"><i class="fa fa-check"></i><b>2.1</b> Introduction</a></li>
<li class="chapter" data-level="2.2" data-path="fivestep.html"><a href="fivestep.html#five-step-method"><i class="fa fa-check"></i><b>2.2</b> Five-Step Method</a><ul>
<li class="chapter" data-level="2.2.1" data-path="fivestep.html"><a href="fivestep.html#step-1"><i class="fa fa-check"></i><b>2.2.1</b> Step 1</a></li>
<li class="chapter" data-level="2.2.2" data-path="fivestep.html"><a href="fivestep.html#step-2"><i class="fa fa-check"></i><b>2.2.2</b> Step 2</a></li>
<li class="chapter" data-level="2.2.3" data-path="fivestep.html"><a href="fivestep.html#step-3"><i class="fa fa-check"></i><b>2.2.3</b> Step 3</a></li>
<li class="chapter" data-level="2.2.4" data-path="fivestep.html"><a href="fivestep.html#step-4"><i class="fa fa-check"></i><b>2.2.4</b> Step 4</a></li>
<li class="chapter" data-level="2.2.5" data-path="fivestep.html"><a href="fivestep.html#step-5"><i class="fa fa-check"></i><b>2.2.5</b> Step 5</a></li>
</ul></li>
<li class="chapter" data-level="2.3" data-path="fivestep.html"><a href="fivestep.html#elicitation-studies"><i class="fa fa-check"></i><b>2.3</b> Elicitation Studies</a><ul>
<li class="chapter" data-level="2.3.1" data-path="fivestep.html"><a href="fivestep.html#user-feasibility-study"><i class="fa fa-check"></i><b>2.3.1</b> User Feasibility Study</a></li>
<li class="chapter" data-level="2.3.2" data-path="fivestep.html"><a href="fivestep.html#elicitation-staffing-company"><i class="fa fa-check"></i><b>2.3.2</b> Elicitation Staffing Company</a></li>
<li class="chapter" data-level="2.3.3" data-path="fivestep.html"><a href="fivestep.html#elicitation-large-financial-institution"><i class="fa fa-check"></i><b>2.3.3</b> Elicitation Large Financial Institution</a></li>
</ul></li>
<li class="chapter" data-level="2.4" data-path="fivestep.html"><a href="fivestep.html#ch02discussion"><i class="fa fa-check"></i><b>2.4</b> Discussion</a></li>
<li class="chapter" data-level="" data-path="fivestep.html"><a href="fivestep.html#ch02ethics"><i class="fa fa-check"></i>Ethics Statement</a></li>
<li class="chapter" data-level="" data-path="fivestep.html"><a href="fivestep.html#ch02funding"><i class="fa fa-check"></i>Funding</a></li>
<li class="chapter" data-level="" data-path="fivestep.html"><a href="fivestep.html#ch02acknowledgments"><i class="fa fa-check"></i>Acknowledgments</a></li>
<li class="chapter" data-level="" data-path="fivestep.html"><a href="fivestep.html#ch02conflict"><i class="fa fa-check"></i>Conflict of Interest Statement</a></li>
</ul></li>
<li class="chapter" data-level="3" data-path="DAC1.html"><a href="DAC1.html"><i class="fa fa-check"></i><b>3</b> Using the Data Agreement Criterion to Rank Experts’ Beliefs</a><ul>
<li class="chapter" data-level="" data-path="DAC1.html"><a href="DAC1.html#abstract-1"><i class="fa fa-check"></i>Abstract</a></li>
<li class="chapter" data-level="3.1" data-path="DAC1.html"><a href="DAC1.html#ch03introduction"><i class="fa fa-check"></i><b>3.1</b> Introduction</a></li>
<li class="chapter" data-level="3.2" data-path="DAC1.html"><a href="DAC1.html#expert-data-disagreement"><i class="fa fa-check"></i><b>3.2</b> Expert-Data (Dis)Agreement</a><ul>
<li class="chapter" data-level="3.2.1" data-path="DAC1.html"><a href="DAC1.html#data-agreement-criterion"><i class="fa fa-check"></i><b>3.2.1</b> Data Agreement Criterion</a></li>
<li class="chapter" data-level="3.2.2" data-path="DAC1.html"><a href="DAC1.html#DACvsBF"><i class="fa fa-check"></i><b>3.2.2</b> Comparison to Ranking by the Bayes Factor</a></li>
<li class="chapter" data-level="3.2.3" data-path="DAC1.html"><a href="DAC1.html#DACvsBF2"><i class="fa fa-check"></i><b>3.2.3</b> DAC Versus BF</a></li>
</ul></li>
<li class="chapter" data-level="3.3" data-path="DAC1.html"><a href="DAC1.html#empirical-example"><i class="fa fa-check"></i><b>3.3</b> Empirical Example</a><ul>
<li class="chapter" data-level="3.3.1" data-path="DAC1.html"><a href="DAC1.html#elicitation-procedure"><i class="fa fa-check"></i><b>3.3.1</b> Elicitation Procedure</a></li>
<li class="chapter" data-level="3.3.2" data-path="DAC1.html"><a href="DAC1.html#ranking-the-experts"><i class="fa fa-check"></i><b>3.3.2</b> Ranking the Experts</a></li>
</ul></li>
<li class="chapter" data-level="3.4" data-path="DAC1.html"><a href="DAC1.html#ch03discussion"><i class="fa fa-check"></i><b>3.4</b> Discussion</a></li>
<li class="chapter" data-level="" data-path="DAC1.html"><a href="DAC1.html#ch03ethics"><i class="fa fa-check"></i>Ethics Statement</a></li>
<li class="chapter" data-level="" data-path="DAC1.html"><a href="DAC1.html#ch03funding"><i class="fa fa-check"></i>Funding</a></li>
<li class="chapter" data-level="" data-path="DAC1.html"><a href="DAC1.html#ch03acknowledgments"><i class="fa fa-check"></i>Acknowledgments</a></li>
<li class="chapter" data-level="" data-path="DAC1.html"><a href="DAC1.html#ch03conflict"><i class="fa fa-check"></i>Conflicts of Interest Statement</a></li>
