-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathref.html
917 lines (868 loc) · 64 KB
/
ref.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<title>References | Dissertation_Duco_Veen.utf8.md</title>
<meta name="description" content="" />
<meta name="generator" content="bookdown 0.14 and GitBook 2.6.7" />
<meta property="og:title" content="References | Dissertation_Duco_Veen.utf8.md" />
<meta property="og:type" content="book" />
<meta property="og:url" content="https://github.com/VeenDuco/Dissertation/" />
<meta name="github-repo" content="VeenDuco/Dissertation" />
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="References | Dissertation_Duco_Veen.utf8.md" />
<meta name="author" content="Duco Veen" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black" />
<link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
<link rel="prev" href="curriculum-vitae.html"/>
<script src="libs/jquery-2.2.3/jquery.min.js"></script>
<link href="libs/gitbook-2.6.7/css/style.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-table.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-bookdown.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-highlight.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-search.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-fontsettings.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-clipboard.css" rel="stylesheet" />
<style type="text/css">
a.sourceLine { display: inline-block; line-height: 1.25; }
a.sourceLine { pointer-events: none; color: inherit; text-decoration: inherit; }
a.sourceLine:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode { white-space: pre; position: relative; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
code.sourceCode { white-space: pre-wrap; }
a.sourceLine { text-indent: -1em; padding-left: 1em; }
}
pre.numberSource a.sourceLine
{ position: relative; left: -4em; }
pre.numberSource a.sourceLine::before
{ content: attr(title);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; pointer-events: all; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
a.sourceLine::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
</head>
<body>
<div class="book without-animation with-summary font-size-2 font-family-1" data-basepath=".">
<div class="book-summary">
<nav role="navigation">
<ul class="summary">
<li class="chapter" data-level="1" data-path="index.html"><a href="index.html"><i class="fa fa-check"></i><b>1</b> Introduction</a><ul>
<li class="chapter" data-level="1.1" data-path="index.html"><a href="index.html#bayesian-statistics"><i class="fa fa-check"></i><b>1.1</b> Bayesian Statistics</a></li>
<li class="chapter" data-level="1.2" data-path="index.html"><a href="index.html#prior-information"><i class="fa fa-check"></i><b>1.2</b> Prior Information</a></li>
<li class="chapter" data-level="1.3" data-path="index.html"><a href="index.html#expert-elicitation"><i class="fa fa-check"></i><b>1.3</b> Expert Elicitation</a></li>
<li class="chapter" data-level="1.4" data-path="index.html"><a href="index.html#aims-and-outline"><i class="fa fa-check"></i><b>1.4</b> Aims and Outline</a></li>
</ul></li>
<li class="chapter" data-level="2" data-path="fivestep.html"><a href="fivestep.html"><i class="fa fa-check"></i><b>2</b> Proposal for a Five-Step Method to Elicit Expert Judgment</a><ul>
<li class="chapter" data-level="" data-path="fivestep.html"><a href="fivestep.html#abstract"><i class="fa fa-check"></i>Abstract</a></li>
<li class="chapter" data-level="2.1" data-path="fivestep.html"><a href="fivestep.html#ch02introduction"><i class="fa fa-check"></i><b>2.1</b> Introduction</a></li>
<li class="chapter" data-level="2.2" data-path="fivestep.html"><a href="fivestep.html#five-step-method"><i class="fa fa-check"></i><b>2.2</b> Five-Step Method</a><ul>
<li class="chapter" data-level="2.2.1" data-path="fivestep.html"><a href="fivestep.html#step-1"><i class="fa fa-check"></i><b>2.2.1</b> Step 1</a></li>
<li class="chapter" data-level="2.2.2" data-path="fivestep.html"><a href="fivestep.html#step-2"><i class="fa fa-check"></i><b>2.2.2</b> Step 2</a></li>
<li class="chapter" data-level="2.2.3" data-path="fivestep.html"><a href="fivestep.html#step-3"><i class="fa fa-check"></i><b>2.2.3</b> Step 3</a></li>
<li class="chapter" data-level="2.2.4" data-path="fivestep.html"><a href="fivestep.html#step-4"><i class="fa fa-check"></i><b>2.2.4</b> Step 4</a></li>
<li class="chapter" data-level="2.2.5" data-path="fivestep.html"><a href="fivestep.html#step-5"><i class="fa fa-check"></i><b>2.2.5</b> Step 5</a></li>
</ul></li>
<li class="chapter" data-level="2.3" data-path="fivestep.html"><a href="fivestep.html#elicitation-studies"><i class="fa fa-check"></i><b>2.3</b> Elicitation Studies</a><ul>
<li class="chapter" data-level="2.3.1" data-path="fivestep.html"><a href="fivestep.html#user-feasibility-study"><i class="fa fa-check"></i><b>2.3.1</b> User Feasibility Study</a></li>
<li class="chapter" data-level="2.3.2" data-path="fivestep.html"><a href="fivestep.html#elicitation-staffing-company"><i class="fa fa-check"></i><b>2.3.2</b> Elicitation Staffing Company</a></li>
<li class="chapter" data-level="2.3.3" data-path="fivestep.html"><a href="fivestep.html#elicitation-large-financial-institution"><i class="fa fa-check"></i><b>2.3.3</b> Elicitation Large Financial Institution</a></li>
</ul></li>
<li class="chapter" data-level="2.4" data-path="fivestep.html"><a href="fivestep.html#ch02discussion"><i class="fa fa-check"></i><b>2.4</b> Discussion</a></li>
<li class="chapter" data-level="" data-path="fivestep.html"><a href="fivestep.html#ch02ethics"><i class="fa fa-check"></i>Ethics Statement</a></li>
<li class="chapter" data-level="" data-path="fivestep.html"><a href="fivestep.html#ch02funding"><i class="fa fa-check"></i>Funding</a></li>
<li class="chapter" data-level="" data-path="fivestep.html"><a href="fivestep.html#ch02acknowledgments"><i class="fa fa-check"></i>Acknowledgments</a></li>
<li class="chapter" data-level="" data-path="fivestep.html"><a href="fivestep.html#ch02conflict"><i class="fa fa-check"></i>Conflict of Interest Statement</a></li>
</ul></li>
<li class="chapter" data-level="3" data-path="DAC1.html"><a href="DAC1.html"><i class="fa fa-check"></i><b>3</b> Using the Data Agreement Criterion to Rank Experts’ Beliefs</a><ul>
<li class="chapter" data-level="" data-path="DAC1.html"><a href="DAC1.html#abstract-1"><i class="fa fa-check"></i>Abstract</a></li>
<li class="chapter" data-level="3.1" data-path="DAC1.html"><a href="DAC1.html#ch03introduction"><i class="fa fa-check"></i><b>3.1</b> Introduction</a></li>
<li class="chapter" data-level="3.2" data-path="DAC1.html"><a href="DAC1.html#expert-data-disagreement"><i class="fa fa-check"></i><b>3.2</b> Expert-Data (Dis)Agreement</a><ul>
<li class="chapter" data-level="3.2.1" data-path="DAC1.html"><a href="DAC1.html#data-agreement-criterion"><i class="fa fa-check"></i><b>3.2.1</b> Data Agreement Criterion</a></li>
<li class="chapter" data-level="3.2.2" data-path="DAC1.html"><a href="DAC1.html#DACvsBF"><i class="fa fa-check"></i><b>3.2.2</b> Comparison to Ranking by the Bayes Factor</a></li>
<li class="chapter" data-level="3.2.3" data-path="DAC1.html"><a href="DAC1.html#DACvsBF2"><i class="fa fa-check"></i><b>3.2.3</b> DAC Versus BF</a></li>
</ul></li>
<li class="chapter" data-level="3.3" data-path="DAC1.html"><a href="DAC1.html#empirical-example"><i class="fa fa-check"></i><b>3.3</b> Empirical Example</a><ul>
<li class="chapter" data-level="3.3.1" data-path="DAC1.html"><a href="DAC1.html#elicitation-procedure"><i class="fa fa-check"></i><b>3.3.1</b> Elicitation Procedure</a></li>
