-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathsmi2sdf.py
executable file
·193 lines (182 loc) · 7.4 KB
/
smi2sdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#!/usr/bin/env python3
# generation of up to N low energy conformers
# from 2D input (smi) to 3D output (sdf)
# see Ebejer et. al.
# "Freely Available Conformer Generation Methods: How Good Are They?"
# JCIM, 2012, DOI: 10.1021/ci2004658 for technical details
#
# Copyright (C) 2018 Francois Berenger
# System Cohort Division,
# Medical Institute of Bioregulation,
# Kyushu University
# 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from __future__ import print_function
import argparse
import multiprocessing as mp
import rdkit
import sys
from contextlib import closing
from rdkit import Chem
from rdkit.Chem import AllChem, rdMolAlign
def RobustSmilesMolSupplier(filename):
with open(filename) as f:
for line in f:
words = line.split()
smile = words[0]
name = words[1]
yield name, Chem.MolFromSmiles(smile)
# nb. conformers to generate prior to energy minimization
# as an empirical function of the molecule's flexibility
def how_many_conformers(mol):
nb_rot_bonds = AllChem.CalcNumRotatableBonds(mol)
if nb_rot_bonds <= 7:
return 50
elif nb_rot_bonds <= 12:
return 200
return 300 # This is more
# keep only conformers which are far enough from the reference conformer
def rmsd_filter(mol, ref_conf, conf_energies, threshold):
# we use heavy atoms RMSD; not all atoms (Peter Gedeck's suggestion)
mol_noH = Chem.RemoveHs(mol)
ref_conf_id = ref_conf.GetId()
res = []
for e, curr_conf in conf_energies:
curr_conf_id = curr_conf.GetId()
rms = AllChem.GetConformerRMS(mol_noH, ref_conf_id, curr_conf_id)
if rms > threshold:
res.append((e, curr_conf))
return res
def process_one(name, mol, n_confs):
n = how_many_conformers(mol)
print("init pool size for %s: %d" % (name, n), file = sys.stderr)
mol_H = Chem.AddHs(mol)
res = Chem.Mol(mol_H)
res.RemoveAllConformers()
print("generating starting conformers ...", file = sys.stderr)
conf_energies = []
print("FF minimization ...", file = sys.stderr)
for cid in AllChem.EmbedMultipleConfs(mol_H, n):
ff = AllChem.UFFGetMoleculeForceField(mol_H, confId = cid)
# print("E before: %f" % ff.CalcEnergy())
ff.Minimize()
energy = ff.CalcEnergy()
# print("E after: %f" % energy)
conformer = mol_H.GetConformer(cid)
# print("cid: %d e: %f" % (cid, energy))
conf_energies.append((energy, conformer))
# sort by increasing E
conf_energies = sorted(conf_energies, key = lambda x: x[0])
# output non neighbor conformers
kept = 0
print("RMSD pruning ...", file = sys.stderr)
while kept < n_confs and len(conf_energies) > 0:
(e, conf) = conf_energies.pop(0)
kept += 1
cid = res.AddConformer(conf, assignId = True)
# align conformers to the one of lowest energy
if cid != 0:
rdMolAlign.AlignMol(res, res, prbCid = cid, refCid = 0)
# remove neighbors
conf_energies = rmsd_filter(mol_H, conf, conf_energies, rmsd_threshold)
print("kept %d confs for %s" % (kept, name), file = sys.stderr)
name_res = (name, res)
#res.SetProp("_Name", name) # !!! not working !!!
return name_res
def worker_process(jobs_q, results_q, n_confs):
for name, mol in iter(jobs_q.get, 'STOP'):
confs = process_one(name, mol, n_confs)
results_q.put(confs)
# tell the multiplexer I am done
results_q.put('STOP')
def write_out_confs(rename, name_confs, writer):
name, confs = name_confs
for c in confs.GetConformers():
cid = c.GetId()
if rename:
# append conformer id to molecule name
name_cid = "%s_%03d" % (name, cid)
# the following renames the molecule, but we have no choice
confs.SetProp("_Name", name_cid)
else:
confs.SetProp("_Name", name)
writer.write(confs, confId = cid)
def multiplexer_process(rename, results_q, output_sdf, nb_workers):
with closing(Chem.SDWriter(output_sdf)) as writer:
for i in range(nb_workers):
for confs in iter(results_q.get, 'STOP'):
write_out_confs(rename, confs, writer)
if __name__ == '__main__':
# to prune too similar conformers
rmsd_threshold = 0.35 # Angstrom
# CLI parsing setup
parser = argparse.ArgumentParser(
description = "generate diverse low energy 3D conformers; \
up to [n_confs] per molecule from the input file")
parser.add_argument("-n", metavar = "n_confs", type = int, default = 1,
dest = "n_confs",
help = "#conformers per molecule (default: 1)")
parser.add_argument("-j", metavar="n_procs", type = int, default = 1,
dest = "n_procs",
help = "max number of parallel jobs (default: 1)")
parser.add_argument("-i", metavar = "input_smi", dest = "input_smi")
parser.add_argument("-o", metavar = "output_sdf", dest = "output_sdf")
parser.add_argument('--rename', dest='rename', action='store_true',
help = "append conformer id to molecule name \
(default=False")
parser.set_defaults(rename=False)
# parse CLI
# show help in case user has no clue of what to do
if len(sys.argv) == 1:
parser.print_help(sys.stderr)
sys.exit(1)
args = parser.parse_args()
n_confs = args.n_confs
input_smi = args.input_smi
output_sdf = args.output_sdf
n_procs = args.n_procs # for parallelization
rename = args.rename
if n_procs > 1:
# process molecules in parallel
# multiprocessing queues
jobs_queue = mp.Queue()
results_queue = mp.Queue()
# start workers
# print('starting workers')
for i in range(n_procs):
mp.Process(target = worker_process,
args = (jobs_queue, results_queue, n_confs)).start()
# start the multiplexer
# print('starting multiplexer')
mp.Process(target = multiplexer_process,
args = (rename, results_queue, output_sdf, n_procs)).start()
# feed workers
# print('feeding workers')
for name, mol in RobustSmilesMolSupplier(input_smi):
if mol is None:
continue
jobs_queue.put((name, mol))
# tell workers that no more jobs will come
for i in range(n_procs):
jobs_queue.put('STOP')
# print('no more jobs')
else:
# process molecules sequentially
with closing(Chem.SDWriter(output_sdf)) as writer:
for name, mol in RobustSmilesMolSupplier(input_smi):
if mol is None:
continue
conformers = process_one(name, mol, n_confs)
write_out_confs(rename, conformers, writer)