</ul></li>
<li class="chapter" data-level="4" data-path="Hierarchical.html"><a href="Hierarchical.html"><i class="fa fa-check"></i><b>4</b> A Step Forward: Bayesian Hierarchical Modelling as a Tool in Assessment of Individual Discrimination Performance</a><ul>
<li class="chapter" data-level="" data-path="Hierarchical.html"><a href="Hierarchical.html#abstract-2"><i class="fa fa-check"></i>Abstract</a></li>
<li class="chapter" data-level="4.1" data-path="Hierarchical.html"><a href="Hierarchical.html#ch04introduction"><i class="fa fa-check"></i><b>4.1</b> Introduction</a></li>
<li class="chapter" data-level="4.2" data-path="Hierarchical.html"><a href="Hierarchical.html#method"><i class="fa fa-check"></i><b>4.2</b> Method</a><ul>
<li class="chapter" data-level="4.2.1" data-path="Hierarchical.html"><a href="Hierarchical.html#participants"><i class="fa fa-check"></i><b>4.2.1</b> Participants</a></li>
<li class="chapter" data-level="4.2.2" data-path="Hierarchical.html"><a href="Hierarchical.html#stimuli"><i class="fa fa-check"></i><b>4.2.2</b> Stimuli</a></li>
<li class="chapter" data-level="4.2.3" data-path="Hierarchical.html"><a href="Hierarchical.html#procedure"><i class="fa fa-check"></i><b>4.2.3</b> Procedure</a></li>
</ul></li>
<li class="chapter" data-level="4.3" data-path="Hierarchical.html"><a href="Hierarchical.html#results-3"><i class="fa fa-check"></i><b>4.3</b> Results</a><ul>
<li class="chapter" data-level="4.3.1" data-path="Hierarchical.html"><a href="Hierarchical.html#summary-of-the-group-data-published-in-de_klerk_lost_2019"><i class="fa fa-check"></i><b>4.3.1</b> Summary of the group data published in <span class="citation">de Klerk et al. (<span>2019</span>)</span></a></li>
<li class="chapter" data-level="4.3.2" data-path="Hierarchical.html"><a href="Hierarchical.html#data-screening"><i class="fa fa-check"></i><b>4.3.2</b> Data Screening</a></li>
<li class="chapter" data-level="4.3.3" data-path="Hierarchical.html"><a href="Hierarchical.html#analysis-1-linear-regression-model-with-autoregressive-ar1-error-structure"><i class="fa fa-check"></i><b>4.3.3</b> Analysis 1: Linear Regression Model with Autoregressive (AR1) Error Structure</a></li>
<li class="chapter" data-level="4.3.4" data-path="Hierarchical.html"><a href="Hierarchical.html#analysis-2-hierarchical-bayesian-analysis"><i class="fa fa-check"></i><b>4.3.4</b> Analysis 2: Hierarchical Bayesian Analysis</a></li>
</ul></li>
<li class="chapter" data-level="4.4" data-path="Hierarchical.html"><a href="Hierarchical.html#discussion"><i class="fa fa-check"></i><b>4.4</b> Discussion</a></li>
<li class="chapter" data-level="" data-path="Hierarchical.html"><a href="Hierarchical.html#ch04ethics"><i class="fa fa-check"></i>Ethics Statement</a></li>
<li class="chapter" data-level="" data-path="Hierarchical.html"><a href="Hierarchical.html#ch04acknowledgments"><i class="fa fa-check"></i>Acknowledgments</a></li>
<li class="chapter" data-level="" data-path="Hierarchical.html"><a href="Hierarchical.html#ch05appendix"><i class="fa fa-check"></i>Appendix A</a></li>
<li class="chapter" data-level="" data-path="Hierarchical.html"><a href="Hierarchical.html#ch05appendixB"><i class="fa fa-check"></i>Appendix B</a><ul>
<li class="chapter" data-level="4.4.1" data-path="Hierarchical.html"><a href="Hierarchical.html#software"><i class="fa fa-check"></i><b>4.4.1</b> Software</a></li>
<li class="chapter" data-level="4.4.2" data-path="Hierarchical.html"><a href="Hierarchical.html#priors"><i class="fa fa-check"></i><b>4.4.2</b> Priors</a></li>
<li class="chapter" data-level="4.4.3" data-path="Hierarchical.html"><a href="Hierarchical.html#estimation-and-convergence"><i class="fa fa-check"></i><b>4.4.3</b> Estimation and Convergence</a></li>
<li class="chapter" data-level="4.4.4" data-path="Hierarchical.html"><a href="Hierarchical.html#posterior-predictive-check"><i class="fa fa-check"></i><b>4.4.4</b> Posterior predictive check</a></li>
<li class="chapter" data-level="4.4.5" data-path="Hierarchical.html"><a href="Hierarchical.html#sensitivity-analysis"><i class="fa fa-check"></i><b>4.4.5</b> Sensitivity Analysis</a></li>
</ul></li>
</ul></li>
<li class="chapter" data-level="5" data-path="Burns.html"><a href="Burns.html"><i class="fa fa-check"></i><b>5</b> The importance of collaboration in Bayesian analyses with small samples</a><ul>
<li class="chapter" data-level="" data-path="Burns.html"><a href="Burns.html#abstract-3"><i class="fa fa-check"></i>Abstract</a></li>
<li class="chapter" data-level="5.1" data-path="Burns.html"><a href="Burns.html#ch05introduction"><i class="fa fa-check"></i><b>5.1</b> Introduction</a></li>
<li class="chapter" data-level="5.2" data-path="Burns.html"><a href="Burns.html#latent-growth-models-with-small-sample-sizes"><i class="fa fa-check"></i><b>5.2</b> Latent Growth Models with small sample sizes</a></li>