<li class="chapter" data-level="3.3.2" data-path="DAC1.html"><a href="DAC1.html#ranking-the-experts"><i class="fa fa-check"></i><b>3.3.2</b> Ranking the Experts</a></li>
</ul></li>
<li class="chapter" data-level="3.4" data-path="DAC1.html"><a href="DAC1.html#ch03discussion"><i class="fa fa-check"></i><b>3.4</b> Discussion</a></li>
<li class="chapter" data-level="" data-path="DAC1.html"><a href="DAC1.html#ch03ethics"><i class="fa fa-check"></i>Ethics Statement</a></li>
<li class="chapter" data-level="" data-path="DAC1.html"><a href="DAC1.html#ch03funding"><i class="fa fa-check"></i>Funding</a></li>
<li class="chapter" data-level="" data-path="DAC1.html"><a href="DAC1.html#ch03acknowledgments"><i class="fa fa-check"></i>Acknowledgments</a></li>
<li class="chapter" data-level="" data-path="DAC1.html"><a href="DAC1.html#ch03conflict"><i class="fa fa-check"></i>Conflicts of Interest Statement</a></li>
</ul></li>
<li class="chapter" data-level="4" data-path="Hierarchical.html"><a href="Hierarchical.html"><i class="fa fa-check"></i><b>4</b> A Step Forward: Bayesian Hierarchical Modelling as a Tool in Assessment of Individual Discrimination Performance</a><ul>
<li class="chapter" data-level="" data-path="Hierarchical.html"><a href="Hierarchical.html#abstract-2"><i class="fa fa-check"></i>Abstract</a></li>
<li class="chapter" data-level="4.1" data-path="Hierarchical.html"><a href="Hierarchical.html#ch04introduction"><i class="fa fa-check"></i><b>4.1</b> Introduction</a></li>
<li class="chapter" data-level="4.2" data-path="Hierarchical.html"><a href="Hierarchical.html#method"><i class="fa fa-check"></i><b>4.2</b> Method</a><ul>
<li class="chapter" data-level="4.2.1" data-path="Hierarchical.html"><a href="Hierarchical.html#participants"><i class="fa fa-check"></i><b>4.2.1</b> Participants</a></li>
<li class="chapter" data-level="4.2.2" data-path="Hierarchical.html"><a href="Hierarchical.html#stimuli"><i class="fa fa-check"></i><b>4.2.2</b> Stimuli</a></li>
<li class="chapter" data-level="4.2.3" data-path="Hierarchical.html"><a href="Hierarchical.html#procedure"><i class="fa fa-check"></i><b>4.2.3</b> Procedure</a></li>
</ul></li>
<li class="chapter" data-level="4.3" data-path="Hierarchical.html"><a href="Hierarchical.html#results-3"><i class="fa fa-check"></i><b>4.3</b> Results</a><ul>
<li class="chapter" data-level="4.3.1" data-path="Hierarchical.html"><a href="Hierarchical.html#summary-of-the-group-data-published-in-de_klerk_lost_2019"><i class="fa fa-check"></i><b>4.3.1</b> Summary of the group data published in <span class="citation">de Klerk et al. (<span>2019</span>)</span></a></li>
<li class="chapter" data-level="4.3.2" data-path="Hierarchical.html"><a href="Hierarchical.html#data-screening"><i class="fa fa-check"></i><b>4.3.2</b> Data Screening</a></li>
<li class="chapter" data-level="4.3.3" data-path="Hierarchical.html"><a href="Hierarchical.html#analysis-1-linear-regression-model-with-autoregressive-ar1-error-structure"><i class="fa fa-check"></i><b>4.3.3</b> Analysis 1: Linear Regression Model with Autoregressive (AR1) Error Structure</a></li>
<li class="chapter" data-level="4.3.4" data-path="Hierarchical.html"><a href="Hierarchical.html#analysis-2-hierarchical-bayesian-analysis"><i class="fa fa-check"></i><b>4.3.4</b> Analysis 2: Hierarchical Bayesian Analysis</a></li>
</ul></li>
<li class="chapter" data-level="4.4" data-path="Hierarchical.html"><a href="Hierarchical.html#discussion"><i class="fa fa-check"></i><b>4.4</b> Discussion</a></li>
<li class="chapter" data-level="" data-path="Hierarchical.html"><a href="Hierarchical.html#ch04ethics"><i class="fa fa-check"></i>Ethics Statement</a></li>
<li class="chapter" data-level="" data-path="Hierarchical.html"><a href="Hierarchical.html#ch04acknowledgments"><i class="fa fa-check"></i>Acknowledgments</a></li>
<li class="chapter" data-level="" data-path="Hierarchical.html"><a href="Hierarchical.html#ch05appendix"><i class="fa fa-check"></i>Appendix A</a></li>
<li class="chapter" data-level="" data-path="Hierarchical.html"><a href="Hierarchical.html#ch05appendixB"><i class="fa fa-check"></i>Appendix B</a><ul>
<li class="chapter" data-level="4.4.1" data-path="Hierarchical.html"><a href="Hierarchical.html#software"><i class="fa fa-check"></i><b>4.4.1</b> Software</a></li>
<li class="chapter" data-level="4.4.2" data-path="Hierarchical.html"><a href="Hierarchical.html#priors"><i class="fa fa-check"></i><b>4.4.2</b> Priors</a></li>
<li class="chapter" data-level="4.4.3" data-path="Hierarchical.html"><a href="Hierarchical.html#estimation-and-convergence"><i class="fa fa-check"></i><b>4.4.3</b> Estimation and Convergence</a></li>
<li class="chapter" data-level="4.4.4" data-path="Hierarchical.html"><a href="Hierarchical.html#posterior-predictive-check"><i class="fa fa-check"></i><b>4.4.4</b> Posterior predictive check</a></li>
<li class="chapter" data-level="4.4.5" data-path="Hierarchical.html"><a href="Hierarchical.html#sensitivity-analysis"><i class="fa fa-check"></i><b>4.4.5</b> Sensitivity Analysis</a></li>
</ul></li>
</ul></li>
<li class="chapter" data-level="5" data-path="Burns.html"><a href="Burns.html"><i class="fa fa-check"></i><b>5</b> The importance of collaboration in Bayesian analyses with small samples</a><ul>
<li class="chapter" data-level="" data-path="Burns.html"><a href="Burns.html#abstract-3"><i class="fa fa-check"></i>Abstract</a></li>
<li class="chapter" data-level="5.1" data-path="Burns.html"><a href="Burns.html#ch05introduction"><i class="fa fa-check"></i><b>5.1</b> Introduction</a></li>
<li class="chapter" data-level="5.2" data-path="Burns.html"><a href="Burns.html#latent-growth-models-with-small-sample-sizes"><i class="fa fa-check"></i><b>5.2</b> Latent Growth Models with small sample sizes</a></li>
<li class="chapter" data-level="5.3" data-path="Burns.html"><a href="Burns.html#empirical-example-analysis-plan"><i class="fa fa-check"></i><b>5.3</b> Empirical example: Analysis plan</a><ul>
<li class="chapter" data-level="5.3.1" data-path="Burns.html"><a href="Burns.html#research-question-model-specification-and-an-overview-of-data"><i class="fa fa-check"></i><b>5.3.1</b> Research question, model specification and an overview of data</a></li>
<li class="chapter" data-level="5.3.2" data-path="Burns.html"><a href="Burns.html#specifying-and-understanding-priors"><i class="fa fa-check"></i><b>5.3.2</b> Specifying and understanding priors</a></li>
</ul></li>
<li class="chapter" data-level="5.4" data-path="Burns.html"><a href="Burns.html#empirical-example-conducting-the-analysis"><i class="fa fa-check"></i><b>5.4</b> Empirical example: Conducting the analysis</a></li>
<li class="chapter" data-level="5.5" data-path="Burns.html"><a href="Burns.html#debugging"><i class="fa fa-check"></i><b>5.5</b> Debugging</a></li>
<li class="chapter" data-level="5.6" data-path="Burns.html"><a href="Burns.html#moving-forward-alternative-models"><i class="fa fa-check"></i><b>5.6</b> Moving forward: Alternative Models</a></li>
<li class="chapter" data-level="5.7" data-path="Burns.html"><a href="Burns.html#conclusion"><i class="fa fa-check"></i><b>5.7</b> Conclusion</a></li>
<li class="chapter" data-level="5.8" data-path="Burns.html"><a href="Burns.html#acknowledgements"><i class="fa fa-check"></i><b>5.8</b> Acknowledgements</a></li>
</ul></li>
<li class="chapter" data-level="6" data-path="elicitlgm.html"><a href="elicitlgm.html"><i class="fa fa-check"></i><b>6</b> Expert Elicitation in the Social Sciences: The case of Posttraumatic Stress Symptoms Development in Children with Burn Injuries</a><ul>
