-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathinference.py
74 lines (58 loc) · 2.14 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
from argparse import ArgumentParser
import cv2
def parse_args():
#
# Setting parameters
#
parser = ArgumentParser(description='Inference of AGPCNet')
#
# Checkpoint parameters
#
parser.add_argument('--pkl-path', type=str, default=r'./results/mdfa_mIoU-0.4843_fmeasure-0.6525.pkl',
help='checkpoint path')
#
# Test image parameters
#
parser.add_argument('--image-path', type=str, default=r'./data/1.bmp', help='image path')
parser.add_argument('--base-size', type=int, default=256, help='base size of images')
args = parser.parse_args()
return args
def preprocess_image(img):
means=[0.485, 0.456, 0.406]
stds=[0.229, 0.224, 0.225]
preprocessed_img = img.copy()[: , :, ::-1]
for i in range(3):
preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i]
preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i]
preprocessed_img = \
np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1)))
preprocessed_img = torch.from_numpy(preprocessed_img)
preprocessed_img.unsqueeze_(0)
input = Variable(preprocessed_img, requires_grad = True)
return input
if __name__ == '__main__':
args = parse_args()
# load network
print('...load checkpoint: %s' % args.pkl_path)
net = torch.load(args.pkl_path, map_location=torch.device('cpu'))
net.eval()
# load image
print('...loading test image: %s' % args.image_path)
img = cv2.imread(args.image_path, 1)
img = np.float32(cv2.resize(img, (args.base_size, args.base_size))) / 255
input = preprocess_image(img)
# inference in cpu
print('...inference in progress')
with torch.no_grad():
output = net(input)
output = output.cpu().detach().numpy().reshape(args.base_size, args.base_size)
output = output > 0
# show results
plt.figure()
plt.subplot(121), plt.imshow(img, cmap='gray'), plt.title('Original Image')
plt.subplot(122), plt.imshow(output, cmap='gray'), plt.title('Inference Result')
plt.show()