<li class="chapter" data-level="5.3" data-path="Burns.html"><a href="Burns.html#empirical-example-analysis-plan"><i class="fa fa-check"></i><b>5.3</b> Empirical example: Analysis plan</a><ul>
<li class="chapter" data-level="5.3.1" data-path="Burns.html"><a href="Burns.html#research-question-model-specification-and-an-overview-of-data"><i class="fa fa-check"></i><b>5.3.1</b> Research question, model specification and an overview of data</a></li>
<li class="chapter" data-level="5.3.2" data-path="Burns.html"><a href="Burns.html#specifying-and-understanding-priors"><i class="fa fa-check"></i><b>5.3.2</b> Specifying and understanding priors</a></li>
</ul></li>
<li class="chapter" data-level="5.4" data-path="Burns.html"><a href="Burns.html#empirical-example-conducting-the-analysis"><i class="fa fa-check"></i><b>5.4</b> Empirical example: Conducting the analysis</a></li>
<li class="chapter" data-level="5.5" data-path="Burns.html"><a href="Burns.html#debugging"><i class="fa fa-check"></i><b>5.5</b> Debugging</a></li>
<li class="chapter" data-level="5.6" data-path="Burns.html"><a href="Burns.html#moving-forward-alternative-models"><i class="fa fa-check"></i><b>5.6</b> Moving forward: Alternative Models</a></li>
<li class="chapter" data-level="5.7" data-path="Burns.html"><a href="Burns.html#conclusion"><i class="fa fa-check"></i><b>5.7</b> Conclusion</a></li>
<li class="chapter" data-level="5.8" data-path="Burns.html"><a href="Burns.html#acknowledgements"><i class="fa fa-check"></i><b>5.8</b> Acknowledgements</a></li>
</ul></li>
<li class="chapter" data-level="6" data-path="elicitlgm.html"><a href="elicitlgm.html"><i class="fa fa-check"></i><b>6</b> Expert Elicitation in the Social Sciences: The case of Posttraumatic Stress Symptoms Development in Children with Burn Injuries</a><ul>
<li class="chapter" data-level="" data-path="elicitlgm.html"><a href="elicitlgm.html#abstract-4"><i class="fa fa-check"></i>Abstract</a></li>
<li class="chapter" data-level="6.1" data-path="elicitlgm.html"><a href="elicitlgm.html#ch06introduction"><i class="fa fa-check"></i><b>6.1</b> Introduction</a></li>
<li class="chapter" data-level="6.2" data-path="elicitlgm.html"><a href="elicitlgm.html#methods"><i class="fa fa-check"></i><b>6.2</b> Methods</a><ul>
<li class="chapter" data-level="6.2.1" data-path="elicitlgm.html"><a href="elicitlgm.html#motivating-example"><i class="fa fa-check"></i><b>6.2.1</b> Motivating Example</a></li>
<li class="chapter" data-level="6.2.2" data-path="elicitlgm.html"><a href="elicitlgm.html#expert-elicitation-1"><i class="fa fa-check"></i><b>6.2.2</b> Expert Elicitation</a></li>
<li class="chapter" data-level="6.2.3" data-path="elicitlgm.html"><a href="elicitlgm.html#sample-of-experts"><i class="fa fa-check"></i><b>6.2.3</b> Sample of Experts</a></li>
</ul></li>
<li class="chapter" data-level="6.3" data-path="elicitlgm.html"><a href="elicitlgm.html#results-4"><i class="fa fa-check"></i><b>6.3</b> Results</a><ul>
<li class="chapter" data-level="6.3.1" data-path="elicitlgm.html"><a href="elicitlgm.html#individual-and-group-expert-judgements"><i class="fa fa-check"></i><b>6.3.1</b> Individual and Group Expert Judgements</a></li>
<li class="chapter" data-level="6.3.2" data-path="elicitlgm.html"><a href="elicitlgm.html#prior-data-disagreement"><i class="fa fa-check"></i><b>6.3.2</b> Prior-Data (dis)Agreement</a></li>
<li class="chapter" data-level="6.3.3" data-path="elicitlgm.html"><a href="elicitlgm.html#audio-recordings"><i class="fa fa-check"></i><b>6.3.3</b> Audio Recordings</a></li>
</ul></li>
<li class="chapter" data-level="6.4" data-path="elicitlgm.html"><a href="elicitlgm.html#discussion-1"><i class="fa fa-check"></i><b>6.4</b> Discussion</a></li>
<li class="chapter" data-level="" data-path="elicitlgm.html"><a href="elicitlgm.html#conflicts-of-interest"><i class="fa fa-check"></i>Conflicts of Interest</a></li>
<li class="chapter" data-level="" data-path="elicitlgm.html"><a href="elicitlgm.html#ethics-statement"><i class="fa fa-check"></i>Ethics Statement</a></li>
<li class="chapter" data-level="" data-path="elicitlgm.html"><a href="elicitlgm.html#acknowledgements-1"><i class="fa fa-check"></i>Acknowledgements</a></li>
<li class="chapter" data-level="" data-path="elicitlgm.html"><a href="elicitlgm.html#funding"><i class="fa fa-check"></i>Funding</a></li>
</ul></li>
<li class="chapter" data-level="7" data-path="thesisdiscussion.html"><a href="thesisdiscussion.html"><i class="fa fa-check"></i><b>7</b> Discussion</a><ul>
<li class="chapter" data-level="7.1" data-path="thesisdiscussion.html"><a href="thesisdiscussion.html#hidden-assumptions"><i class="fa fa-check"></i><b>7.1</b> Hidden assumptions</a></li>
<li class="chapter" data-level="7.2" data-path="thesisdiscussion.html"><a href="thesisdiscussion.html#expert-knowledge"><i class="fa fa-check"></i><b>7.2</b> Expert Knowledge</a></li>