<li class="chapter" data-level="" data-path="elicitlgm.html"><a href="elicitlgm.html#abstract-4"><i class="fa fa-check"></i>Abstract</a></li>
<li class="chapter" data-level="6.1" data-path="elicitlgm.html"><a href="elicitlgm.html#ch06introduction"><i class="fa fa-check"></i><b>6.1</b> Introduction</a></li>
<li class="chapter" data-level="6.2" data-path="elicitlgm.html"><a href="elicitlgm.html#methods"><i class="fa fa-check"></i><b>6.2</b> Methods</a><ul>
<li class="chapter" data-level="6.2.1" data-path="elicitlgm.html"><a href="elicitlgm.html#motivating-example"><i class="fa fa-check"></i><b>6.2.1</b> Motivating Example</a></li>
<li class="chapter" data-level="6.2.2" data-path="elicitlgm.html"><a href="elicitlgm.html#expert-elicitation-1"><i class="fa fa-check"></i><b>6.2.2</b> Expert Elicitation</a></li>
<li class="chapter" data-level="6.2.3" data-path="elicitlgm.html"><a href="elicitlgm.html#sample-of-experts"><i class="fa fa-check"></i><b>6.2.3</b> Sample of Experts</a></li>
</ul></li>
<li class="chapter" data-level="6.3" data-path="elicitlgm.html"><a href="elicitlgm.html#results-4"><i class="fa fa-check"></i><b>6.3</b> Results</a><ul>
<li class="chapter" data-level="6.3.1" data-path="elicitlgm.html"><a href="elicitlgm.html#individual-and-group-expert-judgements"><i class="fa fa-check"></i><b>6.3.1</b> Individual and Group Expert Judgements</a></li>
<li class="chapter" data-level="6.3.2" data-path="elicitlgm.html"><a href="elicitlgm.html#prior-data-disagreement"><i class="fa fa-check"></i><b>6.3.2</b> Prior-Data (dis)Agreement</a></li>
<li class="chapter" data-level="6.3.3" data-path="elicitlgm.html"><a href="elicitlgm.html#audio-recordings"><i class="fa fa-check"></i><b>6.3.3</b> Audio Recordings</a></li>
</ul></li>
<li class="chapter" data-level="6.4" data-path="elicitlgm.html"><a href="elicitlgm.html#discussion-1"><i class="fa fa-check"></i><b>6.4</b> Discussion</a></li>
<li class="chapter" data-level="" data-path="elicitlgm.html"><a href="elicitlgm.html#conflicts-of-interest"><i class="fa fa-check"></i>Conflicts of Interest</a></li>
<li class="chapter" data-level="" data-path="elicitlgm.html"><a href="elicitlgm.html#ethics-statement"><i class="fa fa-check"></i>Ethics Statement</a></li>
<li class="chapter" data-level="" data-path="elicitlgm.html"><a href="elicitlgm.html#acknowledgements-1"><i class="fa fa-check"></i>Acknowledgements</a></li>
<li class="chapter" data-level="" data-path="elicitlgm.html"><a href="elicitlgm.html#funding"><i class="fa fa-check"></i>Funding</a></li>
</ul></li>
<li class="chapter" data-level="7" data-path="thesisdiscussion.html"><a href="thesisdiscussion.html"><i class="fa fa-check"></i><b>7</b> Discussion</a><ul>
<li class="chapter" data-level="7.1" data-path="thesisdiscussion.html"><a href="thesisdiscussion.html#hidden-assumptions"><i class="fa fa-check"></i><b>7.1</b> Hidden assumptions</a></li>
<li class="chapter" data-level="7.2" data-path="thesisdiscussion.html"><a href="thesisdiscussion.html#expert-knowledge"><i class="fa fa-check"></i><b>7.2</b> Expert Knowledge</a></li>
<li class="chapter" data-level="7.3" data-path="thesisdiscussion.html"><a href="thesisdiscussion.html#taking-a-decision"><i class="fa fa-check"></i><b>7.3</b> Taking a decision</a></li>
</ul></li>
<li class="chapter" data-level="" data-path="nederlandse-samenvatting.html"><a href="nederlandse-samenvatting.html"><i class="fa fa-check"></i>Nederlandse Samenvatting</a></li>
<li class="chapter" data-level="" data-path="dankwoord.html"><a href="dankwoord.html"><i class="fa fa-check"></i>Dankwoord</a></li>
<li class="chapter" data-level="" data-path="curriculum-vitae.html"><a href="curriculum-vitae.html"><i class="fa fa-check"></i>Curriculum Vitae</a><ul>
<li class="chapter" data-level="" data-path="curriculum-vitae.html"><a href="curriculum-vitae.html#academic-publications"><i class="fa fa-check"></i>Academic Publications</a></li>
<li class="chapter" data-level="" data-path="curriculum-vitae.html"><a href="curriculum-vitae.html#book-chapters"><i class="fa fa-check"></i>Book Chapters</a></li>
<li class="chapter" data-level="" data-path="curriculum-vitae.html"><a href="curriculum-vitae.html#technical-reports"><i class="fa fa-check"></i>Technical Reports</a></li>
<li class="chapter" data-level="" data-path="curriculum-vitae.html"><a href="curriculum-vitae.html#manuscripts-under-review"><i class="fa fa-check"></i>Manuscripts under review</a></li>
<li class="chapter" data-level="" data-path="curriculum-vitae.html"><a href="curriculum-vitae.html#grants"><i class="fa fa-check"></i>Grants</a></li>
<li class="chapter" data-level="" data-path="curriculum-vitae.html"><a href="curriculum-vitae.html#awards"><i class="fa fa-check"></i>Awards</a></li>
</ul></li>
<li class="chapter" data-level="" data-path="ref.html"><a href="ref.html"><i class="fa fa-check"></i>References</a></li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i><a href="./"></a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<section class="normal" id="section-">
<div id="ref" class="section level1 unnumbered">
<h1>References</h1>
<div id="refs" class="references">
<div>
<p>Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. In <em>Second international symposium on information theory</em> (pp. 267–281). Budapest, Hungary: Akademiai Kaido.</p>
</div>
<div>
<p>Albert, J. (2009). <em>Bayesian computation with R</em>. Springer Science & Business Media.</p>
</div>
<div>
<p>Alisic, E., Eland, J., Huijbregts, R., & Kleber, R. (2011). Manual of the children’s responses to trauma inventory - revised edition.[Handleiding bij de schokverwerkingslijst voor kinderen-herziene versie]. <em>Diemen/Utrecht, the Netherlands: Institute for Psychotrauma in Collaboration with Utrecht University and University Medical Center Utrecht</em>.</p>
</div>
<div>
<p>Alisic, E., Eland, J., & Kleber, R. (2006). Children’s Responses to Trauma Inventory-Revised Version [Schokverwerkingslijst Voor Kinderen-Herziene Versie]. <em>Zaltbommel/Utrecht, the Netherlands: Institute for Psychotrauma in Collaboration with Utrecht University and University Medical Center Utrecht</em>.</p>
</div>
<div>
<p>Altvater-Mackensen, N., & Grossmann, T. (2015). Learning to match auditory and visual speech cues: Social influences on acquisition of phonological categories. <em>Child Development</em>, <em>86</em>(2), 362–378.</p>
</div>
<div>
<p>Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. <em>Psychological Bulletin</em>, <em>103</em>(3), 411.</p>
</div>
<div>
<p>Aslin, R. N., & Fiser, J. (2005). Methodological challenges for understanding cognitive development in infants. <em>Trends in Cognitive Sciences</em>, <em>9</em>(3), 92–98.</p>
</div>
<div>
<p>Aspinall, W. P., & Cooke, R. M. (2013). Quantifying scientific uncertainty from expert judgement elicitation. In <em>Risk and uncertainty assessment for natural hazards</em> (p. 64). Cambridge University Press Cambridge, UK.</p>
</div>
<div>
<p>Auguie, B. (2017). <em>GridExtra: Miscellaneous functions for "grid" graphics</em>. Retrieved from <a href="https://CRAN.R-project.org/package=gridExtra">https://CRAN.R-project.org/package=gridExtra</a></p>
</div>
<div>
<p>Bakker, A., van der Heijden, P. G., Van Son, M. J., & van Loey, N. E. (2013). Course of traumatic stress reactions in couples after a burn event to their young child. <em>Health Psychology</em>, <em>32</em>(10), 1076.</p>
</div>
<div>
<p>Barber, D. (2012). <em>Bayesian reasoning and machine learning</em>. Cambridge University Press.</p>
</div>
<div>
