-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlotting.cpp
95 lines (82 loc) · 2.99 KB
/
Plotting.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#include "Plotting.h"
#include <iostream>
#include <algorithm>
using namespace std;
void ShowResults(string outputSVGFilename, map<string, vector<VariationResult>> testResults)
{
int i, j;
PLFLT** x; PLFLT** y;
PLFLT xMin = 0, yMin = 0, xMax = 1.0f, yMax = 1.0f;
// Pour chaque paramètre testé
for(auto& testSet : testResults)
{
// Trie les tests dans l'ordre de leur False positive rate
cout << "First FPR before sort : " << testSet.second[0].falsePositiveRate << "\n";
sort(testSet.second.begin(), testSet.second.end(), [](VariationResult a, VariationResult b) {
return a.falsePositiveRate < b.falsePositiveRate;
});
cout << "First FPR after sort : " << testSet.second[0].falsePositiveRate << "\n";
}
// Met les résultats dans des tableaux prêts à être affichés
x = new PLFLT*[testResults.size()];
y = new PLFLT*[testResults.size()];
i = 0;
for(pair<string, vector<VariationResult>> testSet : testResults)
{
FillArrays(&(x[i]), &(y[i]), testSet.second);
i++;
}
// Initialisation
plsfnam(outputSVGFilename.c_str());
plsdev("svg");
plinit();
plssub( 2, 2 );
i = 0;
for(pair<string, vector<VariationResult>> testSet : testResults)
{
// Valeurs minimum et maximum des axes du repère
SetMinMax(xMin, xMax, yMin, yMax, testSet.second);
plenv(xMin*0.99f, xMax*1.01f, yMin*0.99f, yMax*1.01f, 0, 0);
pllab( "False Positive Rate", "True Positive Rate", testSet.first.c_str() );
plcol0(i+2);
plline(testSet.second.size(), x[i], y[i]);
plpoin(testSet.second.size(), x[i], y[i], 3);
// Et les labels
//for(j = 0; j < learning_coeff_results.size(); j++)
// plptex(x[0][j], y[0][j], 0, 0, 0, (" " + to_string(learning_coeff_results[j].inputParameter.learning_coeff)).c_str());
i++;
}
// Libération de la mémoire et écriture du fichier test.svg
plend();
for(i = 0; i < 3; i++) free(x[i]);
for(i = 0; i < 3; i++) free(y[i]);
//free(x);
//free(y);
}
void FillArrays(PLFLT** x, PLFLT** y, vector<VariationResult>& data)
{
// Alloue la mémoire
(*x) = (PLFLT*)malloc(sizeof(PLFLT)*data.size());
(*y) = (PLFLT*)malloc(sizeof(PLFLT)*data.size());
// Remplit les tableaux
for(int j = 0; j < data.size(); j++)
{
(*x)[j] = data[j].falsePositiveRate;
(*y)[j] = data[j].truePositiveRate;
}
}
void SetMinMax(PLFLT& xMin, PLFLT& xMax, PLFLT& yMin, PLFLT& yMax, vector<VariationResult>& data)
{
xMin = min_element(data.begin(), data.end(), [](VariationResult& a, VariationResult& b) {
return a.falsePositiveRate < b.falsePositiveRate;
})->falsePositiveRate;
xMax = max_element(data.begin(), data.end(), [](VariationResult& a, VariationResult& b) {
return a.falsePositiveRate < b.falsePositiveRate;
})->falsePositiveRate;
yMin = min_element(data.begin(), data.end(), [](VariationResult& a, VariationResult& b) {
return a.truePositiveRate < b.truePositiveRate;
})->truePositiveRate;
yMax = max_element(data.begin(), data.end(), [](VariationResult& a, VariationResult& b) {
return a.truePositiveRate < b.truePositiveRate;
})->truePositiveRate;
}