<li class="chapter" data-level="7.3" data-path="thesisdiscussion.html"><a href="thesisdiscussion.html#taking-a-decision"><i class="fa fa-check"></i><b>7.3</b> Taking a decision</a></li>
</ul></li>
<li class="chapter" data-level="" data-path="nederlandse-samenvatting.html"><a href="nederlandse-samenvatting.html"><i class="fa fa-check"></i>Nederlandse Samenvatting</a></li>
<li class="chapter" data-level="" data-path="dankwoord.html"><a href="dankwoord.html"><i class="fa fa-check"></i>Dankwoord</a></li>
<li class="chapter" data-level="" data-path="curriculum-vitae.html"><a href="curriculum-vitae.html"><i class="fa fa-check"></i>Curriculum Vitae</a><ul>
<li class="chapter" data-level="" data-path="curriculum-vitae.html"><a href="curriculum-vitae.html#academic-publications"><i class="fa fa-check"></i>Academic Publications</a></li>
<li class="chapter" data-level="" data-path="curriculum-vitae.html"><a href="curriculum-vitae.html#book-chapters"><i class="fa fa-check"></i>Book Chapters</a></li>
<li class="chapter" data-level="" data-path="curriculum-vitae.html"><a href="curriculum-vitae.html#technical-reports"><i class="fa fa-check"></i>Technical Reports</a></li>
<li class="chapter" data-level="" data-path="curriculum-vitae.html"><a href="curriculum-vitae.html#manuscripts-under-review"><i class="fa fa-check"></i>Manuscripts under review</a></li>
<li class="chapter" data-level="" data-path="curriculum-vitae.html"><a href="curriculum-vitae.html#grants"><i class="fa fa-check"></i>Grants</a></li>
<li class="chapter" data-level="" data-path="curriculum-vitae.html"><a href="curriculum-vitae.html#awards"><i class="fa fa-check"></i>Awards</a></li>
</ul></li>
<li class="chapter" data-level="" data-path="ref.html"><a href="ref.html"><i class="fa fa-check"></i>References</a></li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i><a href="./"></a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<section class="normal" id="section-">
<div id="thesisdiscussion" class="section level1">
<h1><span class="header-section-number">7</span> Discussion</h1>
<p>The <a href="index.html#introduction">introduction of this thesis</a> started by explaining Bayesian statistics as a way of updating information. I start this discussion by reflecting on the example that I used in Chapter <a href="index.html#introduction">1</a>, discussing the importance of (hidden) assumptions, and I relate this to possible differences between experts and data. I consider different roles that expert knowledge can play in research, and under what conditions I think those roles could be appropriate. Finally, I give consideration to what seems a natural future direction for (my) research; decision making.</p>
<div id="hidden-assumptions" class="section level2">
<h2><span class="header-section-number">7.1</span> Hidden assumptions</h2>
<p>In Chapter <a href="index.html#introduction">1</a> the example of coin tosses is used to introduce the concept of Bayesian statistics, even though in the remainder of this thesis the normal distribution is used in the analyses. Why then, not explain Bayesian statistics using the normal distribution? The main reason is that the coin tossing example requires a single parameter <span class="math inline">\(\theta\)</span>, resulting in a straight-forward single-parameter model. Two parameters should be considered with respect to the normal distribution: the mean (<span class="math inline">\(\mu\)</span>) and variance (<span class="math inline">\(\sigma^2\)</span>). This makes explanations more complex and the interactions between the two parameter might not make for an intuitive initial framework. Many text books decide to first explain the situation in which either <span class="math inline">\(\mu\)</span> or <span class="math inline">\(\sigma^2\)</span> is fixed <span class="citation">(e.g. Albert, <a href="#ref-albert_bayesian_2009" role="doc-biblioref">2009</a>; Gelman et al., <a href="#ref-gelman_bayesian_2013" role="doc-biblioref">2013</a>; Kaplan, <a href="#ref-kaplan_bayesian_2014" role="doc-biblioref">2014</a>; Kruschke, <a href="#ref-kruschke_doing_2010" role="doc-biblioref">2010</a>; Lynch, <a href="#ref-lynch_introduction_2007" role="doc-biblioref">2007</a>; Ntzoufras, <a href="#ref-ntzoufras_bayesian_2011" role="doc-biblioref">2011</a>; Press, <a href="#ref-press_subjective_2009" role="doc-biblioref">2009</a>)</span>. This decision is taken consciously, which is illustrated by the following comments.</p>
<blockquote>
<p>“For the purpose of mathematical derivation, we make the unrealistic assumption
that the prior distribution is either a spike on <span class="math inline">\(\sigma\)</span> or a spike on <span class="math inline">\(\mu\)</span>.”</p>
<p><span class="citation">Kruschke (<a href="#ref-kruschke_doing_2010" role="doc-biblioref">2010</a>)</span> p. 322</p>
</blockquote>
<blockquote>
<p>“Perhaps a more realistic situation that arises in practice is when the
mean and variance of the normal distribution are unknown”</p>