<p>Barons, M. J., Wright, S. K., & Smith, J. Q. (2018). Eliciting probabilistic judgements for integrating decision support systems. In L. C. Dias, A. Morton, & J. Quigley (Eds.), <em>Elicitation</em> (pp. 445–478). Springer.</p>
</div>
<div>
<p>Beach, L. R., & Scopp, T. S. (1968). Intuitive statistical inferences about variances. <em>Organ. Behav. Hum. Perform</em>, <em>3</em>, 109–123. doi:<a href="https://doi.org/10.1016/0030-5073(68)90001-9">10.1016/0030-5073(68)90001-9</a></p>
</div>
<div>
<p>Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. <em>Journal of the Royal Statistical Society: Series B (Methodological)</em>, <em>57</em>(1), 289–300.</p>
</div>
<div>
<p>Berger, J. O. (2006). The case for objective Bayesian analysis. <em>Bayesian Analysis</em>, <em>1</em>(3), 385–402.</p>
</div>
<div>
<p>Berger, J. O., & Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors. <em>Journal of the American Statistical Association</em>, <em>84</em>(405), 200–207.</p>
</div>
<div>
<p>Berger, J. O., Bernardo, J. M., & Sun, D. (2009). The formal definition of reference priors. <em>The Annals of Statistics</em>, <em>37</em>(2), 905–938.</p>
</div>
<div>
<p>Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. <em>Journal of the Royal Statistical Society. Series B (Methodological)</em>, 113–147.</p>
</div>
<div>
<p>Bernardo, J. M., & Smith, A. F. (1994). <em>Bayesian theory</em>. New York, NY: John Wiley & Sons, LTD.</p>
</div>
<div>
<p>Betancourt, M. (2016). Diagnosing Suboptimal Cotangent Disintegrations in Hamiltonian Monte Carlo. <em>arXiv Preprint arXiv:1604.00695</em>.</p>
</div>
<div>
<p>Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. <em>arXiv Preprint arXiv:1701.02434</em>.</p>
</div>
<div>
<p>Betancourt, M., & Girolami, M. (2015). Hamiltonian Monte Carlo for hierarchical models. <em>Current Trends in Bayesian Methodology with Applications</em>, <em>79</em>, 30.</p>
</div>
<div>
<p>Bistline, J. E. (2014). Energy technology expert elicitations: An application to natural gas turbine efficiencies. <em>Technological Forecasting and Social Change</em>, <em>86</em>, 177–187.</p>
</div>
<div>
<p>Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). <em>Taxonomy of educational objectives: Handbook 1: Cognitive domain</em>. New York, NY: David McKay Co Inc.</p>
</div>
<div>
<p>Bojke, L., Claxton, K., Bravo-Vergel, Y., Sculpher, M., Palmer, S., & Abrams, K. (2010). Eliciting distributions to populate decision analytic models. <em>Value in Health</em>, <em>13</em>(5), 557–564.</p>
</div>
<div>
<p>Bolsinova, M., Hoijtink, H., Vermeulen, J. A., & Beguin, A. (2017). Using expert knowledge for test linking. <em>Psychological Methods</em>, <em>22</em>(4), 705.</p>
</div>
<div>
<p>Bousquet, N. (2008). Diagnostics of prior-data agreement in applied Bayesian analysis. <em>Journal of Applied Statistics</em>, <em>35</em>(9), 1011–1029.</p>
</div>
<div>
<p>Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. <em>Monthey Weather Review</em>, <em>78</em>(1), 1–3.</p>
</div>
<div>
<p>Buist, K. L., Dekovic, M., Meeus, W., & van Aken, M. A. (2002). Developmental patterns in adolescent attachment to mother, father and sibling. <em>Journal of Youth and Adolescence</em>, <em>31</em>(3), 167–176.</p>
</div>
<div>
<p>Burkner, P.-C. (2019). Parameterization of Response Distributions in brms. Retrieved from <a href="https://cran.r-project.org/web/packages/brms/vignettes/brms_families.html">https://cran.r-project.org/web/packages/brms/vignettes/brms_families.html</a></p>
</div>
<div>
<p>Burnham, K. P., & Anderson, D. R. (2002). <em>Model selection and multimodel inference: A practical information-theoretic approach</em>. Springer Science & Business Media.</p>
</div>
<div>
<p>Cambridge English Dictionary. (2019). Expert meaning in the Cambridge English Dictionary. Retrieved from <a href="https://dictionary.cambridge.org/dictionary/english/expert">https://dictionary.cambridge.org/dictionary/english/expert</a></p>
</div>
<div>
<p>Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., … Riddell, A. (2017). Stan: A probabilistic programming language. <em>Journal of Statistical Software</em>, <em>76</em>(1).</p>
</div>
<div>
<p>Catts, H. W., Bridges, M. S., Little, T. D., & Tomblin, J. B. (2008). Reading achievement growth in children with language impairments. <em>Journal of Speech, Language, and Hearing Research</em>.</p>
</div>
<div>
<p>Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2019). <em>Shiny: Web application framework for r</em>. Retrieved from <a href="https://CRAN.R-project.org/package=shiny">https://CRAN.R-project.org/package=shiny</a></p>
</div>
<div>
<p>Cohen, J. (1960). A coefficient of agreement for nominal scales. <em>Educational and Psychological Measurement</em>, <em>20</em>(1), 37–46.</p>
</div>
<div>
<p>Colombo, J., & Mitchell, D. W. (2009). Infant visual habituation. <em>Neurobiology of Learning and Memory</em>, <em>92</em>(2), 225–234.</p>
</div>
<div>
<p>Colson, A. R., & Cooke, R. M. (2018). Expert elicitation: Using the classical model to validate experts‘ judgments. <em>Review of Environmental Economics and Policy</em>, <em>12</em>(1), 113–132.</p>
</div>
<div>
<p>Cooke, R. M. (1991). <em>Experts in uncertainty: Opinion and subjective probability in science</em>. Oxford University Press on Demand.</p>
</div>
<div>
<p>Cooke, R. M., & Goossens, L. H. J. (2008). TU Delft expert judgment data base. <em>Reliability Engineering & System Safety</em>, <em>93</em>(5), 657–674.</p>
</div>
<div>
<p>Cooke, R. M., & Goossens, L. J. H. (1999). <em>Procedures guide for structured expert judgment</em>. Brussels: Commission of the European Communities.</p>
</div>
<div>
<p>Cristia, A. (2011). Fine-grained variation in caregivers’/s/predicts their infants’/s/category. <em>The Journal of the Acoustical Society of America</em>, <em>129</em>(5), 3271–3280.</p>
</div>
<div>
<p>Cristia, A., Seidl, A., Junge, C., Soderstrom, M., & Hagoort, P. (2014). Predicting individual variation in language from infant speech perception measures. <em>Child Development</em>, <em>85</em>(4), 1330–1345.</p>
</div>
<div>
<p>Cristia, A., Seidl, A., Singh, L., & Houston, D. (2016). Test-retest reliability in infant speech perception tasks. <em>Infancy</em>, <em>21</em>(5), 648–667.</p>
</div>
<div>
<p>de Finetti, B. (1974). <em>Theory of Probability</em> (Vol. 1 and 2). New York, NY: Wiley.</p>
</div>
<div>
<p>de Klerk, M., de Bree, E., Kerkhoff, A., & Wijnen, F. (2019). Lost and Found: Decline and Reemergence of Non-Native Vowel Discrimination in the First Year of Life. <em>Language Learning and Development</em>, <em>15</em>(1), 14–31.</p>
</div>
<div>
<p>Depaoli, S., & van de Schoot, R. (2017). Improving transparency and replication in Bayesian statistics: The WAMBS-Checklist. <em>Psychological Methods</em>, <em>22</em>(2), 240.</p>
</div>
<div>
<p>Dewispelare, A. R., Herren, L. T., & Clemen, R. T. (1995). The use of probability elicitation in the high-level nuclear waste regulation program. <em>International Journal of Forecasting</em>, <em>11</em>(1), 5–24.</p>
</div>
<div>
<p>Deza, M. M., & Deza, E. (2009). Encyclopedia of distances. In <em>Encyclopedia of Distances</em> (pp. 1–583). Springer.</p>
</div>
<div>
<p>Diamond, I. R., Grant, R. C., Feldman, B. M., Tomlinson, G. A., Pencharz, P. B., Ling, S. C., … Wales, P. W. (2014). Expert Beliefs Regarding Novel Lipid-Based Approaches to Pediatric Intestinal Failure-Associated Liver Disease. <em>Journal of Parenteral and Enteral Nutrition</em>, <em>38</em>(6), 702–710.</p>
</div>
<div>
<p>Dijkstra, C., & Fikkert, J. (2011). Universal Constraints on the Discrimination of Place of Articulation? Asymmetries in the Discrimination of ’paan’and ’taan’ by 6-month-old Dutch Infants.</p>
</div>
<div>
<p>Dirac, P. A. M. (1947). <em>The principles of quantum mechanics</em>. Oxford: Clarendon Press.</p>
</div>
<div>
<p>Dodd, P. J., Yuen, C. M., Sismanidis, C., Seddon, J. A., & Jenkins, H. E. (2017). The global burden of tuberculosis mortality in children: A mathematical modelling study. <em>The Lancet Global Health</em>, <em>5</em>(9), e898–e906.</p>
</div>
<div>
<p>Drescher, M., Perera, A. H., Johnson, C. J., Buse, L., Drew, C., & Burgman, M. (2013). Toward rigorous use of expert knowledge in ecological research. <em>Ecosphere</em>, <em>4</em>(7), 1–26.</p>
</div>
<div>
<p>Duncan, T. E., & Duncan, S. C. (2004). An introduction to latent growth curve modeling. <em>Behavior Therapy</em>, <em>35</em>(2), 333–363.</p>
</div>
<div>
<p>Egberts, M. R., van de Schoot, R., Geenen, R., & van Loey, N. E. (2017). Parents’ posttraumatic stress after burns in their school-aged child: A prospective study. <em>Health Psychology</em>, <em>36</em>(5), 419.</p>
</div>
<div>
<p>Egberts, M. R., van de Schoot, R., Geenen, R., & van Loey, N. E. (2018). Mother, father and child traumatic stress reactions after paediatric burn: Within-family co-occurrence and parent-child discrepancies in appraisals of child stress. <em>Burns</em>, <em>44</em>(4), 861–869.</p>
</div>
<div>
<p>Elfadaly, F. G., & Garthwaite, P. H. (2017). Eliciting Dirichlet and Gaussian copula prior distributions for multinomial models. <em>Statistics and Computing</em>, <em>27</em>(2), 449–467.</p>
</div>
<div>
<p>Feng, C. (2016). The Markov-chain Monte Carlo Interactive Gallery. Retrieved from <a href="https://chi-feng.github.io/mcmc-demo/">https://chi-feng.github.io/mcmc-demo/</a></p>
</div>
<div>
<p>Fernández, C., & Steel, M. F. J. (1998). On Bayesian modeling of fat tails and skewness. <em>Journal of the American Statistical Association</em>, <em>93</em>(441), 359–371.</p>
</div>
<div>
<p>Fischer, K., Lewandowski, D., & Janssen, M. (2013). Estimating unknown parameters in haemophilia using expert judgement elicitation. <em>Haemophilia</em>, <em>19</em>(5), e282–e288.</p>
</div>
<div>
<p>Fischhoff, B. (1982). Debiasing. In <em>Judgment under Uncertainty: Heuristics and Biases</em> (pp. 422–444). Cambridge: Cambridge University Press.</p>
</div>
<div>
<p>Fisher, R., O’Leary, R. A., Low-Choy, S., Mengersen, K., & Caley, M. J. (2012). A software tool for elicitation of expert knowledge about species richness or similar counts. <em>Environmental Modelling & Software</em>, <em>30</em>, 1–14.</p>
</div>
<div>
<p>Fu, S., Celeux, G., Bousquet, N., & Couplet, M. (2015). Bayesian inference for inverse problems occurring in uncertainty analysis. <em>International Journal for Uncertainty Quantification</em>, <em>5</em>(1).</p>
</div>
<div>
<p>Fu, S., Couplet, M., & Bousquet, N. (2017). An adaptive kriging method for solving nonlinear inverse statistical problems. <em>Environmetrics</em>, <em>28</em>(4).</p>
</div>
<div>
<p>Gabry, J. (2018). <em>Shinystan: Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian Models</em>. Retrieved from <a href="https://CRAN.R-project.org/package=shinystan">https://CRAN.R-project.org/package=shinystan</a></p>
</div>
<div>
<p>Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in Bayesian workflow. <em>Journal of the Royal Statistical Society: Series A (Statistics in Society)</em>, <em>182</em>(2), 389–402.</p>
</div>
<div>
<p>Garthwaite, P. H., Al-Awadhi, S. A., Elfadaly, F. G., & Jenkinson, D. J. (2013). Prior distribution elicitation for generalized linear and piecewise-linear models. <em>Journal of Applied Statistics</em>, <em>40</em>(1), 59–75.</p>
</div>
<div>
<p>Gelman, A. (2004). Parameterization and Bayesian modeling. <em>Journal of the American Statistical Association</em>, <em>99</em>(466), 537–545.</p>
</div>
<div>
<p>Gelman, A. (2006a). Multilevel (hierarchical) modeling: What it can and cannot do. <em>Technometrics</em>, <em>48</em>(3), 432–435.</p>
</div>
<div>
<p>Gelman, A. (2006b). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). <em>Bayesian Analysis</em>, <em>1</em>(3), 515–534.</p>
</div>
<div>
<p>Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). <em>Bayesian data analysis</em>. CRC press.</p>
</div>
<div>
<p>Gelman, A., Hill, J., & Yajima, M. (2012). Why we (usually) don’t have to worry about multiple comparisons. <em>Journal of Research on Educational Effectiveness</em>, <em>5</em>(2), 189–211.</p>
</div>
<div>
<p>Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. <em>Statistical Science</em>, 457–472.</p>
</div>
<div>
<p>Gelman, A., Simpson, D., & Betancourt, M. (2017). The prior can often only be understood in the context of the likelihood. <em>Entropy</em>, <em>19</em>(10), 555.</p>
</div>
<div>
<p>Gelman, A., & Tuerlinckx, F. (2000). Type S error rates for classical and Bayesian single and multiple comparison procedures. <em>Computational Statistics</em>, <em>15</em>(3), 373–390.</p>
</div>
<div>
<p>Goldstein, D. G., & Rothschild, D. (2014). Lay understanding of probability distributions. <em>Judgment & Decision Making</em>, <em>9</em>(1).</p>
</div>
<div>
<p>Goldstein, M. (2006). Subjective Bayesian analysis: Principles and practice. <em>Bayesian Analysis</em>, <em>1</em>(3), 403–420.</p>
</div>
<div>
<p>Gore, S. (1987). Biostatistics and the medical research council. <em>Med. Res. Council News</em>, <em>35</em>, 19–20.</p>
</div>
<div>
<p>Gosling, J. P. (2018). SHELF: The Sheffield elicitation framework. In <em>Elicitation</em> (pp. 61–93). Springer.</p>
</div>
<div>
<p>Gronau, Q. F., Ly, A., & Wagenmakers, E.-J. (2019). Informed Bayesian t-tests. <em>The American Statistician</em>, 1–14.</p>
</div>
<div>
<p>Gronau, Q. F., & Singmann, H. (2017). <em>Bridgesampling: Bridge Sampling for Marginal Likelihoods and Bayes Factors</em>. Retrieved from <a href="https://CRAN.R-project.org/package=bridgesampling">https://CRAN.R-project.org/package=bridgesampling</a></p>
</div>
<div>
<p>Groves, R. M., Fowler Jr, F. J., Couper, M. P., Lepkowski, J. M., Singer, E., & Tourangeau, R. (2011). <em>Survey methodology</em> (Vol. 561). John Wiley & Sons.</p>
</div>
<div>
<p>Haakma, W., Steuten, L. M., Bojke, L., & IJzerman, M. J. (2014). Belief elicitation to populate health economic models of medical diagnostic devices in development. <em>Applied Health Economics and Health Policy</em>, <em>12</em>(3), 327–334.</p>
</div>
<div>
<p>Hadorn, D., Kvizhinadze, G., Collinson, L., & Blakely, T. (2014). Useof expert knowledge elicitation to estimate parameters in health economic decision models. <em>International Journal of Technology Assessment in Health Care</em>, <em>30</em>(4), 461–468.</p>
</div>
<div>
<p>Hald, T., Aspinall, W., Devleesschauwer, B., Cooke, R., Corrigan, T., Havelaar, A. H., … Angulo, F. J. (2016). World Health Organization estimates of the relative contributions of food to the burden of disease due to selected foodborne hazards: A structured expert elicitation. <em>PloS One</em>, <em>11</em>(1), e0145839.</p>
</div>
<div>
<p>Hampson, L. V., Whitehead, J., Eleftheriou, D., & Brogan, P. (2014). Bayesian methods for the design and interpretation of clinical trials in very rare diseases. <em>Statistics in Medicine</em>, <em>33</em>(24), 4186–4201.</p>
</div>
<div>
<p>Hampson, L. V., Whitehead, J., Eleftheriou, D., Tudur-Smith, C., Jones, R., Jayne, D., … Caldas, A. (2015). Elicitation of expert prior opinion: Application to the MYPAN trial in childhood polyarteritis nodosa. <em>PLoS One</em>, <em>10</em>(3), e0120981.</p>