<p><span class="citation">Kaplan (<a href="#ref-kaplan_bayesian_2014" role="doc-biblioref">2014</a>)</span> p. 28</p>
</blockquote>
<div style="page-break-after: always;"></div>
<blockquote>
<p>“In reality, we typically do not know <span class="math inline">\(\sigma^2\)</span> any more than we know <span class="math inline">\(\mu\)</span>,
and thus we have two quantities of interest that we should be updating with
new information”</p>
<p><span class="citation">Lynch (<a href="#ref-lynch_introduction_2007" role="doc-biblioref">2007</a>)</span> p. 65</p>
</blockquote>
<p>There is nothing wrong with explaining a simplistic version first. One reason not to do so is because an explanation with this ‘unrealistic’ or ‘hidden’ assumption might not make for proper intuition. In general, the more complex models become, the more complex specifying prior information becomes. Almost never is the specification of prior information as easy as in the examples in Chapter <a href="index.html#introduction">1</a> concerning the coin flips and the Beta distribution that has a natural interpretation in that case. Moreover, in multiparameter models the priors interact with one another to say something about the data that you might expect. Priors on certain parameters by themselves might look reasonable, but together they can sometimes imply very implausible situations about reality. Simulating fake data, or looking at implied predictive distributions as done in Chapter <a href="Burns.html#Burns">5</a>, can help identify these problems <span class="citation">(Gabry, Simpson, Vehtari, Betancourt, & Gelman, <a href="#ref-gabry_visualization_2019" role="doc-biblioref">2019</a>; van de Schoot et al., <a href="#ref-van_de_schoot_tutorial_2020" role="doc-biblioref">2020</a>)</span>. Moreover, recent work points to interpretation challenges for the prior if context of the likelihood is not taken into account <span class="citation">(Gelman et al., <a href="#ref-gelman_prior_2017" role="doc-biblioref">2017</a>)</span>, or information about an experiment is ignored <span class="citation">(Kennedy, Simpson, & Gelman, <a href="#ref-kennedy_experiment_2019" role="doc-biblioref">2019</a>)</span>. Note in relation to this, how in the hierarchical model of Chapter <a href="Hierarchical.html#Hierarchical">4</a>, priors on the individual level are essentially based on the estimated group level effects, which includes information from both the prior and the likelihood. All this reflection on assumptions is not to criticize explanations in textbooks or articles. The point is made to highlight that the choices that are made with respect to the models and priors are highly influential for results and interpretations, and being explicit about them is a minimal requirement.</p>
</div>
<div id="expert-knowledge" class="section level2">
<h2><span class="header-section-number">7.2</span> Expert Knowledge</h2>
<p>Being transparent about models, priors and choices is related to the issue of eliciting expert knowledge. As mentioned in the introduction of Chapter <a href="DAC1.html#DAC1">3</a>, when conducting an elicitation experts are forced to use a representation system that belongs to the statistical realm. They are forced to use the same parametric representation as the statistical model. For non-trivial problems, statistical models can become complex quickly. If expert knowledge is elicited with the purpose of being used as a prior distribution in a statistical model, the implicit assumption is made that the expert adheres to the same model as statistically specified. This can be a rather strict assumption, in which confidence will decrease when models become more complex.</p>
<p>In this dissertation in Chapters <a href="DAC1.html#DAC1">3</a> and <a href="elicitlgm.html#elicitlgm">6</a> we focus on the comparison of experts’ elicited distributions among one another and their contrast with respect to what traditional data implies given our statistical model. If discrepancies occur between the two this can be highly informative and it need not be that one or the other is at fault and wrong. The discrepancies are so interesting because the differences can occur due to different implied models. When discussing with experts why their beliefs diverge from one another, or from the traditional data, we can learn subtle differences in the implied models that experts use. The information obtained using experts-data (dis)agreements methodology might inform us to specify slightly different statistical models or include other variables in our statistical models. In the long run, if the experts learn from the data, and the model is refined based on expert knowledge, we can expect both sources of information to converge.</p>