</div>
<div>
<p>Hertzog, C., Oertzen, T. von, Ghisletta, P., & Lindenberger, U. (2008). Evaluating the power of latent growth curve models to detect individual differences in change. <em>Structural Equation Modeling: A Multidisciplinary Journal</em>, <em>15</em>(4), 541–563.</p>
</div>
<div>
<p>Ho, C.-H., & Smith, E. I. (1997). Volcanic hazard assessment incorporating expert knowledge: Application to the Yucca Mountain region, Nevada, USA. <em>Mathematical Geology</em>, <em>29</em>(5), 615–627.</p>
</div>
<div>
<p>Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. <em>Journal of Machine Learning Research</em>, <em>15</em>(1), 1593–1623.</p>
</div>
<div>
<p>Hofstatter, P. R. (1939). Uber die schatzung von gruppeneigenschaften. <em>Z. Psychol.</em>, <em>145</em>, 1–44.</p>
</div>
<div>
<p>Horn, D. L., Houston, D. M., & Miyamoto, R. T. (2007). Speech discrimination skills in deaf infants before and after cochlear implantation. <em>Audiological Medicine</em>, <em>5</em>(4), 232–241.</p>
</div>
<div>
<p>Horowitz, M., Wilner, N., & Alvarez, W. (1979). Impact of Event Scale: A measure of subjective stress. <em>Psychosomatic Medicine</em>, <em>41</em>(3), 209–218.</p>
</div>
<div>
<p>Houston, D. M., Horn, D. L., Qi, R., Ting, J. Y., & Gao, S. (2007). Assessing speech discrimination in individual infants. <em>Infancy</em>, <em>12</em>(2), 119–145.</p>
</div>
<div>
<p>Houston-Price, C., & Nakai, S. (2004). Distinguishing novelty and familiarity effects in infant preference procedures. <em>Infant and Child Development: An International Journal of Research and Practice</em>, <em>13</em>(4), 341–348.</p>
</div>
<div>
<p>Hox, J. J., & Maas, C. J. (2001). The accuracy of multilevel structural equation modeling with pseudobalanced groups and small samples. <em>Structural Equation Modeling</em>, <em>8</em>(2), 157–174.</p>
</div>
<div>
<p>Hox, J. J., & McNeish, D. (2020). Small samples in multilevel modeling. In <em>Small sample size solutions: A guide for applied researchers and practitioners</em>. Routledge.</p>
</div>
<div>
<p>Irony, T., & Singpurwalla, N. (1997). Noninformative priors do not exist: A discussion with jose m. Bernardo. <em>Journal of Statistical Inference and Planning</em>, <em>65</em>(1), 159–189.</p>
</div>
<div>
<p>James, A., Choy, S. L., & Mengersen, K. (2010). Elicitator: An expert elicitation tool for regression in ecology. <em>Environmental Modelling & Software</em>, <em>25</em>(1), 129–145.</p>
</div>
<div>
<p>Jaynes, E. T. (1982). On the rationale of maximum-entropy methods. <em>Proceedings of the IEEE</em>, <em>70</em>(9), 939–952.</p>
</div>
<div>
<p>Jaynes, E. T. (1996). Bayesian Methods: General Background. In (pp. 1–25). University of Calgary: Cambridge University Press. Retrieved from <a href="http://web.archive.org/web/20160110215954/http://bayes.wustl.edu/etj/articles/general.background.pdf">http://web.archive.org/web/20160110215954/http://bayes.wustl.edu/etj/articles/general.background.pdf</a></p>
</div>
<div>
<p>Jaynes, E. T. (2003). <em>Probability theory: The logic of science</em>. Cambridge university press.</p>
</div>
<div>
<p>Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. <em>Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences</em>, 453–461.</p>
</div>
<div>
<p>Jeffreys, H. (1961). <em>Theory of probability</em>. London, UK: Oxford University Press.</p>
</div>
<div>
<p>Johnson, S. R., Tomlinson, G. A., Hawker, G. A., Granton, J. T., & Feldman, B. M. (2010). Methods to elicit beliefs for Bayesian priors: A systematic review. <em>Journal of Clinical Epidemiology</em>, <em>63</em>(4), 355–369.</p>
</div>
<div>
<p>Johnson, S. R., Tomlinson, G. A., Hawker, G. A., Granton, J. T., Grosbein, H. A., & Feldman, B. M. (2010). A valid and reliable belief elicitation method for Bayesian priors. <em>Journal of Clinical Epidemiology</em>, <em>63</em>(4), 370–383.</p>
</div>
<div>
<p>Junge, C., & Cutler, A. (2014). Early word recognition and later language skills. <em>Brain Sciences</em>, <em>4</em>(4), 532–559.</p>
</div>
<div>
<p>Kadane, J. (1994). An application of robust Bayesian analysis to a medical experiment. <em>Journal of Statistical Planning and Inference</em>, <em>40</em>(2-3), 221–232.</p>
</div>
<div>
<p>Kaplan, D. (2014). <em>Bayesian statistics for the social sciences</em>. Guilford Publications.</p>
</div>
<div>
<p>Kass, R. E., & Raftery, A. E. (1995). Bayes factors. <em>Journal of the American Statistical Association</em>, <em>90</em>(430), 773–795.</p>
</div>
<div>
<p>Kass, R. E., & Wasserman, L. (1996). The selection of prior distributions by formal rules. <em>Journal of the American Statistical Association</em>, <em>91</em>(435), 1343–1370.</p>
</div>
<div>
<p>Kazis, L. E., Liang, M. H., Lee, A., Ren, X. S., Phillips, C. B., Hinson, M., … Goodwin, C. W. (2002). The development, validation, and testing of a health outcomes burn questionnaire for infants and children 5 years of age and younger: American Burn Association/Shriners Hospitals for Children. <em>The Journal of Burn Care & Rehabilitation</em>, <em>23</em>(3), 196–207.</p>
</div>
<div>
<p>Kennedy, L., Simpson, D., & Gelman, A. (2019). The experiment is just as important as the likelihood in understanding the prior: A cautionary note on robust cognitive modelling. <em>arXiv Preprint arXiv:1905.10341</em>.</p>
</div>
<div>
<p>Koch, G. G. (2004). Intraclass correlation coefficient. <em>Encyclopedia of Statistical Sciences</em>, <em>6</em>.</p>
</div>
<div>
<p>Kruschke, J. K. (2010). <em>Doing Bayesian data analysis: A tutorial with R and BUGS</em>. Academic Press.</p>
</div>
<div>
<p>Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. <em>Journal of Experimental Psychology: General</em>, <em>142</em>(2), 573.</p>
</div>
<div>
<p>Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. <em>The Annals of Mathematical Statistics</em>, <em>22</em>(1), 79–86.</p>
</div>
<div>
<p>Landolt, M. A., Vollrath, M., Ribi, K., Gnehm, H. E., & Sennhauser, F. H. (2003). Incidence and associations of parental and child posttraumatic stress symptoms in pediatric patients. <em>Journal of Child Psychology and Psychiatry</em>, <em>44</em>(8), 1199–1207.</p>
</div>
<div>
<p>Lathrop, R. G. (1967). Perceived variability. <em>Journal of Experimental Psychology</em>, <em>73</em>, 498–502. doi:<a href="https://doi.org/10.1037/h0024344">10.1037/h0024344</a></p>
</div>
<div>
<p>Lee, M. D. (2018). Bayesian methods in cognitive modeling. <em>Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience</em>, <em>5</em>, 1–48.</p>
</div>
<div>
<p>Lek, K., & van de Schoot, R. (2018). Development and evaluation of a digital expert elicitation method aimed at fostering elementary school teachers’ diagnostic competence. In (Vol. 3, p. 82). Frontiers.</p>
</div>
<div>
<p>Lek, K., & van de Schoot, R. (2019). How the Choice of Distance Measure Influences the Detection of Prior-Data Conflict. <em>Entropy</em>, <em>21</em>(5), 446.</p>
</div>
<div>
<p>Lindley, D. V. (2013). <em>Understanding uncertainty</em>. John Wiley & Sons.</p>
</div>
<div>
<p>Little, T. D. (2013). <em>Longitudinal structural equation modeling</em>. Guilford press.</p>
</div>
<div>
<p>Little, T. D., Bovaird, J. A., & Slegers, D. W. (2006). Methods for the analysis of change. <em>Handbook of Personality Development</em>, 181–211.</p>
</div>
<div>
<p>Liu, C. C., & Aitkin, M. (2008). Bayes factors: Prior sensitivity and model generalizability. <em>Journal of Mathematical Psychology</em>, <em>52</em>(6), 362–375.</p>
</div>
<div>
<p>Liu, L., & Kager, R. (2015). Bilingual exposure influences infant VOT perception. <em>Infant Behavior and Development</em>, <em>38</em>, 27–36.</p>
</div>
<div>
<p>Liu, L., & Kager, R. (2016). Perception of a native vowel contrast by Dutch monolingual and bilingual infants: A bilingual perceptual lead. <em>International Journal of Bilingualism</em>, <em>20</em>(3), 335–345.</p>
</div>
<div>
<p>Low-Choy, S., James, A., Murray, J., & Mengersen, K. (2012). Elicitator: A user-friendly, interactive tool to support scenario-based elicitation of expert knowledge. In <em>Expert knowledge and its application in landscape ecology</em> (pp. 39–67). Springer.</p>
</div>
<div>
<p>Lynch, S. M. (2007). <em>Introduction to applied Bayesian statistics and estimation for social scientists</em>. Springer Science & Business Media.</p>
</div>
<div>
<p>Mason, A. J., Gomes, M., Grieve, R., Ulug, P., Powell, J. T., & Carpenter, J. (2017). Development of a practical approach to expert elicitation for randomised controlled trials with missing health outcomes: Application to the IMPROVE trial. <em>Clinical Trials</em>, <em>14</em>(4), 357–367.</p>
</div>
<div>
<p>Maurer, D., & Werker, J. F. (2014). Perceptual narrowing during infancy: A comparison of language and faces. <em>Developmental Psychobiology</em>, <em>56</em>(2), 154–178.</p>
</div>
<div>
<p>McNeish, D. (2016a). On using Bayesian methods to address small sample problems. <em>Structural Equation Modeling: A Multidisciplinary Journal</em>, <em>23</em>(5), 750–773.</p>
</div>
<div>
<p>McNeish, D. (2016b). Using data-dependent priors to mitigate small sample bias in latent growth models: A discussion and illustration using M plus. <em>Journal of Educational and Behavioral Statistics</em>, <em>41</em>(1), 27–56.</p>
</div>
<div>
<p>Melvin, S. A., Brito, N. H., Mack, L. J., Engelhardt, L. E., Fifer, W. P., Elliott, A. J., & Noble, K. G. (2017). Home environment, but not socioeconomic status, is linked to differences in early phonetic perception ability. <em>Infancy</em>, <em>22</em>(1), 42–55.</p>
</div>
<div>
<p>Miočević, M., Levy, R., & Savord, A. (2020). The Role of Exchangeability in Sequential Updating of Findings from Small Sample Studies. In <em>Small sample size solutions: A guide for applied researchers and practitioners</em>. Routledge.</p>
</div>
<div>
<p>Molfese, D. L. (2000). Predicting dyslexia at 8 years of age using neonatal brain responses. <em>Brain and Language</em>, <em>72</em>(3), 238–245.</p>
</div>
<div>
<p>Morey, R. D., Romeijn, J.-W., & Rouder, J. N. (2016). The philosophy of Bayes factors and the quantification of statistical evidence. <em>Journal of Mathematical Psychology</em>, <em>72</em>, 6–18.</p>
</div>
<div>
<p>Morris, D. E., Oakley, J. E., & Crowe, J. A. (2014). A web-based tool for eliciting probability distributions from experts. <em>Environmental Modelling & Software</em>, <em>52</em>, 1–4.</p>
</div>
<div>
<p>Murphy, A. H., & Winkler, R. L. (1974). Subjective probability forecasting experiments in meteorology: Some preliminary results. <em>Bulletin of the American Meteorological Society</em>, <em>55</em>(10), 1206–1216.</p>
</div>
<div>
<p>Murphy, A. H., & Winkler, R. L. (1984). Probability forecasting in meteorology. <em>Journal of the American Statistical Association</em>, <em>79</em>(387), 489–500.</p>
</div>
<div>
<p>Newman, R., Ratner, N. B., Jusczyk, A. M., Jusczyk, P. W., & Dow, K. A. (2006). Infants’ early ability to segment the conversational speech signal predicts later language development: A retrospective analysis. <em>Developmental Psychology</em>, <em>42</em>(4), 643.</p>
</div>
<div>
<p>Ntzoufras, I. (2011). <em>Bayesian modeling using WinBUGS</em> (Vol. 698). John Wiley & Sons.</p>
</div>
<div>
<p>Oakes, L. M. (2010). Using habituation of looking time to assess mental processes in infancy. <em>Journal of Cognition and Development</em>, <em>11</em>(3), 255–268.</p>
</div>
<div>
<p>Oakley, J. (2010). Eliciting univariate probability distributions. In <em>Rethinking Risk Measurement and Reporting</em> (Vol. 1). London: Risk Books.</p>
</div>
<div>
<p>Oakley, J. (2019). <em>SHELF: Tools to support the sheffield elicitation framework</em>. Retrieved from <a href="https://CRAN.R-project.org/package=SHELF">https://CRAN.R-project.org/package=SHELF</a></p>
</div>
<div>
<p>O’Hagan, A., Buck, C. E., Daneshkhah, A., Eiser, J. R., Garthwaite, P. H., Jenkinson, D. J., … Rakow, T. (2006). <em>Uncertain judgements: Eliciting experts’ probabilities</em>. John Wiley & Sons.</p>
</div>
<div>
<p>Orth, U., Robins, R. W., & Widaman, K. F. (2012). Life-span development of self-esteem and its effects on important life outcomes. <em>Journal of Personality and Social Psychology</em>, <em>102</em>(6), 1271.</p>
</div>
<div>
<p>Plummer, M. (2018). <em>Rjags: Bayesian Graphical Models using MCMC</em>. Retrieved from <a href="https://CRAN.R-project.org/package=rjags">https://CRAN.R-project.org/package=rjags</a></p>
</div>
<div>
<p>Press, S. J. (2009). <em>Subjective and objective Bayesian statistics: Principles, models, and applications</em> (Vol. 590). John Wiley & Sons.</p>
</div>
<div>
<p>Quigley, J., Colson, A., Aspinall, W., & Cooke, R. M. (2018). Elicitation in the classical model. In L. C. Dias, A. Morton, & J. Quigley (Eds.), <em>Elicitation</em> (pp. 15–36). Springer.</p>
</div>
<div>
<p>Raftery, A. E. (1996). Approximate Bayes factors and accounting for model uncertainty in generalised linear models. <em>Biometrika</em>, <em>83</em>(2), 251–266.</p>
</div>
<div>
<p>R Core Team. (2017a). <em>Foreign: Read Data Stored by ’Minitab’, ’S’, ’SAS’, ’SPSS’, ’Stata’, ’Systat’, ’Weka’, ’dBase’, ...</em> Retrieved from <a href="https://CRAN.R-project.org/package=foreign">https://CRAN.R-project.org/package=foreign</a></p>
</div>
<div>
<p>R Core Team. (2017b). <em>R: A Language and Environment for Statistical Computing</em>. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from <a href="https://www.R-project.org/">https://www.R-project.org/</a></p>
</div>
<div>
<p>Runge, A. K., Scherbaum, F., Curtis, A., & Riggelsen, C. (2013). An interactive tool for the elicitation of subjective probabilities in probabilistic seismic‐hazard analysis. <em>Bulletin of the Seismological Society of America</em>, <em>103</em>(5), 2862–2874.</p>
</div>
<div>
<p>Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. <em>Psychological Bulletin</em>, <em>86</em>(2), 420.</p>
</div>
<div>
<p>Smid, S. C., Depaoli, S., & van de Schoot, R. (2019). Predicting a distal outcome variable from a latent growth model: ML versus bayesian estimation. <em>Structural Equation Modeling: A Multidisciplinary Journal</em>, 1–23. doi:<a href="https://doi.org/https://doi.org/10.1080/10705511.2019.1604140">https://doi.org/10.1080/10705511.2019.1604140</a></p>
</div>
<div>
<p>Smid, S. C., McNeish, D., Miočević, M., & van de Schoot, R. (2020). Bayesian versus frequentist estimation for structural equation models in small sample contexts: A systematic review. <em>Structural Equation Modeling: A Multidisciplinary Journal</em>, <em>27</em>(1), 131–161. doi:<a href="https://doi.org/10.1080/10705511.2019.1577140">10.1080/10705511.2019.1577140</a></p>
</div>
<div>
<p>Sokolov, E. N. (1963). <em>Perception and the conditioned reflex</em>. New York, NY: Macmillan.</p>
</div>
<div>
<p>Spiegelhalter, D. J., Abrams, K. R., & Myles, J. P. (2004). <em>Bayesian approaches to clinical trials and health-care evaluation</em> (Vol. 13). John Wiley & Sons.</p>
</div>
<div>
<p>Stan Development Team. (2018a). Brief Guide to Stan’s Warnings. Retrieved from <a href="https://mc-stan.org/misc/warnings.html">https://mc-stan.org/misc/warnings.html</a></p>