<p>Note that I reflect here on cases where we do have data, not on cases where expert knowledge is used when no data is available. Obviously in those cases we do not have the luxury of comparing multiple sources of information. It is often more desirable to have any information, for instance provided by experts, than no information. In this scenario it is even more essential to have quality checks available to evaluate experts’ expertise. As discussed in Chapter <a href="elicitlgm.html#elicitlgm">6</a>, the classical method is a much used procedure in this instance <span class="citation">(Cooke, <a href="#ref-cooke_experts_1991" role="doc-biblioref">1991</a>, Chapter 12)</span>. The lack of suitable calibration questions for many social scientific research topics makes this method, at least for now, unfeasible in those settings. Moreover, the work presented in this dissertation is not a substitute for asking calibration questions, but should be viewed as an additional area of research.</p>
<p>In cases where calibration is possible, updating the elicited experts’ beliefs with new data in a full Bayesian framework can certainly be considered. In cases where calibration is not an option, I would rather contrast expert knowledge as an alternative source of information than update it with traditionally collected data. The two alternative ways of incorporating information in prior distributions that were discussed in Chapter <a href="index.html#introduction">1</a>, using previous research and logical constraints, seem more defensible than elicited expert priors without calibration. Especially the use of priors describing plausible parameter space seems no more than logical. In Chapters <a href="DAC1.html#DAC1">3</a> and <a href="elicitlgm.html#elicitlgm">6</a> we use uniform priors as benchmarks that could be considered in line with Laplace’s (1749-1827) principle of insufficient reason. It seems that these might be more in line with the data in the proposed statistical model than some experts’ beliefs. Whatever the reason, and whichever source of information is right, when using Kullback-Leibler divergences that assign truth status to the traditional data, the ‘ignorant’ benchmarks examples resonate the following idea:</p>
<blockquote>
<p>“Ignorance is preferable to error and he is less remote from the truth who
beliefs noting than he who believes what is wrong.”</p>
<p>Thomas Jefferson (1781)</p>
</blockquote>
</div>
<div id="taking-a-decision" class="section level2">
<h2><span class="header-section-number">7.3</span> Taking a decision</h2>
<p>I began this thesis by stating that all of us have to make decisions whilst facing uncertainty and incomplete information. In addition, I stated that Bayesian statistics offers a way to describe our state of knowledge in terms of probability. In this thesis we have indeed concerned ourselves mainly with obtaining prior, and estimating posterior, distributions of probability. We have contrasted sources of information, seeing this as an opportunity to learn and improve our knowledge and models. In short, we have concerned ourselves in this thesis with ways to systematically organize uncertainty and incomplete information, but not yet with the decision making process that should naturally follow from this.</p>
<p>Two approaches that are often used in science to make a decision, or come to a conclusion, are model selection and hypothesis testing. Model selection is a very useful concept to refine our theory and models. However, it does not always lead to a decision. Hypothesis testing is more naturally focused at making decisions, e.g. can we reject the hypothesis that there is no effect? It seems, however, to be a rather unhelpful restriction to single out one value and contemplate the issue with respect to that value. Indeed, Bayesian estimation can be seen as a case in which we test an infinite number of hypotheses concerning which values are most likely for parameters <span class="citation">(Jaynes, <a href="#ref-jaynes_probability_2003" role="doc-biblioref">2003</a>, Chapter 4)</span>. Moving beyond simple one dimensional questions to decisions that determine a course of action, it seems straightforward that we need to consider more than just an existence of an effect or not. Consider such questions as; do we implement a certain intervention in schools or not? Or should I get a certain type of insurance? To determine a course of action we need to be able to assess which choice seems most preferable out the options that are open to us. This cannot be assessed unless we assign value judgement to certain outcomes and take costs into account. Is raising the IQ of children by 1 point on average worth the investment if that means that we have to cut funding to hospitals by the same amount? Does the good outweigh the bad? That is the relevant question, not: should we change the way we teach at schools because an experiment provided us with <span class="math inline">\(p<.05\)</span> for a hypothesis stating that both methods of teaching were exactly equal? The following words express this sentiment in a delightful way:</p>
<blockquote>
<p>“You cannot decide what to do today until you have decided what to do with the tomorrows that today’s decisions might bring.”</p>
<p><span class="citation">Lindley (<a href="#ref-lindley_understanding_2013" role="doc-biblioref">2013</a>)</span>, p. 249</p>
</blockquote>
<p>To extend the framework of Bayesian estimation into the field of decision making seems natural via the concepts of utility and loss. Given that a model has been found that seems reasonable, e.g. via model selection, the inference solutions obtained by applying probability theory only provide us with a state of knowledge concerning parameters, it does not tell us what to do with that information <span class="citation">(Jaynes, <a href="#ref-jaynes_probability_2003" role="doc-biblioref">2003</a>, Chapter 13)</span>. Utility or loss functions can be defined and maximized to determine which decision is optimal <span class="citation">(Goldstein, <a href="#ref-goldstein_subjective_2006" role="doc-biblioref">2006</a>; Jaynes, <a href="#ref-jaynes_probability_2003" role="doc-biblioref">2003</a>, Chapter 13)</span>. Moreover, if sequential decisions should be taken, a decision tree should be made taking all information up to each point into account <span class="citation">(Gelman et al., <a href="#ref-gelman_bayesian_2013" role="doc-biblioref">2013</a>, Chapter 9; Lindley, <a href="#ref-lindley_understanding_2013" role="doc-biblioref">2013</a>, Chapter 10)</span>. Utility can be defined very transparently, but it is not free of subjective value judgement <span class="citation">(Jaynes, <a href="#ref-jaynes_probability_2003" role="doc-biblioref">2003</a>, Chapter 13)</span>. For a wonderful example that illustrates this, see <span class="citation">Jaynes (<a href="#ref-jaynes_probability_2003" role="doc-biblioref">2003</a>)</span>, p. 400 - 402 on the differences in rationale and utility of insurance, viewed from the standpoints of the insurance agency, a poor person, a rich person, and a rich person with an aversion to risk. For a full decision analysis of different strategies in the context of risk reduction of lung cancer in relation to household environmental risk of exposure to radon gas, see <span class="citation">Gelman et al. (<a href="#ref-gelman_bayesian_2013" role="doc-biblioref">2013</a>)</span> p. 246-256.</p>
<p>In no way am I saying that assigning utility and loss functions are easy concepts. Moreover, I will not claim to have the wisdom at this point to undertake such an elaborate evaluation and ensure wise decisions. However, if I had to take a decision on what to peruse next academically, using what I have learned from working on this dissertation, I would peruse decision making. But only after I reflected on what tomorrows today’s decision would bring, given the uncertain and incomplete information that I have.</p>
<!-- When working with the more realistic model in which both $\mu$ and $\sigma^2$ are unknown things can seem a little different. To clarify this point, the example given in @sorensen_bayesian_2016 is replicated. I highlight how inference can differ depending on the choice of assumptions: is $\sigma^2$ known, or not. -->
<!-- @sorensen_bayesian_2016, just as in Chapter [1](#introduction), compare the effect on the posterior distribution when two different priors are used, one being more informative than the other. @sorensen_bayesian_2016 take an example in which the competing prior distributions of probability for $\mu$ both have a mean $\mu_0 = 60$, but different variances $\sigma^2_{0} = 1000$ and $\sigma^2_{0} = 100$. In the replication, data ($n=20$) was simulated such that the sample mean $\bar{x} \approx 100$ and the sample standard deviation $s \approx 40$. Figure \@ref(fig:discussionFig1) depicts what happens when $\sigma^2$ is assumed to be known. -->
<!-- (ref:discussionFig1) Reproduction of Figure 1 from @sorensen_bayesian_2016. -->
<!-- The assumption that $\sigma^2$ is known means that a spike on $\sigma^2$ is assumed. In this case the assumption is made that $\sigma^2$ is equal to the sample variance. Figure \@ref(fig:discussionFig1) should thus actually look like Figure \@ref(fig:discussionFig2) with the assumptions about both parameters in the model clearly visible. -->
<!-- The assumption that $\sigma^2$ is known can be let go, as is mentioned in textbooks as well. This makes for a situation in which a prior distribution has to be specified for $\sigma^2$ too, besides only for $\mu$. Let us assume that an inverse gamma distribution $IG(1,1)$ is used as a prior for $\sigma^2$ conform Figure \@ref(fig:discussionFig3). This figure also demonstrates the effect on the estimation of $\mu$ if $\sigma^2$ is also estimated. There is a discrepancy between the prior information about the mean and our observed information about the mean. However, this can be resolved by adjusting, or learning, that the variation could be different from what the original prior distribution implied. The posterior distribution for $\sigma^2$ is quite uncertain, which makes sense given the discrepancy between the priors and the data. -->