</div>
<div>
<p>Stan Development Team. (2018b). <em>RStan: The R interface to Stan</em>. Retrieved from <a href="http://mc-stan.org/">http://mc-stan.org/</a></p>
</div>
<div>
<p>Stan Development Team. (2019). Stan Reference Manual. Retrieved from <a href="https://mc-stan.org/docs/2_19/reference-manual/">https://mc-stan.org/docs/2_19/reference-manual/</a></p>
</div>
<div>
<p>Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). <em>Using multivariate statistics</em> (Vol. 5). Pearson Boston, MA.</p>
</div>
<div>
<p>Truong, P. N., Heuvelink, G. B., & Gosling, J. P. (2013). Web-based tool for expert elicitation of the variogram. <em>Computers & Geosciences</em>, <em>51</em>, 390–399.</p>
</div>
<div>
<p>Tsao, F., Liu, H., & Kuhl, P. K. (2004). Speech perception in infancy predicts language development in the second year of life: A longitudinal study. <em>Child Development</em>, <em>75</em>(4), 1067–1084.</p>
</div>
<div>
<p>Tsuji, S., & Cristia, A. (2014). Perceptual attunement in vowels: A meta‐analysis. <em>Developmental Psychobiology</em>, <em>56</em>(2), 179–191.</p>
</div>
<div>
<p>Tuyl, F., Gerlach, R., & Mengersen, K. (2008). A comparison of Bayes-Laplace, Jeffreys, and other priors: The case of zero events. <em>The American Statistician</em>, <em>62</em>(1), 40–44.</p>
</div>
<div>
<p>Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. <em>Cognitive Psychology</em>, <em>5</em>(2), 207–232.</p>
</div>
<div>
<p>van Baar, Vloemans, Beerthuizen, Middelkoop, & Nederlandse Brandwonden Registratie R3. (2015). Epidemiologie.</p>
</div>
<div>
<p>van de Schoot, R., Broere, J. J., Perryck, K. H., Zondervan-Zwijnenburg, M., & van Loey, N. E. (2015). Analyzing small data sets using Bayesian estimation: The case of posttraumatic stress symptoms following mechanical ventilation in burn survivors. <em>European Journal of Psychotraumatology</em>, <em>6</em>(1), 25216.</p>
</div>
<div>
<p>van de Schoot, R., Griffioen, E., & Winter, S. (2018). Dealing with imperfect elicitation results. In T. Bedford, S. French, A. M. Hanea, & G. F. Nane (Eds.), <em>Expert judgement in risk and decision analysis</em>.</p>
</div>
<div>
<p>van de Schoot, R., Sijbrandij, M., Depaoli, S., Winter, S. D., Olff, M., & van Loey, N. E. (2018). Bayesian PTSD-trajectory analysis with informed priors based on a systematic literature search and expert elicitation. <em>Multivariate Behavioral Research</em>, <em>53</em>(2), 267–291.</p>
</div>
<div>
<p>van de Schoot, R., Veen, D., Smeets, L., Winter, S., & Depaoli, S. (2020). A tutorial on using the WAMBS-checklist to avoid the misuse Bayesian Statistics. In <em>Small sample size solutions: A guide for applied researchers and practitioners</em>. Routledge.</p>
</div>
<div>
<p>van de Schoot, R., Winter, S. D., Ryan, O., Zondervan-Zwijnenburg, M., & Depaoli, S. (2017). A systematic review of Bayesian articles in psychology: The last 25 years. <em>Psychological Methods</em>, <em>22</em>(2), 217.</p>
</div>
<div>
<p>Veen, D., Stoel, D., Schalken, N., Mulder, K., & van de Schoot, R. (2018). Using the Data Agreement Criterion to Rank Experts’ Beliefs. <em>Entropy</em>, <em>20</em>(8), 592.</p>
</div>
<div>
<p>Veen, D., Stoel, D., Zondervan-Zwijnenburg, M., & van de Schoot, R. (2017). Proposal for a Five-Step Method to Elicit Expert Judgement. <em>Frontiers in Psychology</em>, <em>8</em>, 2110.</p>
</div>
<div>
<p>Walley, R. J., Smith, C. L., Gale, J. D., & Woodward, P. (2015). Advantages of a wholly Bayesian approach to assessing efficacy in early drug development: A case study. <em>Pharmaceutical Statistics</em>, <em>14</em>(3), 205–215.</p>
</div>
<div>
<p>Wang, J., & Wang, X. (2012). <em>Structural equation modeling: Applications using Mplus</em>. John Wiley & Sons.</p>
</div>
<div>
<p>Wasserman, L. (2000). Bayesian model selection and model averaging. <em>Journal of Mathematical Psychology</em>, <em>44</em>(1), 92–107.</p>
</div>
<div>
<p>Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., … Yutani, H. (2019). <em>Ggplot2: Create elegant data visualisations using the grammar of graphics</em>. Retrieved from <a href="https://CRAN.R-project.org/package=ggplot2">https://CRAN.R-project.org/package=ggplot2</a></p>
</div>
<div>
<p>Wisniowski, A., Bijak, J., & Shang, H. L. (2014). Forecasting Scottish migration in the context of the 2014 constitutional change debate. <em>Popul. Space Place</em>, <em>20</em>, 455–464. doi:<a href="https://doi.org/10.1002/psp.1856">10.1002/psp.1856</a></p>
</div>
<div>
<p>Wuertz, D., Setz, T., Chalabi, Y., Boudt, C., Chausse, P., & Miklovac, M. (2019). <em>FGarch: Rmetrics - autoregressive conditional heteroskedastic modelling</em>. Retrieved from <a href="https://CRAN.R-project.org/package=fGarch">https://CRAN.R-project.org/package=fGarch</a></p>
</div>
<div>
<p>Yang, R., & Berger, J. O. (1996). <em>A catalog of noninformative priors</em>. Institute of Statistics; Decision Sciences, Duke University.</p>
</div>
<div>
<p>Zondervan-Zwijnenburg, M., Depaoli, S., Peeters, M., & van de Schoot, R. (2018). Pushing the Limits: The Performance of Maximum Likelihood and Bayesian Estimation With Small and Unbalanced Samples in a Latent Growth Model. <em>Methodology</em>, <em>1</em>(1), 1–13.</p>
</div>
<div>
<p>Zondervan-Zwijnenburg, M., Peeters, M., Depaoli, S., & van de Schoot, R. (2017a). Where do priors come from? Applying guidelines to construct informative priors in small sample research. <em>Res. Hum. Dev.</em>, <em>14</em>, 305–320. doi:<a href="https://doi.org/10.1080/15427609.2017.1370966">10.1080/15427609.2017.1370966</a></p>
</div>
<div>
<p>Zondervan-Zwijnenburg, M., van de Schoot-Hubeek, W., Lek, K., Hoijtink, H., & van de Schoot, R. (2017b). Application and evaluation of an expert judgment elicitation procedure for correlations. <em>Frontiers in Psychology</em>, <em>8</em>, 90.</p>
</div>
<div>
<p>Zyphur, M. J., Oswald, F. L., & Rupp, D. E. (2015). Bayesian probability and statistics in management research [special issue]. <em>Journal of Management</em>, <em>41</em>(2).</p>
</div>
</div>
</div>
</section>
</div>
</div>
</div>
<a href="curriculum-vitae.html" class="navigation navigation-prev navigation-unique" aria-label="Previous page"><i class="fa fa-angle-left"></i></a>
</div>
</div>
<script src="libs/gitbook-2.6.7/js/app.min.js"></script>
<script src="libs/gitbook-2.6.7/js/lunr.js"></script>
<script src="libs/gitbook-2.6.7/js/clipboard.min.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-search.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-sharing.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-fontsettings.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-bookdown.js"></script>
<script src="libs/gitbook-2.6.7/js/jquery.highlight.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-clipboard.js"></script>
<script>
gitbook.require(["gitbook"], function(gitbook) {
gitbook.start({
"sharing": {
"github": false,
"facebook": true,
"twitter": true,
"google": false,
"linkedin": true,
"weibo": false,
"instapaper": false,
"vk": false,
"all": ["facebook", "google", "twitter", "linkedin", "weibo", "instapaper"]
},
"fontsettings": {
"theme": "white",
"family": "sans",
"size": 2
},
"edit": {
"link": null,
"text": null
},
"history": {
"link": null,
"text": null
},
"download": ["Dissertation_Duco_Veen.pdf"],
"toc": {
"collapse": "section"
},
"search": true
});
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "true";
if (src === "" || src === "true") src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:")
if (/^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>