<!-- https://tex.stackexchange.com/questions/165915/remove-chapter-number-from-header-memoir-class -->
<!-- \chaptermark{} -->
</div>
</div>
<h3>References</h3>
<div id="refs" class="references">
<div id="ref-albert_bayesian_2009">
<p>Albert, J. (2009). <em>Bayesian computation with R</em>. Springer Science & Business Media.</p>
</div>
<div id="ref-cooke_experts_1991">
<p>Cooke, R. M. (1991). <em>Experts in uncertainty: Opinion and subjective probability in science</em>. Oxford University Press on Demand.</p>
</div>
<div id="ref-gabry_visualization_2019">
<p>Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in Bayesian workflow. <em>Journal of the Royal Statistical Society: Series A (Statistics in Society)</em>, <em>182</em>(2), 389–402.</p>
</div>
<div id="ref-gelman_bayesian_2013">
<p>Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). <em>Bayesian data analysis</em>. CRC press.</p>
</div>
<div id="ref-gelman_prior_2017">
<p>Gelman, A., Simpson, D., & Betancourt, M. (2017). The prior can often only be understood in the context of the likelihood. <em>Entropy</em>, <em>19</em>(10), 555.</p>
</div>
<div id="ref-goldstein_subjective_2006">
<p>Goldstein, M. (2006). Subjective Bayesian analysis: Principles and practice. <em>Bayesian Analysis</em>, <em>1</em>(3), 403–420.</p>
</div>
<div id="ref-jaynes_probability_2003">
<p>Jaynes, E. T. (2003). <em>Probability theory: The logic of science</em>. Cambridge university press.</p>
</div>
<div id="ref-kaplan_bayesian_2014">
<p>Kaplan, D. (2014). <em>Bayesian statistics for the social sciences</em>. Guilford Publications.</p>
</div>
<div id="ref-kennedy_experiment_2019">
<p>Kennedy, L., Simpson, D., & Gelman, A. (2019). The experiment is just as important as the likelihood in understanding the prior: A cautionary note on robust cognitive modelling. <em>arXiv Preprint arXiv:1905.10341</em>.</p>
</div>
<div id="ref-kruschke_doing_2010">
<p>Kruschke, J. K. (2010). <em>Doing Bayesian data analysis: A tutorial with R and BUGS</em>. Academic Press.</p>
</div>
<div id="ref-lindley_understanding_2013">
<p>Lindley, D. V. (2013). <em>Understanding uncertainty</em>. John Wiley & Sons.</p>
</div>
<div id="ref-lynch_introduction_2007">
<p>Lynch, S. M. (2007). <em>Introduction to applied Bayesian statistics and estimation for social scientists</em>. Springer Science & Business Media.</p>
</div>
<div id="ref-ntzoufras_bayesian_2011">
<p>Ntzoufras, I. (2011). <em>Bayesian modeling using WinBUGS</em> (Vol. 698). John Wiley & Sons.</p>
</div>
<div id="ref-press_subjective_2009">
<p>Press, S. J. (2009). <em>Subjective and objective Bayesian statistics: Principles, models, and applications</em> (Vol. 590). John Wiley & Sons.</p>
</div>
<div id="ref-van_de_schoot_tutorial_2020">
<p>van de Schoot, R., Veen, D., Smeets, L., Winter, S., & Depaoli, S. (2020). A tutorial on using the WAMBS-checklist to avoid the misuse Bayesian Statistics. In <em>Small sample size solutions: A guide for applied researchers and practitioners</em>. Routledge.</p>
</div>
</div>
</section>
</div>
</div>
</div>
<a href="elicitlgm.html" class="navigation navigation-prev " aria-label="Previous page"><i class="fa fa-angle-left"></i></a>
<a href="nederlandse-samenvatting.html" class="navigation navigation-next " aria-label="Next page"><i class="fa fa-angle-right"></i></a>
</div>
</div>
<script src="libs/gitbook-2.6.7/js/app.min.js"></script>
<script src="libs/gitbook-2.6.7/js/lunr.js"></script>
<script src="libs/gitbook-2.6.7/js/clipboard.min.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-search.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-sharing.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-fontsettings.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-bookdown.js"></script>
<script src="libs/gitbook-2.6.7/js/jquery.highlight.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-clipboard.js"></script>
<script>
gitbook.require(["gitbook"], function(gitbook) {
gitbook.start({
"sharing": {
"github": false,
"facebook": true,
"twitter": true,
"google": false,
"linkedin": true,
"weibo": false,
"instapaper": false,
"vk": false,
"all": ["facebook", "google", "twitter", "linkedin", "weibo", "instapaper"]
},
"fontsettings": {
"theme": "white",
"family": "sans",
"size": 2
},
"edit": {
"link": null,
"text": null
},
"history": {
"link": null,
"text": null
},
"download": ["Dissertation_Duco_Veen.pdf"],
"toc": {
"collapse": "section"
},
"search": true
});
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "true";
if (src === "" || src === "true") src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:")
if (/^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>